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Complete hypersurfaces with
constant scalar curvature in a sphere

XIMIN Liu, HoONGXIA L1

Abstract. In this paper, by using Cheng-Yau’s self-adjoint operator (], we study the
complete hypersurfaces in a sphere with constant scalar curvature.

Keywords: hypersurface, sphere, scalar curvature
Classification: 53C42, 53A10

1. Introduction

Let S"*! be an (n 4 1)-dimensional unit sphere with constant sectional cur-

vature 1, let M™ be an n-dimensional hypersurface in S”*!, and e1,... e, a
local orthonormal frame field on M™, wq,... ,wy its dual coframe field. Then the
second fundamental form of M™ is
(1) h= Z hijw; @ w;.

i7j
Further, near any given point p € M™, we can choose a local frame field ey, ... , ey

so that at p, Ei,j hijw; ® wj =, kjw; ® w;. Then the Gauss equation says
(2) Rijij = L+ kikj, i # j.
(3) n(n—1)(R—1) =n?H? - |h|?,

where R is the normalized scalar curvature, H = % >~; ki the mean curvature and
|h|2 =3, k? the norm square of the second fundamental form of M™.

As it is well known, there are many rigidity results for minimal hypersurfaces
or hypersurfaces with constant mean curvature H in S"*1 by use of J. Simons’
method, for example, see [1], [3], [4], [6], [9], etc.

On the other hand, Cheng-Yau [2] introduced a new self-adjoint differential
operator [J to study the hypersurfaces with constant scalar curvature. Later,
Li [5] obtained interesting rigidity results for hypersurfaces with constant scalar
curvature in space-forms using the Cheng-Yau’s self-adjoint operator [.

In the present paper, we use Cheng-Yau’s self-adjoint operator [J to study the
complete hypersurfaces in a sphere with constant scalar curvature, and prove the
following theorem:
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Theorem. Let M"™ be an n-dimensional (n > 3) complete hypersurface with
constant normalized scalar curvature R in S"+1. If

(1) R=R-12>0,

(2) the mean curvature H of M™ satisfies

_ 1 nR+2 n—2
R< H2<—[ —1)2 —9(n—1 _7}
= Sup ~ n? (n—1) n—2 (n )+nR—|—2’
then either
supH2:R

and M™ is a totally umbilical hypersurface; or

1 nR+ 2 n—2
H? = —{ —1)2 —2n—1)+ ——
sup n2 (n ) n—2 (n )+nR—|—2 ’
and M™ = SY (V1 —7r2) x S"7L(r), r = ——n("R—fl).

2. Preliminaries

Let M™ be an n-dimensional complete hypersurface in S®*1. We choose a
local orthonormal frame eqg,... ,epy1 in S +1 such that at each point of M™,
e1,...,en span the tangent space of M™ and form an orthonormal frame there.
Let w1, ... ,wp41 be its dual coframe. In this paper, we use the following conven-
tion on the range of indices:

1<ABC,...<n+1; 1<4,jk,...<n.

Then the structure equations of S"*1 are given by

(4) dog =Y wapAwp, waB+wpa=0,
B
1
(5) dwsp =Y wac ANwoB — 3 > Kapepwe Awp,
c C,D
(6) Kapep = (6Ac0BD — 6ADIBC).-

Restricting these forms to M", we have

(7) Wn+1 = 0.

From Cartan’s lemma we can write

(8) Wn41i = Z hijwj,  hij = hyj;.
J
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From these formulas, we obtain the structure equations of M™:

(9) dw; = Zwij ANwj, wij +wj; = 0,
J
1
(10) dwij = sz’k ANwkj =5 Z Rijriwy A wy,
% Kl
(11) Rijkr = (0ik0j1 — 0udjk) + (highji — hihjg),

where R;;i; are the components of the curvature tensor of M™ and
(12) h = Z hijw; ® w;

