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r–convex transformability in nonlinear

programming problems
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Abstract. We show that for r-convex transformable nonlinear programming problems the
Karush-Kuhn-Tucker necessary optimality conditions are also sufficient and we provide
a method of solving such problems with the aid of associated r-convex ones.
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1. Introduction

The aim of the paper is to prove that the Karush-Kuhn-Tucker necessary op-
timality conditions (KKT conditions) are also sufficient for the r-convex trans-
formable (r-convexifiable) nonsmooth nonlinear programming problem (PI) which
reads:

Find a point x ∈ R
n, if it exists, such that

f0 (x) = min
x∈SI

f0(x)

where

SI = {x ∈ R
n | f(x) ≤ 0} ,

f0 : R
n → R, f : Rn → R

m are locally Lipschitz and r-convex transformable, see
Definition 2.1.

In order to solve Problem (PI) one should find KKT points. However, our
approach consists in seeking the KKT points of the above r-convex transformable
problem using an associated r-convex problem (PC) which is much easier to be
solved. As it appears the procedure provided in the paper has applications also
when the problem (PI) is actually r-convex. In that case the r-convex problem
could be chosen to be an easier one to be solved.
For definition of r-convexity, see [3]. For the locally Lipschitz case, we say that

f : X −→ R, where X ⊂ R
n is a nonempty open convex set, is r-convex if for all

x, u ∈ X ,
1

r
erf(x) ≥

1

r
erf(u)

[

1 + r(x − u)T ξ
]

if r 6= 0
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and

f(x)− f(u) ≥ (x − u)T ξ if r = 0

for any ξ ∈ ∂f(u).

The r-convexity at a point has now an obvious meaning. Following the concept
of r-convexity, T. Antczak defined a notion of r-invexity and investigated it in a
vast number of papers, see for example [1], [2] and the references therein. We
discuss the relation between r-convex transformability and r-invexity in the last
part of Section 5.

2. r-convex transformability

We shall make clear now what we mean by r-convex transformability, compare
[6], [9].

Definition 2.1. A locally Lipschitz function f : Rn → R is said to be r-convex
transformable or r-convexifiable (with respect to ϕ) provided there exists a C1

diffeomorphism ϕ : R
n → R

n with C1 inverse such that the composed function
f ◦ ϕ−1 is r-convex.

If a function f is differentiable, then it suffices to assume that ϕ is only differ-
entiable. In this paper we consider the case when r 6= 0. For the case r = 0, see
[7], [8].

Some results concerning r-convex transformability and its applications in non-
linear programming problems could be found in [4]. But our ones seem to be
more applicable and provide the algorithms for solving the problems considered.
Since r-convex transformable functions possess many r-convex-like properties it
seems that some techniques used for r-convex functions will also apply. Our paper
investigates a few of these relationships. We shall start with a sufficient condition
for r-convex transformability and provide two simple criteria which allow one to
check whether a twice-differentiable function f is r-convex transformable with
respect to a certain ϕ. The criteria follow by applying the second order convexity
condition to the function x 7−→ exp(r(f ◦ ϕ−1)(x)).

Proposition 2.2. Let a function f : R → R and a diffeomorphism ϕ : R → R be

twice differentiable and let x ∈ R. If ϕ
′

(x) 6= 0 and

rf ′

(

ϕ−1 (x)
) [

rf ′

(

ϕ−1 (x)
)

− ϕ′′ (x)
]

+ rf ′′

(

ϕ−1 (x)
)

≥ 0

then f is r-convex transformable with respect to ϕ at x.

Proposition 2.3. Let a function f : Rn → R and a diffeomorphism ϕ : Rn → R
n

be twice differentiable and let x ∈ R
n. Assume that the derivatives

∂ϕ−1(x)
∂xi

,
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∂2ϕ−1(x)
∂xi∂xj

exist for any i, j = 1, . . . , n and denote by A the n × n matrix with

elements

aij = rf ′

(

ϕ−1 (x)
)

[

rf ′

(

ϕ−1 (x)
) ∂ϕ−1 (x)

∂xi

∂ϕ−1 (x)

∂xj
−

∂2ϕ−1 (x)

∂xi∂xj

]

+ rf ′′

(

ϕ−1 (x)
) ∂ϕ−1 (x)

∂xi

∂ϕ−1 (x)

∂xj
, i, j = 1, . . . , n.

If A is positive semidefinite, then f is r-convex transformable with respect to ϕ
at x.

Since we are interested in r-convex transformability at KKT points only, the
above proposition provides, together with an algorithm for checking the positive
definiteness of the matrix in [5], quite a useful tool.

