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Diophantine equation
qn−1
q−1 = y

for four prime divisors of y − 1

Zdeněk Polický

Abstract. In this paper the special diophantine equation qn
−1

q−1
= y with integer coeffi-

cients is discussed and integer solutions are sought. This equation is solved completely
just for four prime divisors of y − 1.
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1. Preliminaries

The theory of finite groups leads to some diophantine equations. There are
some of them in which the variables are restricted to be prime. The techniques
used vary from elementary properties of divisibility theory in integers leading to
some more sophisticated results which can find applications in Galois theory. The

diophantine equation qn−1
q−1 = y which is solved in this paper is a special type of

the equation

(1)
qn − 1

q − 1
= ym

where q is a power of a prime, y > 1, n > 2, m ≥ 2. This equation was studied
in many articles. In his paper [12] W. Ljunggren found solutions of (1) for m = 2
and Ljunggren with T. Nagell found in [13] the only solutions

35 − 1

3− 1
= 112,

74 − 1

7− 1
= 202,

183 − 1

18− 1
= 73

if 3 |n or 4 |n. French mathematicians Y. Bugeaud, M. Mignotte, and Y. Roy
reached important progress in solving (1) in [5], [6] when q is a power of such
prime p that p | (y − 1) or when m is a prime and every prime divisor of q also
divides (y − 1).
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This work was motivated by the paper of Iranian mathematicians A. and
B. Khosravi [9] who solved this diophantine equation for at most three prime
divisors of y − 1.

The main aim of this text is to develop their work and find solutions of qn−1
q−1 = y

for four prime divisors of y − 1. Now we denote y = aαbβcγdδ + 1 where a, b, c, d
are different primes and α, β, γ, δ ≥ 1 are integers.
At first we mention some lemmas that we use in this paper.

Lemma 1.1. Let p, q be distinct primes and r, s > 1. Then the only solution of
the equation pr − qs = 1 is 32 − 23 = 1.

Lemma 1.2. Let p, q be distinct primes and r, s > 1. With the exception of the
relation 2392 − 2×134 = −1 a solution of the equation pr − 2qs = ±1 exists only
for exponents r = s = 2.

Remark 1.3. Lemma 1.1 is a special type of Catalan conjecture which was
completely proved by P. Mihailescu (see Bilu [2]). The second lemma was proved
by P. Crescenzo in [6].

The following lemma as well as Lemma 1.1 are due to E. Gerono (see Dickson
[3, p. 744]).

Lemma 1.4. If 2m −1 is a power of a prime, hence 2m −1 = pk where k, m ∈ N

and p is a prime, then k = 1 and m is prime. (Thus p is a Mersenne number.)

The following propositions and Lemmas 1.5–1.9 are useful for the proof of the
Main Theorem 2.1.

Lemma 1.5. If r > 1, s ≥ 1 and 2
r(4s+2)−1
2r−1 has only three prime factors, then

r = 3, s = 1.

Proof (by A. Schinzel): By Bang’s theorem generalized by Zsigmondy (see Dick-
son [3, pp. 385-386]) for every integer n > 1, n 6= 6, 2n − 1 has a primitive prime

factor, i.e. a prime factor that does not divide 2m−1 for any m < n. Let r = 2lm,
where m is odd and consider two cases, m = 1 and m > 1.

If m = 1, then 2
r(4s+2)−1
2r−1 has prime factors belonging to exponents 2l+1 and

2j(2s+ 1) (0 ≤ j ≤ l + 1) except the exponent 6 if 2k + 1 = 3. Thus, we obtain
l + 3 > 3 prime factors if 2s+ 1 > 3 and l + 2 prime factors if 2s+ 1 = 3, hence
we have at least 4 prime factors, when l = 1, 2s+ 1 = 3. In the exceptional case

r = 2, s = 1 the number 2
12−1
22−1

= 3× 5× 7× 13 has nevertheless 4 prime factors.