Z‘ij
is the second fundamental form of M™. We also have

(13) Rij = (n—1)0;5 + nHhij — > hihy;,
k

(14) n(n—1)(R—1) =n?H? — |h|?,

where R is the normalized scalar curvature, and H the mean curvature.
Define the first and the second covariant derivatives of h;j, say h;;r and h;jg;

by

(15) > hijrwr = dhij + > hgjwri + Y higwrj,
K K K

(16) > hijriwr = dhijr + > hmjkwmi + Y himi@mi + > hijm@mk.
l m m m

Then we have the Codazzi equation
(17) hiji = hikj

and the Ricci’s identity

(18) hijit = hijie = hang Renikt + > Pim Bnjia-
m m

For a C2-function f defined on M", we define its gradient and Hessian (fij)

by the following formulas

(19) df = fiwi, Y fijw; =dfi + Y fjwji.
{ J J
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The Laplacian of f is defined by Af =3". fi.
Let ¢ = Zij ¢ijw; ® wj be a symmetric tensor defined on M", where

Following Cheng-Yau [2], we introduce the operator [J associated to ¢ acting
on any C2-function f by

(21) Of =Y ijfij = Y _(nHi; — hij) fij-
i, 2

Since ¢;; is divergence-free, it follows [2] that the operator [ is self-adjoint relative
to the L2 inner product of M™, i.e.

Og = Of.
(22) Mnf g /Mng f

We can choose a local frame field eq,...e, at any point p € M™, such that
hi; = k;d;j at p, and by use of (21) and (14), we have

O(nH) =nHA(nH) Zk (nH);

(23) = SAGH? = Y i) = 3 k(i

i

1 1
= on(n— AR+ 5A|h|2 —n?|VH* = " ki(nH);

)

On the other hand, through a standard calculation by use of (17) and (18), we
get

(24) —A|h|2 thka (nH)ii + ZRW

1,5,k

Putting (24) into (23), we have

1 1
(25)  O(nH) = gn(n = DAR+|Vh? = n?|[VH> + 5 3 Rijij(ki
From (11), we have R;;;; = 1+ k;kj, i # j, and by putting this into (25), we
obtain

1
(26) O(nH) = §n(n—1)AR+|Vh|2—n2|VH|2+n|h|2—n2H2—|h|4+nHZ k3.

i
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Let p; = ki — H and |Z|> = Y, u?. We have

(27) Zui =0, [Z]=|n] —nH?,

(28) Z k3 = Z“z +3H|Z|> + nH3.

From (26)—(28), we get
1 2 _ 2 2
(29) O(nH) = §n(n —1)AR + |Vh|* — n*|VH|

+1Z2(n +nH? - |Z|2)+nHZu§.
7

We need the following algebraic lemma due to M. Okumura [7] (see also [1]).

Lemma 2.1. Let p;, i = 1,...,n, be real numbers such that ), p; = 0 and
o u? = (32, where 8 = constant > 0. Then

(30)

\/n(n—l 2_«/ (n—1)
and the equality holds in (30) if and only if at least (n — 1) of the u; are equal.

By use of Lemma 2.1, we have

O(nH) > ~n(n — 1)AR+ |Vh|? — n2|VH|?

(31) n(n — 2)
+ (|h? = nH?)(n + 2nH? — |h|> — ——=_H/|h|? — nH?2).
(Ih]" = nH?)(n + 2n Al T \ |hl? = nt?)

3. Proof of Theorem

N =

The following lemma is essentially due to Cheng-Yau [2] (see also [5]).

Lemma 3.1. Let M be an n-dimensional hypersurface in S+l Suppose that the
normalized scalar curvature R = constant and R > 1. Then |Vh|? > n?|VH|2.

From the assumption of Theorem that R is constant and R = R — 1 > 0 and
Lemma 3.1 we have

(32) O(nH) > (|h*> — nH2)(n + 2nH? — |2 - %H,/W — nH?2).
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By Gauss equation (14) we know that
1 _
(33) 1217 = [b]? = nH? = Z—— (|| = nR).
n

From (32) and (33) we have

n—1

(34) O(nH) = (181> = nR)¢m (|h),

n

where
_2)
h :n+2nH2—h2—n(n7H h|2 — nH2.
or(1h]) R 1) vald

By (33) we can write ¢y (|h|) as

(35) G(hl) = n+20n-DR=""2 8~ ""2\in(n ~ )R + [R2)(H2 ~ ).
Therefore (34) becomes
(36) OnH) > "L (hP? ~ nR)6 (Ih))

It is a direct check that our assumption

onR+2 n—2}
—2n—-1 -

1
H2<—[ —1
Sup — n2 (n ) nR+2

is equivalent to

(37) sup |h|? < m [n(n —~DR*+4(n-1)R+ n},
(3)  (n+2n-DR-" 2 sup |h[2)2
(n—2) 5 2 2 _ 5
> ~——5—(n(n — 1)R + sup |h|*)(sup |h|* — nR).

n
But it is clear from (37) that (38) is equivalent to

n—2

(39) n+2(n—-1)R - sup |h|?

