Semivariation in L^p -spaces

BRIAN JEFFERIES, SUSUMU OKADA

Abstract. Suppose that X and Y are Banach spaces and that the Banach space $X \hat{\otimes}_{\tau} Y$ is their complete tensor product with respect to some tensor product topology τ . A uniformly bounded X-valued function need not be integrable in $X \hat{\otimes}_{\tau} Y$ with respect to a Y-valued measure, unless, say, X and Y are Hilbert spaces and τ is the Hilbert space tensor product topology, in which case Grothendieck's theorem may be applied.

In this paper, we take an index $1 \leq p < \infty$ and suppose that X and Y are L^p -spaces with τ_p the associated L^p -tensor product topology. An application of Orlicz's lemma shows that not all uniformly bounded X-valued functions are integrable in $X \otimes_{\tau_p} Y$ with respect to a Y-valued measure in the case $1 \leq p < 2$. For 2 , the negative $result is equivalent to the fact that not all continuous linear maps from <math>\ell^1$ to ℓ^p are *p*-summing, which follows from a result of S. Kwapien.

Keywords: absolutely *p*-summing, bilinear integration, semivariation, tensor product *Classification:* Primary 28B05, 46G10; Secondary 46B42, 47B65

1. Introduction

Bilinear integration arises in many areas of analysis, such as the representation of solutions of evolution equations [8]. Given a vector measure $m : \mathcal{E} \to Y$ with values in a Banach space Y and defined over a measurable space (Σ, \mathcal{E}) , an \mathcal{E} measurable simple function $s = \sum_{j=1}^{n} x_j \chi_{E_j}$ with values in a Banach space X has an indefinite integral $s \otimes m : \mathcal{E} \to X \otimes Y$ with respect to m defined by

(1.1)
$$(s \otimes m)(E) = \sum_{j=1}^{n} x_j \otimes m(E_j \cap E), \qquad E \in \mathcal{E}.$$

If the tensor product $X \otimes Y$ of X and Y has a given locally convex topology τ , then by a suitable limiting procedure, the integral (1.1) can be extended to more general functions $f: \Sigma \to X$ so that the indefinite integral $f \otimes m : \mathcal{E} \to X \hat{\otimes}_{\tau} Y$ takes values in the completion $X \hat{\otimes}_{\tau} Y$ of the tensor product $X \otimes_{\tau} Y$ endowed with the topology τ .

This paper could not have been written without the advice of H. Jarchow and S. Geiss to whom we are deeply indebted.

A general procedure of this nature is studied in [9] in the case that the tensor product topology τ satisfies the special condition that $X' \otimes Y'$ separates the space $X \hat{\otimes}_{\tau} Y$, see [9] for the relationship of this approach to other bilinear integrals ([1], [6]). It is a fact of bilinear life that not all uniformly bounded, strongly \mathcal{E} -measurable functions $f: \Sigma \to Y$ need be *m*-integrable in $X \hat{\otimes}_{\tau} Y$.

A simple example is given in [9, Proposition 4.2]. Take $X = Y = L^2([0,1])$ and let π be the projective tensor product topology on $L^2([0,1]) \otimes L^2([0,1])$. For the Borel σ -algebra $\mathcal{B}([0,1])$ of [0,1], the vector measure $m : \mathcal{B}([0,1]) \to L^2([0,1])$ is defined by $m(B) = \chi_B$ for every set $B \in \mathcal{B}([0,1])$. A function $f : [0,1] \to L^2([0,1])$ is *m*-integrable in $L^2([0,1]) \hat{\otimes}_{\pi} L^2([0,1])$ if and only if there exists a trace-class operator on $L^2([0,1])$ with kernel $(x,y) \mapsto k(x,y), x,y \in [0,1]$, such that $f(x) = k(x, \cdot)$ for almost all $x \in [0,1]$. For f to be *m*-integrable in the Banach space $L^2([0,1]) \hat{\otimes}_{\pi} L^2([0,1])$, it is simply not enough that there exists M > 0 such that $||f(x)||_2 \leq M$ for almost all $x \in [0,1]$.

A key consideration here is whether or not there exists a bound C > 0 such that

(1.2)
$$\|(s \otimes m)(\Sigma)\|_{\tau} \le C \|s\|_{\infty}$$

for every X-valued \mathcal{E} -measurable simple function s. Here we suppose that the tensor product topology τ is actually given by a norm $\|\cdot\|_{\tau}$ and $\|s\|_{\infty} = \max_{j} \|x_{j}\|_{X}$ for $s = \sum_{j=1}^{n} x_{j}\chi_{E_{j}}$ and $\{E_{j}\}_{j=1}^{n}$ pairwise disjoint. If the bound (1.2) holds, then we can hope to approximate a bounded X-valued function by the pointwise limit of uniformly bounded sequence of X-valued simple functions.