Ifm > 1, then 2
r(4s+2)−1
2r−1 has prime factors belonging to exponents 2l+1, 2l+1m,

2l+1(2s+1), 2lm(2s+1), 2l+1m(2s+1) different from 6. Thus 2
r(4s+2)−1
2r−1 has at

least 4 prime factors, unless l = 0, m = 2s+ 1, i.e. r = 3, s = 1. �
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Proposition 1.6. Let p be a prime, r ≥ 4. Then r = 5, p = 5 is the only solution
of the equation

(2) 22r−5 − 2r−2 + 1 = p2

in integers.

Proof: Let us consider (2) in the form 2r−2(2r−3 − 1) = (p − 1)(p + 1) and
denote by K, L the greatest odd factors of p + 1 and p − 1 respectively. Since
(p − 1, p+ 1) = 2 we consider two subcases:

(i)

(∗)
p − 1 = 2r−3L

p+ 1 = 2K.

Then K = 2r−4L + 1 and since LK = 2r−3 − 1, we have 2r−4L2 + L =
2r−3 − 1 ⇒ 2r−4 = L+1

2−L2
which implies that L2 < 2, hence L = 1 and

K = 2r−3 − 1. Then we deduce from (∗) that 2r−3 + 2 = 2(2r−3 − 1).
Hence r = 5 and p = 5, as asserted.

(ii)

p − 1 = 2K

p+ 1 = 2r−3L.

ThenK = 2r−4L−1. The condition LK = 2r−3−1 implies that 2r−4L2−
L = 2r−3 − 1 and consequently we have 2r−4 = L−1

L2−2
. However, since we

suppose that r ≥ 4, we necessarily have L ≥ L2 − 1, a contradiction. �

Lemma 1.7. Let p, q be odd primes, s ≥ 1. Then there does not exist a solution
of the equation

(3) 2p2s − 2ps + 1− q2 = 0

in integers.

Proof: Let us consider (3) in the form 2ps(ps − 1) = (q − 1)(q + 1). Then we
distinguish two possibilities according to ps divides q − 1 or ps divides q + 1.
At first, assume that ps | (q − 1); then clearly 2ps | (q − 1) and we denote q −

1 = 2psu where u ∈ N. Then we get from (3) 2ps(ps − 1) = 2psu(q + 1) and
consequently ps−1 = u(q+1). Hence q+1 ≤ ps−1 < 2psu = q−1, a contradiction.
Now assume that ps | (q + 1). By exactly the same arguments as above, we

deduce that there exists a natural number u such that q + 1 = 2psu. Since we
consider (3) in the form ps − 1 = (q − 1)u, it follows that q − 1 ≤ ps − 1 and
combining this inequality with another inequality q+1 ≥ 2ps we get 2ps ≤ q+1 ≤
ps + 2 and hence ps ≤ 2, a contradiction. �
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Proposition 1.8. Let p, q be odd primes, r > 2, s ≥ 1. Then there does not
exist a solution of the equation

(4) 22r−3p2s − 2r−1ps + 1− q2 = 0

in integers.

Proof: Assume that there exists a solution of (4) and denote X = 2r−2ps. Then
we obtain from (4) the quadratic equation 2X2 − 2X + 1 − q2 = 0. A solution
exists only if the discriminant is the square of a natural number, D = 4(2q2− 1),
hence 2q2 − 1 = s2, s ∈ N and if we write it as a congruence we have s2 ≡
−1(mod q). Since −1 is a quadratic residue mod q if and only if q ≡ 1(mod 4), we
denote q = 1 + 4k, k ∈ N. Thus, immediately 2q2 − 1 = 32k2 + 16k + 1 and it
follows from (4) that 2q2 − 1 = 2rps(2r−2ps − 1) + 1. Further, we get equation
16k(2k + 1) = 2rps(2r−2ps − 1). One can easily verify the statement for r = 3.
The case r = 2 follows from Lemma 1.7. Hence assuming that r ≥ 4 we have

(5) k(2k + 1) = 2r−4ps(2r−2ps − 1).