Example 2.4. A function f : R2 → R given by

f(x1, x2) = ln

[

(

x1 + x31

)2
+
(

x2 + x32

)2
+ 1

]

is r-convex transformable for all r ∈ R. To prove this we need to find a dif-
feomorphism ϕ and check that the function g = f ◦ ϕ−1 is actually r-convex.
Here ϕ(x1, x2) = (x1 + x31, x2 + x32) and g is given by the formula g(y1, y2) =

ln
[

y21 + y22 + 1
]

. Hence by definition of r-convexity it follows that g is r-convex
for any r 6= 0. Let us observe that the function f itself is not r-convex for all r.
Indeed, the function

h (x1, x2) = exp (rf (x1, x2)) =

(

(

x1 + x31

)2
+
(

x2 + x32

)2
+ 1

)r

is not convex, for instance, for r = 1/10 which follows by applying the second
order convexity test.

It is worth to stress here that the class of r-convex transformable functions is
wider than the class of r-convex functions. Hence our results apply not only for
r-convex problems but also for such problems that have enough r-convexity-like
properties.

3. The sufficiency of the KKT conditions

We shall prove that the assumption of r-convex transformability leads to the
sufficient optimality conditions in the nonlinear programming problems.
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Theorem 3.1. Let functions f0, f be r-convex transformable with respect to
the same ϕ and let x be a KKT point for problem (PI). Then x is a solution to
problem (PI).

Proof: Let us put gi = fi ◦ ϕ−1 for i = 0, 1, 2, . . . , m and take any feasible x.
Then fi = gi ◦ ϕ for i = 0, 1, 2, . . . , m and

(3.1) gi(ϕ(x)) ≤ 0 for i = 1, 2, . . . , m.

Since x is a KKT point for problem (PI) we obtain from [10] that there exists a
Lagrange multiplier λ ∈ R

m, λ ≥ 0, such that

0 ∈ ∂f0 (x) +
m
∑

i=1

λi∂fi (x) ,(3.2)

λifi (x) = 0 for ⊂= 1, 2, . . . , m.(3.3)

Hence there exist subgradients τ ∈ ∂f0(x) and υi ∈ ∂fi(x) for i = 1, 2, . . . , m
such that

(3.4) τ +
m
∑

i=1

λiυi = 0.

By the r-convex transformability of f0 is it follows that, for any r 6= 0,

(3.5)
1

r
erg0(ϕ(x)) ≥

1

r
erg0(ϕ(x)) (1 + r(ϕ(x) − ϕ (x))T ζ)

where ζ ∈ ∂yg0(ϕ(x)). An application of the chain rule yields ζ = (∇xϕ(x̄))−1τ .
From (3.4) we thus get

(3.6)

1

r
erg0(ϕ(x)) ≥

1

r
erg0(ϕ(x))

− erg0(ϕ(x)) (ϕ(x) − ϕ (x))T

(

m
∑

i=1

λi (∇xϕ (x̄))−1 vi

)

.

By (3.6) and the chain rule we now obtain

(3.7)

1

r
erg0(ϕ(x)) ≥

1

r
erg0(ϕ(x))

− erg0(ϕ(x)) (ϕ(x) − ϕ (x))T

(

m
∑

i=1

λiζi

)
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where ζi ∈ ∂ygi(ϕ(x)) for i = 1, 2, . . . , m. Thus by the r-convex transformability
of fi for i = 1, 2, . . . , m and by (3.7) we get

(3.8)

1

r
erg0(ϕ(x)) −

1

r
erg0(ϕ(x))

≥
1

r
erg0(ϕ(x))

m
∑

i=1

λi

(

1− ergi(ϕ(x))−rgi(ϕ(x))
)

.

Now we show that

(3.9)
1

r
erg0(ϕ(x))

m
∑

i=1

λi

(

1− ergi(ϕ(x))−rgi(ϕ(x))
)

≥ 0.

Let us first consider the case when r > 0. Of course 1r erg0(ϕ(x)) > 0. Since

λigi(ϕ(x)) = 0 for i = 1, 2, . . . , m we obtain that either λi = 0 or gi(ϕ(x)) = 0 for
i = 1, 2, . . . , m. By the above arguments and since rgi(ϕ(x)) ≤ 0 it follows that

λi(1 − ergi(ϕ(x))−rgi(ϕ(x))) is either nonnegative or zero. The case when r < 0
follows in a similar manner. Hence (3.8) follows. By (3.8) and (3.9) it follows that

(3.10)
1

r
erg0(ϕ(x)) ≥

1

r
erg0(ϕ(x))

hence f0(x) ≥ f0(x) i.e. x is a solution to problem (PI). �

A thorough analysis of the above proof shows that we may impose weaker
conditions on the inequality constraints. It also reveals that the KKT points to
both the problems are related by the diffeomorphism ϕ. We shall deal with that
questions in the next section, where we formulate an associated problem (PC)
which is “less nonlinear” and equivalent to problem (PI) in a certain sense.