To be more precise, the X-semivariation of m in $X \otimes_{\tau} Y$ is the set function $\beta_X(m) : \mathcal{E} \to [0, \infty]$ defined by

(1.3)
$$\beta_X(m)(E) = \sup\left\{ \left\| \sum_{j=1}^k x_j \otimes m(E_j) \right\|_\tau \right\}$$

for every $E \in \mathcal{E}$; the supremum is taken over all pairwise disjoint sets E_1, \ldots, E_k from $\mathcal{E} \cap E$ and vectors x_1, \ldots, x_k from X, such that $||x_j||_X \leq 1$ for all $j = 1, \ldots, k$ and $k = 1, 2, \ldots$. The bound (1.2) therefore holds exactly when $\beta_X(m)(\Sigma) < \infty$. If $\beta_X(m)(\Sigma) < \infty$ and the Banach space $X \otimes_{\tau} Y$ contains no copy of c_0 , then the X-semivariation $\beta_X(m)$ is *continuous* in the sense of Dobrakov, namely, $\beta_X(m)(A_k) \to 0$ whenever $\{A_k\}_{k=1}^{\infty}$ is a sequence in \mathcal{E} decreasing to the empty set; see [6, *-Theorem]. This suffices to deduce that bounded strongly measurable X-valued functions are m-integrable in $X \otimes_{\tau} Y$, see [7, Theorem 5] and [9, Theorem 2.7]. For the converse statement, see [13, Theorem 6]. If, in particular, $||x \otimes y||_{\tau} = ||x|| \cdot ||y||$ for all $x \in X$ and $y \in Y$ (that is, $\|\cdot\|_{\tau}$ is a cross norm), then

(1.4)
$$||m||(E) \le \beta_X(m)(E), \qquad E \in \mathcal{E}.$$

Here $||m|| : \mathcal{E} \to [0, \infty)$ denotes the usual semivariation of the vector measure m, [4, Definition I.1.4].

This note is concerned with the natural situation in which $1 \leq p < \infty$, μ and ν are σ -finite measures, $X = L^p(\mu)$, $Y = L^p(\nu)$ and τ is the relative tensor product topology of the space $L^p(\mu \otimes \nu)$ of functions *p*th-integrable with respect to the product measure $\mu \otimes \nu$. The completion $L^p(\mu)\hat{\otimes}_{\tau}L^p(\nu)$ may be identified with any of the spaces $L^p(\mu \otimes \nu)$, $L^p(\mu, L^p(\nu))$ or $L^p(\nu, L^p(\mu))$ and in the case p = 1, the tensor product topology τ is just the projective tensor product topology π , [4, Example VIII.1.10].

In the main result of this work, Theorem 3.3, we show that for every 2 , $there is some vector measure <math>m : \mathcal{E} \to L^p([0,1])$ whose $L^p([0,1])$ -semivariation in $L^p([0,1]^2)$ is infinite. We prove this by reducing the problem to determining whether or not any continuous linear mapping from ℓ^1 into ℓ^p is *p*-summing. That this is false follows from a result of S. Kwapien [10, Theorem 7, 2⁰] and some standard Banach space arguments. The proof does not obviously give an explicit example of a continuous linear map from ℓ^1 into ℓ^p that is not *p*-summing when 2 . It is a well-known consequence of Grothendieck's inequality $that any continuous linear map from <math>\ell^1$ into ℓ^2 is absolutely summing and so *p*-summing for all $1 \le p < \infty$.

Some background on semivariation in L^p -spaces is provided in Section 2. Many of the basic facts given in Section 2 were proved by the authors prior to the publication of [8], where they were needed for the representation of evolutions. The connection between absolutely *p*-summing maps and semivariation in L^p spaces is explained in Section 3, where the main result Theorem 3.3 is stated. The short argument that reduces the search for a non-*p*-summing map from ℓ^1 into ℓ^p to Kwapien's result is given in Lemma 4.1 in Section 4.

2. Semivariation

An example of an $L^p([0,1])$ -valued measure without finite $L^p([0,1])$ -semivariation in $L^p([0,1]^2)$ was given in [9, Example 2.2], for any $1 \le p < 2$, as a consequence of Orlicz's Theorem [11, Theorem 1.c.2]; see Example 2.3 below.

In the case p = 2, let $X = L^2(\mu)$ and $Y = L^2(\nu)$ for σ -finite measures μ and ν . The inner product is denoted by $(\cdot | \cdot)$. Then with $(s \otimes m)(E)$ given by formula (1.1) and $||x_j||_2 = 1$ for $j = 1, \ldots, n$, we note that

$$\|(s \otimes m)(E)\|_{2}^{2} = \left((s \otimes m)(E)|(s \otimes m)(E)\right)$$
$$= \sum_{j,k=1}^{n} (x_{j}|x_{k}) \cdot \left(m(E_{j} \cap E) \mid m(E_{k} \cap E)\right)$$

$$\leq K_G \sup \left| \sum_{k,j=1}^n s_j t_k \left(m(E_j \cap E) \, \big| \, m(E_k \cap E) \right) \right|$$
$$= K_G \left(\|m\|(E) \right)^2.$$

Here the supremum on the right is over all complex numbers s_j , t_k with $j, k = 1, \ldots, n$, such that $|s_j| \leq 1$ and $|t_k| \leq 1$ for all $j, k = 1, \ldots, n$, K_G is Grothendieck's constant [11, Theorem 2.b.5] and the bound is uniform in $n = 1, 2, \ldots$. The $L^2(\mu)$ -semivariation in $L^2(\mu \otimes \nu)$ of any $L^2(\nu)$ -valued vector measure m is therefore finite and (1.4) gives

$$||m||(E) \le \beta_X(m)(E) \le \sqrt{K_G} ||m||(E), \qquad E \in \mathcal{E}.$$

We note this in the following statement.