Since k and 2k + 1 are relatively prime then clearly 2r−4 | k.
Now assume that p | k. Then ps | k and there would be such a number Y ∈ N

that k = 2r−4psY . It follows immediately from (5) that 2r−4psY (2r−3psY +1) =
2r−4ps(2r−2ps − 1) and consequently Y (2r−3psY + 1) = 2r−2ps − 1. Firstly,
assume that Y ≥ 2. Then we have Y (2r−3psY +1) ≥ 2(2r−2ps+1) > 2r−2ps − 1
which leads to a contradiction. If Y = 1 then we get 2r−3ps + 1 = 2r−2ps − 1⇒
2 = 2r−3ps which is a contradiction. Thus ps | (2k + 1) and there would be such
an odd natural number L that psL = 2k + 1.
Denote M = 2r−3; then we get from (5) that psL2 − L = ps2M2 − M and

consequently ps(L2 − 2M2) = L − M . Clearly L2 − 2M2 6= 0 and we want to
show that L2− 2M2 6= ±1. Firstly, assume that L2− 2M2 = −1. Then L2+1 =
2M2 = 22r−5. Since r ≥ 4 we have 4 | 22r−5 and we get L2+1 ≡ 0(mod 4) which
is impossible. Secondly, if L2 − 2M2 = 1 then L2 − 1 = 22r−5 and consequently
we have (L−1)(L+1) = 22r−5. Since (L−1, L+1) = 2, it follows that L−1 = 2,
L+1 = 4 and 2α−5 = 3, so that α = 4 and consequently ps = 1, a contradiction.
If |L2−2M2| > 1 then there exists such a prime h that h | (L2−2M2) and also

h | (L−M). Thus h is odd and h | (L2−M2)−M2. Hence h |M , a contradiction.
�

Proposition 1.9. Let p, q be odd primes, r > 2, t ≥ 1 and assume that s(n−1)/2
is odd where n ≥ 5. If q | (ps + 1) then there does not exist a solution of the
equation

(6) ps(n−1)/2 + 1 = 2rqt

in integers.
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Proof: Denote ps(n−1)/2−s − . . . − ps + 1 = A and (n − 1)/2 = y. Since we
suppose that q | (ps +1), psm ≡ 1(mod q) holds for m even and psm ≡ −1(mod q)
holds for m odd. Therefore A ≡ y(mod q) and since it follows from (6) that q |A
then clearly q | y and consequently we have y = qz, z ∈ N and (6) in the form
psqz + 1 = 2rqt.
Now assume that psquw + 1 = 2rqt, where u, w ≥ 3 are odd. Then we have

psquw + 1 = (psqu
+ 1)(psqu(w−1) − psqu(w−2) + . . . + 1) = 2rqt. Denote B =

psqu(w−1) − psqu(w−2) + . . .+1. If q |B then we observe by similar arguments as
above that q |w, hence w = qw′, w′ ∈ N and consequently we have such a natural

number v that psqv
+ 1 = 2rqt.

Denote C = psqv−1
and we want to show that q2 does not divide ps + 1.

Assume to the contrary that q2 | (ps+1). Then C ≡ −1(mod q2) and consequently
Cq ≡ −1(mod q2) and it follows that t ≥ 2. Since ps ≡ −1(mod 2r), we have C ≡
−1(mod 2r) and we consider (6) as Cq +1 = (C +1)(Cq−1−Cq−2 . . .−C+1) =
2rqt. Since t ≥ 2 and since C ≡ −1(mod q2), we have Cq−1−Cq−2 . . .−C+1 ≡
q(mod q2) and consequently Cq−1 − Cq−2 . . . − C + 1 = q. One knows that
Cx −Cx−1 = Cx−1(C − 1) ≥ C(C − 1) ≥ 6 for x ≥ 2. Hence Cq−1 −Cq−2 . . .−

C + 1 = q ≥ 6 q−1
2 + 1 = 3q − 2 > q which contradicts our assumption. It follows

that q2 does not divide ps + 1 and we obtain equation ps + 1 = 2rq.
If now we denote E = ps, then E = 2rq − 1 and we have

Eq =

q
∑

j=2

(

q

j

)

(2rq)j(−1)q−j + 2rq2 − 1.