4. An associated problem

In this section we shall give new sufficient conditions for optimality in prob-
lem (PI) under less restrictive hypotheses on the data than r-convex transforma-
bility. We shall use an associated r-convex problem (PC) to find the candidates
for the solution to the problem considered. Similarly to well known convexity- or
invexity-type assumptions we shall make our assumptions solely at KKT points.

Let x be a KKT point for problem (PI) with λ being the vector of Lagrange
multipliers. Denote by I the set of the indices of all active constraint functions
at x, i.e.

(4.1) I := {1 ≤ i ≤ m | fi (x) < 0} .
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Let f0 be r-convex transformable at the point x with respect to ϕ : Rn → R
n and

let y := ϕ(x). Define the functions gi : R
n → R as follows

(4.2) gi := fi ◦ ϕ−1 for i = 0, 1, 2, . . . , m.

We impose the following assumptions on the constraint functions, for any feasible
y and all ζi ∈ ∂gi(y), i ∈ I:

(4.3) ζT
i (y − y) ≤ 0.

The conditions imposed on gi, i ∈ I, are direct generalizations of the notion
of r-convex transformability at a point. This may be viewed as a version of
quasiconvexity, although it is more general, compare [11]. Indeed consider a
function f(x) = x4 − x2 + 1 over a set X = (−1,+∞). Take a point x = −1.

Then f
′

(x) = −2 and relation (4.3) reads −2(x + 1) ≤ 0. While for the quasi-

convexity of f at x it is required that f(x) ≤ f(x) ⇒ f
′

(x)(x − x) ≤ 0 for all
x ∈ X and f(x) ≤ f(x) for x ∈ [−1, 1].

Now we are in position to consider an associated problem (PC):

Find an y ∈ SC , if it exists, such that

g0 (y) = min
y∈SC

g0(y)

where

SC = {y ∈ R
n | g(y) ≤ 0},

g0 : R
n → R, g : Rn → R

m satisfy (4.3).

The KKT points of problems (PI) and (PC) are connected each to other in the
following way.

Proposition 4.1. Let f0 be r-convex transformable at x with respect to ϕ and
let (4.3) hold. The point x ∈ SI is a KKT point for (PI) iff y = ϕ(x) ∈ SC is

a KKT point for (PC). Moreover, the vector of Lagrange multipliers remains the
same.

Proof: It follows easily from the r-convex transformability assumption and the
properties of a coordinate transform ϕ, compare [7]. �

Now we may formulate and prove the sufficient optimality condition for prob-
lem (PI).
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Proposition 4.2. Let x be a KKT point for problem (PI) and let f0 be r-
convex transformable at x with respect to ϕ. Assume that (4.3) holds. Then x is
a solution to problem (PI).

Proof: Reasoning as in the proof of Theorem 3.1 we get

(4.4)

1

r
erg0(ϕ(x)) ≥

1

r
erg0(ϕ(x))

− erg0(ϕ(x)) (ϕ(x) − ϕ (x))T

(

m
∑

i=1

λiζi

)

,

where ζi ∈ ∂ygi(ϕ(x)) for i = 1, 2, . . . , m. Thus by the r-convex transformability
assumption, (4.3) and properties of ϕ we get

(4.5)
1

r
erg0(ϕ(x)) ≥

1

r
erg0(ϕ(x)).

Therefore

(4.6) g0(ϕ(x)) ≥ g0 (ϕ (x))

which means that

(4.7) f0(x) ≥ f0 (x) .
�

From the above results it follows that the solution to (PI) may be obtained from
the solution of (PC). The procedure is as follows. Problem (PI) is transformed
to an r-convex problem (PC) which is usually easier to be solved. The values of
the objective functions at optimal points for both problems are equal. If we are
interested in finding the KKT point for (PI) these can be obtained by the same
transformation ϕ.

5. Applications and remarks

We shall start with a concrete example:

Example 5.1. Consider problem (PI)

log

(

(

x3 + x
)2
+ 1

)

→ min

subject to

log
(

x3 + x+ 1
)

− 10 ≤ 0
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over C = {x : x ≥ 1}. We show that this problem is r-convex transformable. We
put ϕ(x) = x3 + x and consider the following 1-convex problem

log
(

y2 + 1
)

→ min

subject to
log(y + 1)− 10 ≤ 0

over C1 = {y : y ≥ 2}. Its solution is obviously y = 2 and in a consequence an x
satisfying x3 + x = 2, i.e. x = 1.