Proposition 2.1 ([8, Proposition 4.5.3]). Let H be a Hilbert space and $m : \mathcal{E} \to L^2(\nu)$ a measure. Let $||m|| : \mathcal{E} \to [0, \infty)$ be the semivariation of m in $L^2(\nu)$. Then the measure m has finite H-semivariation $\beta_H(m)$ in $L^2(\nu, H)$. Moreover, there exists a constant C > 0, independent of H and m, and a finite measure η with $0 \le \eta \le ||m||$ such that $\lim_{\eta(E)\to 0} ||m||(E) = 0$ and $\beta_H(m)(E) \le C||m||(E)$, for all $E \in \mathcal{E}$, and hence $\beta_H(m)$ is continuous in the sense of Dobrakov.

On the positive side, by [8, Proposition 4.5.1], for every $1 \le p < \infty$ and any Banach space X, an $L^p(\nu)$ -valued measure m with order bounded range has finite X-semivariation in $L^p(\nu, X)$ and $\beta_X(m)$ is continuous.

Now consider the case $p = \infty$, every $L^{\infty}(\nu)$ -valued measure *m* automatically has order bounded range because its range is bounded ([4, Corollary I.2.7]). So, *m* admits σ -additive modulus $|m| : \mathcal{E} \to L^{\infty}(\nu)_+$, [12, Theorem 5]. The same argument as in the proof of [8, Proposition 4.5.1] shows that

$$\beta_X(m)(A) \le ||m|||(A), \qquad A \in \mathcal{E}$$

and hence, m has finite X-semivariation for every Banach space X. So it is the oscillatory nature of vector measures that is of concern in this note.

Let Y be a Banach space and $1 \le p < \infty$. A vector measure $m : \mathcal{E} \to Y$ is said to have *finite p-variation* if there exists C > 0 such that for every n = 1, 2, ...and every finite family of pairwise disjoint sets $E_j, j = 1, ..., n$, the inequality $\sum_{j=1}^{n} ||m(E_j)||_Y^p \le C$ holds.

According to the following observation, for any $1 \leq p < \infty$, the property of having finite $L^p(\mu)$ -semivariation in $L^p(\mu \otimes \nu)$ is stronger than having finite *p*-variation.

Proposition 2.2 ([8, Proposition 4.5.5]). Let $1 \le p < \infty$ and let $m : \mathcal{E} \to L^p(\nu)$ be a measure. Let \mathcal{F} be a σ -algebra of subsets of a set Λ and $\mu : \mathcal{F} \to [0, \infty)$

428

a finite measure for which \mathcal{F} contains infinitely many, pairwise disjoint non- μ -null sets. If the measure m has finite $L^p(\mu)$ -semivariation $\beta_{L^p(\nu)}(m)$ in $L^p(\mu \otimes \nu)$, then m has finite p-variation.

We use this observation to construct, for $1 \le p < 2$, an example of an $L^p(\nu)$ -valued measure without finite $L^p(\mu)$ -semivariation in $L^p(\mu \otimes \nu)$.

Example 2.3. Let Y be an infinite-dimensional Banach space. If $\{\lambda_j\}_{j=1}^{\infty}$ is a sequence of positive numbers such that $\sum_{j=1}^{\infty} \lambda_j^2 < \infty$, then there exists an unconditionally summable sequence $\{y_j\}_{j=1}^{\infty}$ in Y such that $\|y_j\| = \lambda_j$, ([11, Theorem 1.c.2]). Let $1 \leq p < 2$. We can choose $\{\lambda_j\}_{j=1}^{\infty}$ such that $\sum_{j=1}^{\infty} \lambda_j^2 < \infty$ and $\sum_{j=1}^{\infty} \lambda_j^p = \infty$. It follows that there exists an unconditionally summable sequence $\{y_j\}_{j=1}^{\infty}$ in Y such that $\sum_{j=1}^{\infty} \|y_j\|^p = \infty$. For $Y = L^p(\nu)$, the vector measure $m : 2^{\mathbb{N}} \to Y$ defined by $m(E) = \sum_{j \in E} y_j$, $E \subseteq \mathbb{N}$, therefore has infinite p-variation, and so it has infinite $L^p(\mu)$ -semivariation in $L^p(\mu \otimes \nu)$ by Proposition 2.2.

We show in Theorem 3.3 below, that for every $2 , there is some vector measure <math>m : \mathcal{E} \to L^p([0,1])$ whose $L^p([0,1])$ -semivariation in $L^p([0,1]^2)$ is infinite. Nevertheless, for $2 \leq p < \infty$, every vector measure $m : \mathcal{E} \to L^p([0,1])$ does have finite *p*-variation as will be shown in the following proposition, and therefore it is not possible to adapt the arguments in Example 2.3.