One can see that
(q
j

)

qj ≡ 0(mod q3) holds for 2 ≤ j ≤ q. Then we have Eq + 1 ≡

2rq2(mod 2rq3). If v = 1 in psqv−1
then we get Eq + 1 = 2rq2. If v > 1 then by

using psqv
+1 = 2rqt we get (Eq)q

v−1
+1 = (Eq+1)(Eqv−1−1−Eqv−1−2+ . . .+1) =

2rqt and since Eq + 1 ≡ 2rq2(mod 2rq3), we have Eq + 1 = 2rq2 for arbitrary
natural number v.
Combining E + 1 = 2rq with (E + 1)(Eq−1 − Eq−2 + . . . + 1) = 2rq2 we

get Eq−1 − Eq−2 + . . . + 1 = q. Since Ez − Ez−1 ≥ 6 for x ≥ 2 by using

similar arguments as above we have q ≥ 6 q−1
2 + 1 = 3q − 2 ⇒ 1 ≥ q which is a

contradiction. Hence the solution of (6) does not exist. �

2. Main theorem

Theorem 2.1. Let q be a power of a prime, b, c, d be primes, n ≥ 3, odd and
♯ {p, p prime ∧ p | (y − 1)} = 4. Then all solutions of the equation

(7)
qn − 1

q − 1
= y
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are listed in two following tables.q n y onditions2 9 2� 3� 5� 17 + 12� 9 2��(2� + 1)�(22� + 1)�(24� + 1) + 1 (2� + 1) ; (22� + 1) ; (24� + 1)are Fermat primes23 5 23 � 32 � 5� 13 + 12� 5 2��(2� + 1)�(22� + 1)+1 2� +1 = d is a Fermat primeand 22� + 1 = b�2� 3 2� � (2� + 1) + 1 2� + 1 = b�dÆ2 2p+ 1 2� (2p � 1)� (2p + 1)+1 2p � 1 = d is a Mersenneprime and 2p + 1 = 3, p is aprime2� 4k+3,k � 1 23 � 33 � 19� 73 + 1
Table 1: Solutions of the equation (qn − 1)/(q − 1) = y when q = 2α.

Proof: Let y − 1 = A. It follows from (7) that

qn − 1

q − 1
− 1 =

q(qn−1 − 1)

q − 1
=

q(q(n−1)/2 − 1)(q(n−1)/2 + 1)

q − 1
= A.

Since (q(n−1)/2 − 1, q(n−1)/2+1) | 2 and since (q − 1) | (q(n−1)/2− 1), it follows

that (q(n−1)/2 + 1) |A. Since q is a power of a prime, denote q = aα, we consider

three equations aα(n−1)/2+1 = bβ , aα(n−1)/2+1 = bβcγ , aα(n−1)/2+1 = bβcγdδ.
Clearly, one of the primes has to be even. Denote a = 2 and then we have
y = 2αbβcγdδ + 1. Now we distinguish two cases.

Case q = 2α

Since (2α(n−1)/2 − 1, 2α(n−1)/2 + 1) = 1, we consider three subcases:

2.1 2α(n−1)/2 + 1 = dδ, 2α(n−1)/2−1
2α−1 = bβcγ .

Clearly, n 6= 3. Using Lemma 1.1 we divide the equation on the left-hand side
in 2.1 into three parts.

2.1.1 α(n − 1)/2 = 1 ⇒ α = 1, n = 3 which is a contradiction.

2.1.2 α(n − 1)/2 = 3 and dδ = 32, since we have α = 1, n = 7⇒ bβcγ = 7 which
is contradiction.
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Table 2: Solutions of the equation qn−1
q−1 = y when q = bβ , b odd.