To end the paper we provide a few remarks upon some other types of problems
that can be considered by our approach.

The differentiable case. In case the functions involved are differentiable we
have similar results but we may include equality constraint, i.e. problem (PI) now
reads:

Find a point x ∈ R
n, if it exists, such that

f0 (x) = min
x∈SI

f0(x)

where

SI = {x ∈ R
n | f(x) ≤ 0, h(x) = 0} .

In case the equality constraint appears it must be continuously differentiable
anyway. The assumptions are as follows:

Let f0 be r-convexifiable at a point x with respect to ϕ and let for all active
constraints fi the functions gi = fi ◦ ϕ−1 satisfy for any feasible y

(5.1) ∇gi (y)
T (y − y) ≤ 0

and for all j = 1, 2, . . . , k let hj be such that pj = hj ◦ ϕ−1 satisfies for any
feasible y

(5.2) sgn (vi)∇pj (y)
T (y − y) ≤ 0,

where v is the Lagrange multiplier associated with the equality constraint.

The associated problem (PC) now reads:

Find a point y ∈ R
n, if it exists, such that

g0 (y) = min
y∈SC

g0(y)

where

SC = {y ∈ R
n | g(y) ≤ 0, p(x) = 0} .

With the above assumptions, the results concerning solvability of the problem
stated follow:
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Proposition 5.2. A point x ∈ SI is a KKT point for (PI) iff y = ϕ(x) ∈ SC

is a KKT point for (PC). Moreover, the vector of Lagrange multipliers remains
the same. Both the points x and y are solutions to problems (PI) and (PC),
respectively.

Problems with nonnegative variable. The approach presented in the paper
is very useful in case of problems with a nonnegative variable, i.e., problem (PIE)

minimize f0(x)

over
SI = {x ∈ R

n | f(x) ≤ 0, x ≥ 0, h(x) = 0} .

Such problems are very important from the applicational point of view. But
it is extremely difficult to provide sufficient optimality conditions different from
convexity or its standard generalizations due to the presence of a linear inequality
constraint. Thus it appears that r-convex transformability may prove to be quite
a useful tool in that case contrary to invexity, compare [11] for a suitable example.
The additional hypothesis we have to impose on the diffeomorphism ϕ is quite
natural and satisfied in most cases, i.e., we require that ϕ(x) ≥ 0 iff x ≥ 0. This
allows us to prove the following:

Theorem 5.3. A point x at which problem (PIE) is r-convex transformable, i.e.
(5.1) and (5.2) are satisfied, is its global solution if and only if the point ϕ(x) is
a global solution of problem (PIC)

minimize g0(y)

over

SC = {y ∈ R
n | g(y) ≤ 0, y ≥ 0, p(y) = 0} .

The proof is similar to the proofs of Propositions 4 and 5 from [8] and it relies
on defining the equivalent problem

minimize f0(x)

over
SIE = {x ∈ R

n | f(x) ≤ 0, ϕ(x) ≥ 0, h(x) = 0}

and later reasoning as in the above.

Connections with r-invexity. It is well known that in some cases the invex
functions are convex transformable, provided the scale functions η satisfies certain
assumptions, see [6] and [7], [8] for a more applied approach. Hence it is obvious
that a similar result would hold in our case. This explains the connections of our
results with those of [1], [2].
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Indeed, let us define a problem (PI) to be generalized r-invex at a point x
provided that there exists a function η : SI → R

n such that for all x ∈ SI and for
all active constraint functions fi the following relations hold (r 6= 0):

1

r
erf0(x) ≥

1

r
erf0(x)(1 + r(η(x))T∇f0(x)),

0 ≥ η(x)T∇fi(x) for i ∈ I.

By the properties of ϕ and standard calculus it follows that

Proposition 5.4. Let f0 be r-convex transformable at x with respect to ϕ and
let (4.3) hold. Then problem (PI) is generalized r-invex at x with respect to
function η given by the formula

η(x) = (∇xϕ(x̄))−1(ϕ(x) − ϕ(x̄)).

Moreover, assuming generalized r-invexity with respect to the above η we obtain
that (4.3) is satisfied at x.

Remark 1. We may restrict our considerations to functions defined on a certain
convex set C ⊂ R

n by adding an additional constraint x ∈ C. In that case the
diffeomorphism ϕ should be such that the set ϕ(C) is also convex. All results
provided above are valid with that additional assumption. In order to make our
approach readable we have not included that assumption. However the addition
of an assumption x ∈ C would result in some technical changes in the calculations
above, for example in formula (3.2).
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