Proposition 2.4. Let $2 \le p < \infty$ and let ν be a σ -finite measure. Then every vector measure $m : \mathcal{E} \to L^p(\nu)$ has finite *p*-variation.

PROOF: According to [5, Corollary 10.7], every weak ℓ^1 -sequence is a strong ℓ^p -sequence and there exists C > 0 such that

$$\left(\sum_{j=1}^{n} \|x_{j}\|_{p}^{p}\right)^{\frac{1}{p}} \leq C \sup_{\|x'\|_{q} \leq 1} \sum_{j=1}^{n} |\langle x_{j}, x' \rangle|,$$

for all $\{x_j\}_{j=1}^n \subset L^p(\nu)$ and all $n = 1, 2, \dots$. In particular, the bound

$$\left(\sum_{j=1}^{n} \|m(E_{j})\|_{p}^{p}\right)^{\frac{1}{p}} \leq C \sup_{\|x'\|_{q} \leq 1} \sum_{j=1}^{n} |\langle m(E_{j}), x'\rangle| \leq C \|m\|(\Sigma) < \infty,$$

holds for all finite \mathcal{E} -partitions E_1, \ldots, E_n of Σ .

429

3. Absolutely *p*-summing maps and semivariation

Let X and Y be Banach spaces. Let $1 \le p < \infty$. A continuous linear map $u: X \to Y$ is called *absolutely p-summing* if there exists C > 0 such that

(3.1)
$$\left(\sum_{j=1}^{k} \|u(x_j)\|_{Y}^{p}\right)^{\frac{1}{p}} \leq C \sup_{\|x'\|_{X'} \leq 1} \left(\sum_{j=1}^{k} |\langle x_j, x' \rangle|^{p}\right)^{\frac{1}{p}}$$

for all $x_j \in X$, j = 1, ..., k and k = 1, 2, ... The set of all absolutely *p*-summing maps from X into Y is denoted by $\Pi_p(X, Y)$. An absolutely summing map (for p = 1) is characterised by the fact that it maps unconditionally summable sequences into absolutely summable sequences.

To see how p-summing maps relate to semivariation, let us start with the following general result.

Lemma 3.1. Let $\mathcal{M}(2^{\mathbb{N}}, Y)$ denote the vector space of all Y-valued vector measures on the σ -algebra $2^{\mathbb{N}}$. Let τ be a cross norm on the tensor product $X \otimes Y$ and assume that $\beta_X(m)(\mathbb{N}) < \infty$ for every $m \in \mathcal{M}(2^{\mathbb{N}}, Y)$. Then there exists a constant C > 0 such that

$$\beta_X(m)(\mathbb{N}) \le C ||m||(\mathbb{N}), \qquad m \in \mathcal{M}(2^{\mathbb{N}}, Y).$$

PROOF: It is clear that the vector space $\mathcal{M}(2^{\mathbb{N}}, Y)$ is complete in the norm $\|\cdot\|_{sv}$: $m \mapsto \|m\|(\mathbb{N})$. Define another norm by $\|m\|_{bsv} = \beta_X(m)(\mathbb{N})$ for $m \in \mathcal{M}(2^{\mathbb{N}}, Y)$. By (1.4) this new norm $\|\cdot\|_{bsv}$ is stronger than $\|\cdot\|_{sv}$. From this we can deduce that $\mathcal{M}(2^{\mathbb{N}}, Y)$ is complete even in the new norm. Hence, it follows from the open mapping theorem that these two norms $\|\cdot\|_{sv}$ and $\|\cdot\|_{bsv}$ are equivalent, which completes the proof.

Now, let n = 1, 2, ... and suppose that $\mathcal{F}_n = (f_1, ..., f_n)$ is a finite ordered subset of $L^p([0,1])$ with *n* elements. The norm of $L^p([0,1])$ is denoted by $\|\cdot\|_p$. Set $m_{\mathcal{F}_n}(A) = \sum_{j \in A} f_j$ for every subset *A* of the finite set $\{1, ..., n\}$. Then, this $L^p([0,1])$ -valued vector measure $m_{\mathcal{F}_n}$ satisfies

(3.2)
$$(\beta_{L^p}(m_{\mathcal{F}_n}))([0,1]) = \sup_{\|x_j\|_p \le 1} \left\| \sum_{j=1}^n x_j \otimes f_j \right\|_{L^p([0,1]^2)}$$

Here $x \otimes f$ is the element of $L^p([0,1]^2)$ defined for functions x and f in $L^p([0,1])$ by the function $(s,t) \mapsto x(s)f(t)$, for almost all $s, t \in [0,1]$. If the L^p -semivariation of every L^p -valued measure were finite in $L^p([0,1]^2)$, then Lemma 3.1 would imply that there exists C > 0 such that

(3.3)
$$\left(\beta_{L^p}(m_{\mathcal{F}_n})\right)([0,1]) \le C \sup_{|a_j| \le 1} \left\|\sum_{j=1}^n a_j f_j\right\|_p$$

for any finite set $\mathcal{F}_n \subset L^p([0,1])$ and $n = 1, 2, \ldots$.