2.1.3 δ = 1, since 2α(n−1)/2 + 1 = d is a Fermat prime, we have α(n− 1)/2 = 2k,
k ≥ 1 (If k = 0 then the case n = 3 is impossible.) Since

(2α(n−1)/4 − 1, 2α(n−1)/4 + 1) = 1, we consider from the second equation

in 2.1 2
α(n−1)/4−1
2α−1 = bβ, 2α(n−1)/4 + 1 = cγ . Using Lemma 1.1 similarly as

above we get three subcases of the last equation.

(a) α(n − 1)/4 = 1⇒ α = 1, n = 5 but then bβ = 1 is a contradiction.

(b) cγ = 32, α(n − 1)/4 = 3 ⇒ α = 3, n = 5 then bβ = 1 or α = 1, n = 13

and d = 2α(n−1)/2 + 1 = 65 is not a prime. In both cases we obtain
a contradiction.

(c) γ = 1, we have 2α(n−1)/4 +1 = c, so c is a Fermat prime (d is a Fermat

prime too) and
(2α(n−1)/8−1)(2α(n−1)/8+1)

2α−1 = bβ . Since (2α(n−1)/8 −

1, 2α(n−1)/8 + 1) = 1, we consider equations 2
α(n−1)/8−1
2α−1 = 1, hence

n = 9 and 2α(n−1)/8 +1 = bβ . Thus solution of (7) is [q = 2, n = 9, y =
2× 3× 5× 17 + 1] in case α = 1.

If α = 3, bβ = 32 then 2α(n−1)/4 + 1 = c = 65 which leads to a
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contradiction. If β = 1 then we can see that b = 2α + 1, c = 22α + 1
and 24α + 1 are Fermat primes and the solution of (7) is [q = 2α, n =
9, y = 2α × (2α + 1)× (22α + 1)× (24α + 1) + 1].

2.2 2α(n−1)/2 + 1 = bβcγ , 2α(n−1)/2−1
2α−1 = dδ .

2.2.1 α(n − 1)/2 is even.

Since (2α(n−1)/4−1, 2α(n−1)/4+1) = 1, we divide the equation on the right-

hand side above by the only way: 2
α(n−1)/4−1
2α−1 = 1 and 2α(n−1)/4 + 1 = dδ.

Then n = 5 and we consider three possibilities:

(a) α = 1⇒ dδ = 3 and bβcγ = 5 which is a contradiction.

(b) δ = 1, then d = 2α + 1 is a Fermat prime and 22α + 1 = bβcγ is
a Fermat number. Therefore, solution of (7) is [q = 2α, n = 9, y =
2α × (2α + 1)× (2α + 1)× (22α + 1) + 1].1

(c) α = 3, dδ = 32, then we obtain a particular solution of [7] [q = 23, n =
5, y = 23 × 32 × 5× 13 + 1].

2.2.2 α(n − 1)/2 is odd.

Since 2α(n−1)/2 + 1 = (2 + 1)(2α(n−1)/2−1 − . . . − 2 + 1) = bβcγ one of the
primes has to be three, denote b = 3.

(a) α ≥ 3, if we consider the equations above then we have
2α(n−1)−1
2α−1 =

bβcγdδ. According to Lemma 1.5 there exists the only solution of this
equation α = 3, n = 7 and consequently the solution of (7) is [q =
23, n = 7, y = 23 × 33 × 19× 73 + 1].

(b) α = 1 and 2(n−1)/2 − 1 = dδ . Using Lemma 1.1 we have δ = 1,
d is a Mersenne prime and (n − 1)/2 is also a prime. Let us denote
(n − 1)/2 = p and (2p−1 − 2p−2 + . . . − 2 + 1) = K. Then we get

2p + 1 = (2 + 1)(2p−1 − 2p−2 + . . . − 2 + 1) = 3βcγ . If β ≥ 2 ⇒ 3 |K
and since 22m ≡ 1(mod3), −22m+1 ≡ 1(mod3) for m ∈ N we have

K ≡ p (mod 3). Since 3 |K, 3 | p and bβcγ = 9 which is a contradiction.
If β = 1 then we have 2p − 1 = d, 2p + 1 = 3cγ . According to [4] the
equation 2p + 1 = 3cγ has no solution for γ > 1. Then the solution of
(7) is [q = 2, n = 2p+ 1, y = 2 × (2p − 1) × (2p + 1) + 1] if 2p − 1 = d,
2p + 1 = 3c.