> 222 [tn(n— 1)R + sup [12)(sup |2 — nF).

n
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So under the hyperthesis that

1 nR+2 n—2
H2<—[ —1)2 —o(n—1 _
sup ~ n2 (n—1) n—2 (n )+nR+2’
we have
(40) ¢r(y/sup|h|?) > 0.

On the other hand,

O(nH) = Z(HH% —nhij)(nH)ij =Y _(nH — nhy;)(nH)s;

(41) b ’
= ”ZH(”H)M - nZk,-(nH),-,- < (|H |max — C)A(nH),

where |H|max is the maximum of the mean curvature H and C' = min k; is the
minimum of the principal curvatures of M™.

Now we need the following maximum principle at infinity for complete mani-
folds due to Omori [8] and Yau [10]:

Lemma 3.2. Let M™ be an n-dimensional complete Riemannian manifold whose
sectional curvature is bounded from below and f : M™ — R a smooth function
bounded from below. Then for each € > 0 there exists a point p. € M™ such that

(i) [V[fl(pe) <e,
(i) Af(pe) > —e,
(iii) inf f < f(pe) <inf f+e.

Since the scalar curvature of M is a constant, from the hypothesis that R <

sup H? < n%[(n— 1)2% —2(n—1)+ n"__é], and Gauss equation (14), we know

the squared norm |h|? of the second fundamental form is bounded from above,
from (11) we know that the sectional curvature is bounded from below. So we
may apply Lemma 3.2 to the smooth function f on M" defined by

1

It is immediate to check that
1 [V(nH)??
w VI A0 e
and that
1 A(nH)? 3 |V(nH)??
43 Af =—= 2
“3) = U P2 T A0+ i
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By Lemma 3.2 we can find a sequence of points pj, & € N in M™, such that

(1)l )=t AfG) > (VSRR < g5
Using (44) in equations (42) and (43) and the fact that
(45) Jim (nH)(pp) = sup (nH)(p),
—00 peEM™

we get

1 1 A(nH)? 3 90 W12
(46) % S—Em(pk)+k—g(l+(”[{) (k)™
Hence we obtain

A(nH)? 2 1 3

1) (@ ™ < E ey

On the other hand, by (36) and (41), we have

n—1

(48) (Ih[* = nR)pz(1h]) < O(nH) < n(|H|max — C)A(nH).

n

At points p;. of the sequence given in (44), this becomes

"L (k) ~ n B0 (pi)) < Ol (o)
< ([ Hlmax — C)AGE) (03,

(49)

Letting k — oo and using (47) we have that the right hand side of (49) goes to zero,
so we have either "L (sup |2 —nR) = 0, i.e. sup H? = R, or ¢5(1/sup |h[?) = 0.
If sup |h|? = nR, by (33) |Z|?> = =L (|n|2 — nR) we have
sup|Z|? = ”T_l(sup |h|? — nR) = 0, hence |Z|?> = 0 and M™ is totally umbilical.
If ¢ (v/sup |h|?) =0, it is easy to prove that
sup H? = n%[(n — 1)2% —2(n—1)+ n—"l-%%], hence equalities hold in (30)
and Lemma 3.1, and it follows that k; = constant for all ¢ and (n — 1) of the k;’s

are equal. After renumberation if necessary, we can assume that
ki=ko=-=kp_1, ki#kn.

Therefore, M™ is a isoparametric hypersurface in S”*1 with two distinct principal
curvatures, hence M™ = S1(v1 —72) x S" (1), ky = -+ = kp_1 = V1 —12/r,
kn = —7/v1—1r2. From (14), it is easy to see that n(n — 1)R = (n — 1)(n — 2 —

nr?)/r2, thus r = /n("R—__fl). This completes the proof of Theorem.
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