Let $\ell_n^1 = \mathbb{C}^n$ with the ℓ^1 -norm and then denote the standard basis vectors by $e_j, j = 1, \ldots, n$. For any finite ordered subset $\mathcal{X}_n = (x_1, \ldots, x_n)$ of the closed unit ball of $L^p([0,1])$ with n elements, let $U_{\mathcal{X}_n} : \ell_n^1 \to L^p([0,1])$ denote the linear map such that $U_{\mathcal{X}_n}(e_j) = x_j$ for $j = 1, \ldots, n$.

For any finite ordered subset $\mathcal{F}_n = (f_1, \ldots, f_n)$ of $L^p([0, 1])$ with *n* elements, let $F_{\mathcal{F}_n}(t) = \sum_{k=1}^n f_k(t)e_k \in \ell_n^1$ for almost all $t \in [0, 1]$. Then the bound (3.3) can be rewritten as

(3.4)
$$\left(\int_0^1 \left\| U_{\mathcal{X}_n} \circ F_{\mathcal{F}_n}(t) \right\|_p^p dt \right)^{\frac{1}{p}} \le C \sup_{\|\xi\|_{\ell^{\infty}} \le 1} \left\| \langle F_{\mathcal{F}_n}(\cdot), \xi \rangle \right\|_p$$

for any choice of the finite *n*-tuples $\mathcal{X}_n, \mathcal{F}_n$ and n = 1, 2, ...

Lemma 3.2. Suppose that the linear map $u : \ell^1 \to L^p([0,1])$ maps the closed unit ball of ℓ^1 into the closed unit ball of $L^p([0,1])$. For each n = 1, 2, ..., let $\mathcal{X}_n = (u(e_1), \ldots, u(e_n))$ with $e_j, j = 1, 2, \ldots$, being the standard basis vectors of ℓ^1 .

Then there exists C > 0 (which depends on u) such that the bound (3.4) holds for every finite ordered subset \mathcal{F}_n of $L^p([0,1])$ with n elements and every $n = 1, 2, \ldots$ if and only if the map u is absolutely p-summing.

PROOF: Suppose first that (3.4) holds for every finite subset \mathcal{F}_n of $L^p([0,1])$ with n elements and every $n = 1, 2, \ldots$. Let $N = 1, 2, \ldots$ and let $y_j, j = 1, \ldots, N$, be elements of ℓ^1 . For each $n = 1, 2, \ldots$, denote the projection onto the first n coordinates by $P_n : \ell^1 \to \ell^1$ and identify ℓ_n^1 with the finite-dimensional subspace $P_n(\ell^1)$ of ℓ^1 . Let $E_j, j = 1, \ldots, N$, be pairwise disjoint intervals in [0, 1] with positive length $|E_j|, j = 1, \ldots, N$, such that $\bigcup_{j=1}^N E_j = [0, 1]$. Define $F_{\mathcal{F}_n} : [0, 1] \to \ell_n^1$ by

(3.5)
$$F_{\mathcal{F}_n}(t) = \sum_{j=1}^N |E_j|^{-1/p} \cdot \chi_{E_j}(t) \cdot P_n(y_j), \quad t \in [0,1].$$

Here, the *n*-tuple $\mathcal{F}_n = (f_1, \ldots, f_n)$ of elements of $L^p([0,1])$ consists of the functions

$$f_k = \sum_{j=1}^{N} |E_j|^{-1/p} \cdot \chi_{E_j}(\cdot) \cdot y_{j,k}, \qquad k = 1, \dots, n,$$

where $y_j = (y_{j,k})_{k=1}^{\infty} \in \ell^1$. For each $\xi \in \ell^{\infty}$, we have

$$\left\| \left\langle F_{\mathcal{F}_n}(\cdot), \xi \right\rangle \right\|_p^p = \int_0^1 \left| \left\langle F_{\mathcal{F}_n}(t), \xi \right\rangle \right|^p dt$$
$$= \sum_{j=1}^N \left| \left\langle P_n(y_j), \xi \right\rangle \right|^p$$

and on the other hand,

$$\int_0^1 \|U_{\mathcal{X}_n} \circ F_{\mathcal{F}_n}(t)\|_p^p \, dt = \sum_{j=1}^N \|u(P_n(y_j))\|_p^p,$$

so that by (3.4), we have

(3.6)
$$\sum_{j=1}^{N} \left\| u(P_n(y_j)) \right\|_p^p \le C^p \sup_{\|\xi\|_{\ell^{\infty}} \le 1} \sum_{j=1}^{N} \left| \left\langle P_n(y_j), \xi \right\rangle \right|^p.$$

For each j = 1, ..., N, the vectors $P_n(y_j)$ converge to y_j in ℓ^1 as $n \to \infty$. The continuity of u ensures that we can take $n \to \infty$ in the estimate (3.6) to obtain the bound (3.1) for every N = 1, 2, ..., so that u is absolutely p-summing.