2.3 2α(n−1)/2 + 1 = bβcγdδ, 2α(n−1)/2−1
2α−1 = 1.

One can see that n = 3. The solutions for α ≤ 50 are listed in the following
table.

1Until now we know the only couple of consecutive Fermat numbers F4, F5 satisfying
conditions of the solution.
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Table 3: Solutions of case 2.3 for α ≤ 50.

Case q = bβ , b-odd.

Since (bβ(n−1)/2 − 1, bβ(n−1)/2 + 1) = 2, we have nine subcases, four of them
are leading immediately to a contradiction. Therefore we consider five types:

2.4 bβ(n−1)/2 + 1 = 2cγdδ, bβ(n−1)/2−1
bβ−1

= 2α−1.

2.4.1 β(n − 1)/2 is even.

By using (bβ(n−1)/4 − 1, bβ(n−1)/4 + 1) = 2 we consider two subcases of the
equation on the right-hand side above:

(a) bβ(n−1)/4−1
bβ−1

= 2, bβ(n−1)/4 + 1 = 2α−2. Combining these two equations

we get 2α−2 = 2bβ which is a contradiction.

(b) bβ(n−1)/4−1
bβ−1

= 1 ⇒ n = 5, bβ(n−1)/4 + 1 = 2α−1, if we use Lemma 1.1

then we easily check that the solution of equation bβ + 1 = 2α−1 exists
only for β = 1. Then b = 2α−1−1 is a Mersenne prime and the solution

of (7) is [q = b, n = 5, y = b × 2(b+ 1)× b2+1
2 + 1] if b2 + 1 = 2cγdδ.

2.4.2 β(n − 1)/2 is odd.

Since bβ(n−1)/2−1
bβ−1

=
(bβ−1)(bβ(n−1)/2−β+...+1)

bβ−1
= 2α−1, we have bβ(n−1)/2−β+

. . . + 1 = 2α−1 and since bβ(n−1)/2−β + . . . + 1 ≡ 1(mod2), we easily

check that α = 1, n = 3. Then bβ + 1 = 2cγdδ and the solution of (7) is

[q = bβ , n = 3, y = bβ × 2× bβ+1
2 + 1].

2.5 bβ(n−1)/2 + 1 = 2dδ, bβ(n−1)/2−1
bβ−1

= 2α−1cγ .

Using Lemma 1.2 we consider four subcases of the first equation in 2.5.

2.5.1 β(n − 1)/2 = 1⇒ β = 1, n = 3 which is a contradiction.

2.5.2 bβ(n−1)/2 = 2392, dδ = 134, then 2α−1cγ = 239
2−1

239−1 = 240 = 2
4 × 15 but 15

is not a prime.
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2.5.3 δ = 1⇒ bβ(n−1)/2+1 = 2d. If β(n−1)/2 is odd then we have bβ(n−1)/2+1 =

(b+1)(bβ(n−1)/2−1− . . .+1) = 2d, however, bβ(n−1)/2− . . .+1 ≡ 1(mod 2)
and hence we have b = 1 which is impossible. Thus β(n − 1)/2 is even and

we consider four subcases of equation
(bβ(n−1)/4−1)(bβ(n−1)/4+1)

bβ−1
= 2α−1cγ

since (bβ(n−1)/4 − 1, bβ(n−1)/4 + 1) = 2.

(a) bβ(n−1)/4−1
bβ−1

= cγ , bβ(n−1)/4+1 = 2α−1. It follows from Lemma 1.1 that

the second equation has solution only if β(n−1)/4 = 1 and bβ(n−1)/4 =
32 but in both cases we find a contradiction.

(b) bβ(n−1)/4−1
bβ−1

= 2cγ , bβ(n−1)/4 + 1 = 2α−2. By the same arguments as in

the previous point, we deduce a contradiction.

(c) bβ(n−1)/4−1
bβ−1

= 2α−2, bβ(n−1)/4+1 = 2cγ . Using Lemma 1.2 we consider

following subcases of the second equation.

(c.1) β(n − 1)/4 = 1⇒ β = 1, n = 5 and 2α−2 = 1⇒ α = 2. Then the

solution of (7) is [q = b, n = 5, y = b × 22 × b+1
2 × b2+1

2 + 1] if we

suppose that b+ 1 = 2cγ and b2 + 1 = 2d.

(c.2) γ = 1, β(n − 1)/4 is even otherwise

bβ(n−1)/4 + 1 = (b + 1)(bβ(n−1)/4−1 − . . . + 1) = 2c which is

not possible. Since (bβ(n−1)/8 − 1, bβ(n−1)/8 + 1) = 2, one can
verify according to Lemma 1.1 that the solution exists only for

bβ(n−1)/8 + 1 = 2α−2. Then bβ(n−1)/8

b−1 = 1 ⇒ n = 9 and the

equation bβ+1 = 2α−2 is solvable only for α−2 = 1 or β = 1. The
first case leads to a contradiction bβ = 1 and in the second case if
we suppose that b2+1 = 2c and b4+1 = 2d then we get the solution

of (7) in the form [q = b, n = 9, y = b×4(b+1)× b2+1
2 × b4+1

2 +1].

(c.3) bβ(n−1)/4 = 2392, cγ = 134 but then d = bβ(n−1)/2+1
2 = 239

4+1
2 =

809× 1217× 1657 which is a contradiction.

(c.4) β(n− 1)/4 = 2, γ = 2⇒ b2 + 1 = 2c2 and b4 + 1 = 2d. Firstly, we
consider β = 2, n = 5, then 2α−2 = 1⇒ α = 2 and the solution of

(7) is [q = b2, n = 5, y = b2× 22× b2+1
2 × b4+1

2 +1] if b
2+1 = 2c2

and b4 + 1 = 2d holds.

Secondly, β = 1, n = 9 then b2−1
b−1 = b + 1 = 2α−2 (α ≥ 4).

Combining b = 2α−2 − 1 with b2 + 1 = 2c2 yields 22α−5 − 2α−2 +
1 = c2. It follows from Proposition 1.6 that the only solution of
this equation is α = 5 and c = 5. Then the solution of (7) is
[q = 7, n = 9, y = 7× 25 × 52 × 1201 + 1].

(d) bβ(n−1)/4−1
bβ−1

= 1⇒ n = 5, bβ(n−1)/4 + 1 = 2α−1cγ .
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(d.1) β is even.

Since bβ+1 ≡ 2 (mod4), we have 2α−1cγ ≡ 2(mod 4), hence α = 2.

Using Lemma 1.2 we consider four possibilities of bβ+1 = 2cγ but
three of them were solved in case (c), therefore we find solution

only if γ = 1. Then we have bβ + 1 = 2c, b2β + 1 = 2d and the

solution of (7) is [q = bβ , n = 5, y = bβ × 22 × bβ+1
2 × b2β+1

2 + 1].
(d.2) β is odd.

Since b2β+1 = (b2+1)(b2β−2− b2β−4+ . . .+1) = 2d then clearly
b2+1 = 2 which is impossible. Hence, we consider the case β = 1.
If b2 +1 = 2d and b+1 = 2α−1cγ holds then the solution of (7) is

[q = b, n = 5, y = b × 2(b+ 1)× b2+1
2 + 1].