Conversely, suppose that $u: \ell^1 \to L^p([0,1])$ is absolutely *p*-summing. By the Pietsch Domination Theorem [5, Theorem 2.12], there exist C > 0 and a weak^{*}-regular Borel probability measure μ on the closed unit ball $B(\ell^{\infty})$ of ℓ^{∞} such that

$$\|u(x)\|_p \le C\left(\int_{B(\ell^{\infty})} \left|\langle x,\xi\rangle\right|^p d\mu(\xi)\right)^{\frac{1}{p}}, \qquad x \in \ell^1.$$

Then for any *n*-tuple \mathcal{F}_n of elements of $L^p([0,1])$, the operator $U_{\mathcal{X}_n}$ being the restriction of u to $P_n(\ell^1)$ gives

$$\begin{split} \int_0^1 \|U_{\mathcal{X}_n} \circ F_{\mathcal{F}_n}(t)\|_p^p \, dt &= \int_0^1 \|u \circ F_{\mathcal{F}_n}(t)\|_p^p \, dt \\ &\leq C^p \int_0^1 \left(\int_{B(\ell^\infty)} \left| \langle F_{\mathcal{F}_n}(t), \xi \rangle \right|^p d\mu(\xi) \right) dt \\ &= C^p \int_{B(\ell^\infty)} \left(\int_0^1 \left| \langle F_{\mathcal{F}_n}(t), \xi \rangle \right|^p dt \right) d\mu(\xi) \\ &\leq C^p \sup_{\|\xi\|_{\ell^\infty} \leq 1} \left\| \langle F_{\mathcal{F}_n}(\cdot), \xi \rangle \right\|_p^p \end{split}$$

by Fubini's theorem. It follows that the bound (3.4) is valid.

For each 2 , once we know the existence of a continuous linear $map <math>u : \ell^1 \to L^p([0,1])$ which is not absolutely *p*-summing, then there exists no constant *C* for which the bound (3.3) holds uniformly for any choice of \mathcal{F}_n and $n = 1, 2, \ldots$. Then it follows that not every L^p -valued measure has finite L^p -semivariation in $L^p([0,1]^2)$.

The space ℓ^p embeds isometrically onto a closed subspace of $L^p([0,1])$ by choosing pairwise disjoint intervals E_j in [0,1] with positive length $|E_j|, j = 1, 2, \ldots$,

and mapping $\alpha = (\alpha_j)_{j=1}^{\infty} \in \ell^p$ to the function $\sum_{j=1}^{\infty} \alpha_j |E_j|^{-1/p} \chi_{E_j}$. Therefore, if $2 , the existence of a continuous linear map <math>u : \ell^1 \to \ell^p$ which is not absolutely *p*-summing also implies that not every L^p -valued measure has finite L^p -semivariation in $L^p([0,1]^2)$. Moreover, such a measure *m* is constructed explicitly in the following fashion. The construction is best motivated by the discussion preceding Lemma 3.2.

Let $2 and suppose that the continuous linear map <math>u : \ell^1 \to \ell^p$ is not absolutely *p*-summing. Choose a sequence $\{y_j\}_{j=1}^{\infty}$ in ℓ^1 such that

(3.7)
$$\sum_{j=1}^{\infty} |\langle y_j, \xi \rangle|^p < \infty, \quad \text{for every } \xi \in \ell^{\infty},$$

but $\sum_{j=1}^{\infty} ||u(y_j)||_{\ell^p}^p = \infty$. Choosing pairwise disjoint intervals E_j in [0,1] with positive length $|E_j|, j = 1, 2, \ldots$, the function $F : [0,1] \to \ell^1$ is defined in the same manner as in (3.5) by

(3.8)
$$F(t) = \sum_{j=1}^{\infty} |E_j|^{-1/p} \cdot \chi_{E_j}(t) \cdot y_j, \qquad t \in [0,1].$$

Then

(3.9)
$$\int_0^1 \left| \langle F(t), \xi \rangle \right|^p dt = \sum_{j=1}^\infty \left| \langle y_j, \xi \rangle \right|^p,$$

that is, $\langle F(\cdot), \xi \rangle \in L^p([0,1])$ for all $\xi \in \ell^{\infty}$.

For each $k = 1, 2, \ldots$, the evaluation functional δ_k at the k'th coordinate is an element of $(\ell^1)' = \ell^\infty$, and set $f_k(t) = \langle F(t), \delta_k \rangle$ for each $t \in [0, 1]$. Then, $F(t) = \sum_{k=1}^{\infty} f_k(t) e_k$ pointwise on [0, 1]. Let $x_k = u(e_k)$ for each $k = 1, 2, \ldots$. Now u is continuous and linear, so $\sum_{k=1}^{\infty} f_k(t) x_k = u(F(t)) \in \ell^p$ for all $t \in [0, 1]$. Furthermore,

$$\int_{0}^{1} \left\| \sum_{k=1}^{\infty} f_{k}(t) x_{k} \right\|_{\ell^{p}}^{p} dt = \int_{0}^{1} \left\| u(F(t)) \right\|_{\ell^{p}}^{p} dt$$
$$= \sum_{j=1}^{\infty} \int_{E_{j}} \frac{1}{|E_{j}|} \left\| u(y_{j}) \right\|_{\ell^{p}}^{p} dt$$
$$= \sum_{j=1}^{\infty} \left\| u(y_{j}) \right\|_{\ell^{p}}^{p} = \infty.$$