2.5.4 β(n − 1)/2 = 2, δ = 2 ⇒ β = 1, n = 5. Since b + 1 = 2α−1cγ and since
b2 + 1 = 2d2, we solve equation 22α−3c2γ − 2α−1cγ + 1− d2 = 0. However,
according to Proposition 1.8 it follows that the solution does not exist in
this case.

2.6 bβ(n−1)/2 + 1 = 2αcγdδ, bβ(n−1)/2−1
bβ−1

= 1.

In this case we found at least one solution for every odd prime number b ≤ 20.

2.7 bβ(n−1)/2 + 1 = 2αdδ, bβ(n−1)/2−1
bβ−1

= cγ .

We easily check that β(n − 1)/2 has to be odd and n 6= 3. Using Lemma 1.2 we
observe that α ≥ 2. Now we consider two subcases:

2.7.1 d does not divide (bβ + 1).

Then we have bβ = 2α−1. By Lemma 1.2 we have β = 1 and consequently b

is a Mersenne prime. Now we consider from 2.7 two equations b(n−1)/2−1 −

. . .− b+ 1 = dδ and b(n−1)/2−1 + . . .+ b+ 1 = cγ . According to Ljunggren
in [12] the second equation has the only solution b = 3, n = 11, cγ = 112 for
γ > 1. Then the solution of (7) is [q = 3, n = 11, y = 3× 22 × 112 × 61+ 1].
Now assume that γ = 1. Then we check that (n − 1)/2 has to be a prime.

Regarding [4] and since dδ ≡ 1(mod b) we may say that the solution of the

equation b(n−1)/2−1− . . .−b+1 = dδ does not exist for δ > 1. Then we find
the solution of (7) in the form [q = b, n = 2p+1, y = b×2α× c×d+1] if we

suppose that b(n−1)/2−1 − . . .− b+ 1 = d and b(n−1)/2−1 + . . .+ b+1 = c.
2.7.2 d divides (bβ + 1).

By Proposition 1.9 we see that there is no solution in this case.

2.8 bβ(n−1)/2 + 1 = 2α−1dδ, bβ(n−1)/2−1
bβ−1

= 2cγ .

We check that β(n − 1)/2 is even. Since (bβ(n−1)/4 − 1, bβ(n−1)/4 + 1) = 2, we

consider bβ(n−1)/4 + 1 = 2cγ , bβ(n−1)/4−1
bβ−1

= 1 from the second equation in 2.8.

Then easily n = 5 and using Lemma 1.2 we solve four subcases of the equation
above. But all these cases were already computed before in 2.5.
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[2] Bilu Y.F., Catalan’s Conjecture, Séminaire Bourbaki, 55ème année, 909, 2002.
[3] Bugeaud Y., Linear forms in p-adic logarithms and the diophantine equation (xn −1)/(x−
1) = yq , Math. Proc. Cambridge Philos. Soc. 127 (1999), 373–381.

[4] Bugeaud Y., Mignotte M., On the diophantine equation (xn−1)/(x−1) = yq with negative

x, Proceedings of the Millennial Conference on Number Theory, Urbana-Champaign, IL,
USA, 2002, pp. 145–151.

[5] Bugeaud Y., Mignotte M., Roy Y., Shorey T.N., On the diophantine equation (xn−1)/(x−
1) = yq , Math. Proc. Cambridge Philos. Soc. 127 (1999), 353–372.

[6] Bugeaud Y., Mignotte M., Roy Y., On the diophantine equation (xn − 1)/(x − 1) = yq ,
Pacific J. Math. 193 (2000), 257–268.

[7] Crescenzo P., A diophantine equation arises in the theory of finite groups, Advances in
Math. 17 (1975), 25–29.

[8] Dickson L.E., History of the Theory of Numbers, vol 2, AMS Chelsea, Providence, 1999.
[9] Khosravi A., Khosravi B., On the diophantine equation (qn − 1)/(q − 1) = y, Comment.
Math. Univ. Carolinae 44 (2003), no. 1, 1–7.
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nám. 2a, 662 95 Brno, Czech Republic

(Received January 27, 2004, revised February 16, 2005)