Consequently, Fatou's lemma gives

(3.10)
$$\liminf_{n \to \infty} \int_0^1 \left\| \sum_{k=1}^n f_k(t) x_k \right\|_{\ell^p}^p dt = \infty.$$

Next we claim that the sequence $\{f_k\}_{k=1}^{\infty}$ is unconditionally summable in $L^p([0,1])$. To this end, let p' = p/(p-1) and we shall show that

(3.11)
$$\sup_{\|\phi\|_{p'} \le 1} \sum_{k=1}^{\infty} \left| \langle f_k, \phi \rangle \right| \le \sup_{\|\xi\|_{\ell^{\infty}} \le 1} \left\| \langle F(\cdot), \xi \rangle \right\|_p < \infty$$

Fix $n \in \mathbb{N}$. Apply [4, Proposition I.1.11] to the $L^p([0,1])$ -valued vector measure $m_n : A \mapsto \sum_{k \in A} f_k$ on $2^{\{1,2,\ldots,n\}}$, in order to deduce that

(3.12)
$$\sup_{\|\phi\|_{p'} \le 1} \sum_{k=1}^{n} \left| \langle f_k, \phi \rangle \right| = \sup_{|\epsilon_k| \le 1} \left\| \sum_{k=1}^{n} \epsilon_k f_k \right\|_p$$

Given scalars ϵ_k with $|\epsilon_k| \leq 1$ for k = 1, 2, ..., n, since $\|\sum_{k=1}^n \epsilon_k \delta_k\|_{\ell^{\infty}} \leq 1$, it follows that $\|\sum_{k=1}^n \epsilon_k f_k\|_p \leq \sup_{\|\xi\|_{\ell^{\infty}} \leq 1} \|\langle F(\cdot), \xi \rangle\|_p$. This and (3.12) establish the first inequality of (3.11). Now the linear map $v : \xi \mapsto (\langle y_j, \xi \rangle)_{j=1}^{\infty}$ from ℓ^{∞} into ℓ^p is continuous by the closed graph theorem. So, it follows from (3.9) that $\sup_{\|\xi\|_{\ell^{\infty}} \leq 1} \|\langle F(\cdot), \xi \rangle\|_p = \|v\| < \infty$, which establishes (3.11). In particular, $\sum_{k=1}^{\infty} |\langle f_k, \phi \rangle| < \infty$ for every $\phi \in L^{p'}([0,1]) = (L^p([0,1]))'$. The Bessaga-Pelczynski theorem [3, Theorem V.8] implies that $\{f_k\}_{k=1}^{\infty}$ is unconditionally summable in $L^p([0,1])$.

We can now define the vector measure $m : 2^{\mathbb{N}} \to L^p([0,1])$ by $m(A) = \sum_{k \in A} f_k$ for every subset A of \mathbb{N} . With ||u|| denoting the operator norm of u, we have, from the definition of $\beta_{\ell^p}(m)$ and (3.10), that

$$\beta_{\ell^p}(m)([0,1]) \ge \frac{1}{\|u\|} \sup_{n \in \mathbb{N}} \left(\int_0^1 \left\| \sum_{k=1}^n f_k(t) x_k \right\|_{\ell^p}^p dt \right)^{1/p} = \infty$$

because $x_k/||u||$ belongs to the unit ball of ℓ^p . So, the L^p -semivariation of m in $L^p([0,1]^2)$ is also infinite.

The same argument will work for any σ -finite measures μ and ν for which $L^p(\mu)$ and $L^p(\nu)$ are infinite-dimensional vector spaces, that is, they have infinitely many essentially distinct non-null sets. We now state the main result of the paper.

Theorem 3.3. Let $2 and let <math>\mu$, ν be σ -finite measures for which $L^p(\mu)$ and $L^p(\nu)$ are infinite-dimensional vector spaces. Then there exists a vector measure $m : 2^{\mathbb{N}} \to L^p(\mu)$ with infinite $L^p(\nu)$ -semivariation in $L^p(\mu \otimes \nu)$.

Corollary 3.4. Let $2 and let <math>\mu$, ν be σ -finite measures for which $L^p(\mu)$ and $L^p(\nu)$ are infinite-dimensional vector spaces. Then there exists a vector measure $m: 2^{\mathbb{N}} \to L^p(\nu)$ and a bounded function $f: \mathbb{N} \to L^p(\mu)$ such that the sequence $\{f(k) \otimes m(\{k\})\}_{k=1}^{\infty}$ is unbounded in $L^p(\mu \otimes \nu)$.

The proof of these statements will follow from the preceding discussion once we show that for $2 , not every continuous linear map from <math>\ell^1$ into ℓ^p is *p*-summing.

4. A non-*p*-summing map from ℓ^1 to ℓ^p for p > 2

Let $\mathcal{L}(X, Y)$ denote the space of all continuous linear maps from a Banach space X into a Banach space Y. Let 2 be fixed throughout this section and let <math>p' = p/(p-1) as before.

Lemma 4.1. One has $\Pi_p(\ell^1, \ell^p) \neq \mathcal{L}(\ell^1, \ell^p)$.

PROOF: We shall assume that $\Pi_p(\ell^1, \ell^p) = \mathcal{L}(\ell^1, \ell^p)$ and deduce that $\Pi_p(\ell^{\infty}, \ell^p) = \mathcal{L}(\ell^{\infty}, \ell^p)$, so contradicting [10, Theorem 7, 2⁰]. Hence, there exists $u \in \mathcal{L}(\ell^1, \ell^p)$ such that u is not absolutely p-summing and the proof of Theorem 3.3 is then complete.

Let $u \in \mathcal{L}(\ell^{\infty}, \ell^{p})$ and let $v \in \mathcal{L}(\ell^{p'}, \ell^{\infty})$. Then $u \circ v \in \mathcal{L}(\ell^{p'}, \ell^{p})$. Because vis necessarily $\sigma(\ell^{p'}, \ell^{p}) \cdot \sigma(\ell^{\infty}, \ell^{1})$ -continuous, there exists $w \in \mathcal{L}(\ell^{1}, \ell^{p})$ such that v = w'. By assumption, $w \in \Pi_{p}(\ell^{1}, \ell^{p})$, and hence, $v' = w'' \in \Pi_{p}(\ell^{\infty})', \ell^{p}$ by [5, Proposition 2.19]. Therefore, $(u \circ v)' = v' \circ u' \in \Pi_{p}(\ell^{p'}, \ell^{p})$, and [5, Corollary 5.22] then implies that $u \circ v \in \Pi_{p}(\ell^{p'}, \ell^{p})$, too. Since v can be any continuous linear map from $\ell^{p'}$ to ℓ^{∞} , it follows from [5, Proposition 2.7] that $u \in \Pi_{p}(\ell^{\infty}, \ell^{p})$. This contradicts [10, Theorem 7, 2⁰], so the assumption that $\Pi_{p}(\ell^{1}, \ell^{p}) = \mathcal{L}(\ell^{1}, \ell^{p})$ must be false.

Continuous linear maps from ℓ^1 to ℓ^p only just fail to be *p*-summing. We have **Remark 4.2.** It follows from [2, Corollary 24.6] that $\Pi_q(\ell^1, \ell^p) = \mathcal{L}(\ell^1, \ell^p)$ whenever q > p > 2. This observation may be useful for obtaining conditions for a

References

[1] Bartle R., A general bilinear vector integral, Studia Math. 15 (1956), 337-351.

bounded L^p -valued function to be *m*-integrable in L^p for p > 2.

- [2] Defand A., Floret K., Tensor Norms and Operator Ideals, North-Holland, Amsterdam, 1993.
- [3] Diestel J., Sequences and Series in Banach Spaces, Springer, New York, 1984.
- [4] Diestel J., Uhl J.J., Jr., Vector Measures, Math. Surveys No. 15, Amer. Math. Soc., Providence, 1977.
- [5] Diestel J., Jarchow H., Tonge A., Absolutely Summing Operators, Cambridge University Press, Cambridge, 1995.
- [6] Dobrakov I., On integration in Banach spaces, I, Czechoslovak Math. J. 20 (1970), 511– 536.

- [7] Dobrakov I., On integration in Banach spaces, II, Czechoslovak Math. J. 20 (1970), 680– 695.
- [8] Jefferies B.R.F., Evolution Processes and the Feynman-Kac Formula, Kluwer Academic Publishers, Dordrecht/Boston/London, 1996.
- [9] Jefferies B., Okada S., Bilinear integration in tensor products, Rocky Mountain J. Math. 28 (1998), no. 2, 517–545.
- [10] Kwapien S., On a theorem of L. Schwartz and its application to absolutely summing operators, Studia Math. 38 (1970), 193–201.
- [11] Lindenstrauss J., Tzafriri L., Classical Banach spaces I. Sequence Spaces, Springer, Berlin, New York, 1977.
- [12] Schaefer H.H., Zhang X.-D., A note on bounded vector measures, Arch. Math. 23 (1994), 152–157.
- [13] Swarz C., Integrating bounded functions for the Dobrakov integral, Math. Slovaca 33 (1983), 141–144.

SCHOOL OF MATHEMATICS, THE UNIVERSITY OF NEW SOUTH WALES, NSW 2052, AUSTRALIA *E-mail*: brianj@maths.unsw.edu.au

MATH.-GEOGR. FAKULTAET, KATHOLISCHE UNIVERSITAET EICHSTAETT, D-85071 EICHSTAETT, GERMANY

E-mail: susumu.okada@ku-eichstaett.de

(Received July 22, 2004)