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Some results on the recognizability

of the linear groups over the binary field

M.R. Darafsheh, Y. Farjami, M. Khademi, A.R. Moghaddamfar

Abstract. In this paper, we first find the set of orders of all elements in some special
linear groups over the binary field. Then, we will prove the characterizability of the
special linear group PSL(13, 2) using only the set of its element orders.
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1. Introduction

Let G be a finite group and πe(G) be the set of orders of all elements in G.
Clearly, πe(G) is a subset of the set of natural numbers, also πe(G) is closed and
partially ordered by the divisibility relation. Hence, πe(G) is uniquely determined
by µ(G), the set of elements that are maximal under the divisibility relation. If Ω
is a subset of natural numbers, then h(Ω) denotes the number of non-isomorphic
finite groups G such that πe(G) = Ω. It is clear that h(πe(G)) ≥ 1, for any
group G. Following W.J. Shi, we say that a finite groupG is non-distinguishable if
h(πe(G)) =∞; and distinguishable if h(πe(G)) < ∞. Moreover, a distinguishable
group G is called k-distinguishable if h(πe(G)) = k (k < ∞). Usually, a 1-
distinguishable group G is called a recognizable (or characterizable) group.
To every finite group G we associate a graph known as its prime graph denoted

by Γ(G) = (V (G), E(G)). For this graph we have V (G) = π(G), the set of
all prime divisors of the order of G, and for two vertices p, q ∈ V (G) we have
{p, q} ∈ E(G) if and only if pq ∈ πe(G). Denote the connected components of
Γ(G) by πi(G) = πi, i = 1, 2, . . . , t(G), where t(G) is the number of connected
components. If 2 ∈ π(G) we set 2 ∈ π1.
By [8] we have

t(PSL(n, 2)) =

{

1 if n 6= p, p+ 1;

2 if n = p or p+ 1,

where p is an odd prime number. When n = p or p + 1, PSL(n, 2) has two
components, one of them is

π1 = π(2
∏p−1

i=1 (2
i − 1)), (resp. π1 = π(2(2p+1 − 1)

∏p−1
i=1 (2

i − 1)))
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and the other in any case is

π2 = π(2p − 1).

Characterization of finite groups through their element orders is one of the most
interesting problems in finite group theory. This problem was first introduced by
W.J. Shi in [15]. There are some results in the literature showing that certain
groups are characterizable (see references and Table 1 in [12]). In particular, it
was proved that the following simple groups are characterizable: PSL(n, 2) for
n = 3, 4, 5, 6, 7, 8 (see [17], [13], [3], [16], [4], [5]). About simple groups PSL(9, 2)
and PSL(10, 2), the problem is still open. In fact, since the prime graphs of these
groups are connected, the problem is more difficult. Moreover, in [3], Darafsheh
and Moghaddamfar put forward the following conjecture:

Conjecture. For all positive integers n ≥ 3, the simple groups PSL(n, 2)
are characterizable.

In this paper, we will prove that the conjecture is correct for the special linear
group PSL(13, 2). Finally we will prove that:

Main Theorem. Let G be a finite group. Then G ∼= PSL(13, 2) if and only if
πe(G) = πe(PSL(13, 2)).

In the following, groups considered are finite and simple groups are non-abelian.
We also use the notation PSL(n, q) or Ln(q) for the projective special linear group.
It is clear that PSL(n, 2) = GL(n, 2).

2. On set of orders of elements in PSL(n, 2)

In this section, we first introduce some notation which are taken from [7]. Then
we continue to find some properties of the set πe(PSL(n, 2)), whose proof is based
on examining the structure of PSL(n, 2) and on several arithmetic arguments.
Finally, we calculate the set of orders of elements of the projective special linear
groups PSL(n, 2) where n = 9, 10, 11, 12, 13.

Notation. Let f(x) = xm − am−1x
m−1 − . . .− a0 be a polynomial over GF(q) of

degree m. Using Green’s notation ([7]), let

U(f) = U1(f) :=





















0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...
... · · ·

...
0 0 0 0 . . . 1
a0 a1 a2 a3 . . . am−1
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denote its companion matrix. We also set

Ul(f) :=

















U(f) 1m 0 0 . . . 0
0 U(f) 1m 0 . . . 0
0 0 U(f) 1m . . . 0
...

...
...

... · · ·
...

0 0 0 0 . . . U(f)

















,

with l diagonal blocks U(f), where 1m is the identity matrix.
If λ = {l1, l2, . . . , lp} is a partition of a positive integer k whose p parts are

written in descending order i.e.

l1 ≥ l2 ≥ . . . ≥ lp > 0,

then we set
Uλ(f) := diag{Ul1(f), Ul2(f), . . . , Ulp(f)}.

We denote by c(n, q) the number of conjugacy classes of GL(n, q). In general,
there is a generating function for c(n, q) as follows:

(1)

∞
∑

n=0

c(n, q)xn =

∞
∏

m=1

p(xm)w(m,q),

where

(2) w(m, q) =
1

m

∑

k|m

µ(k)qm/k

is the number of irreducible polynomials f(x) of degree m over GF(q). We recall
that in equations (1) and (2)

(3) p(x) =
1

(1 − x)(1 − x2) . . .
=

∞
∑

d=0

pdxd

is the partition function (in this power series the coefficient pd is the number of
partitions of d), and µ is the Möbius function.
By definition the order of f(x) ∈ GF(q)[x], f(0) 6= 0, is the smallest natural

number e such that f(x)
∣

∣xe−1, denoted by ord(f). If A is an element of GL(n, q)
with minimal polynomial f(x), then it is known that the order of A in GL(n, q)
is equal to the order of f(x). Therefore finding the orders of polynomials over
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GF(q) is important for finding the orders of elements in the general linear groups.
Since we are interested in GL(n, 2), in what follows we turn to the field GF(2).

Suppose that A ∈ GL(n, 2) has characteristic polynomial fk1
m1f

k2
m2 . . . fks

ms
,

where fmi
, 1 ≤ i ≤ s, is an irreducible polynomial over GF(2) of degree mi,

and k1, k2, . . . , ks are positive integers. Evidently
∑n

i=1miki = n, and moreover
A is conjugate to one of the matrices of the form

diag{Uν1(fm1), Uν2(fm2), . . . , Uνs(fms)}

in GL(n, 2), where ν1, ν2, . . . , νs are certain partitions of k1, k2, . . . , ks respec-
tively. In this case, we denote the conjugacy class c of A by the symbol

c = (fν1
m1f

ν2
m2 . . . fνs

ms
).

Furthermore, if B is conjugate to diag{Uk1(fm1), Uk2(fm2), . . . , Uks
(fms)}, then

we have

(4) o(B) = l.c.m. {o(Uk1(fm1)), o(Uk2(fm2)), . . . , o(Uks
(fms))}.

Hence, among all elements of GL(n, 2) having the same characteristic polynomial

fk1
m1f

k2
m2 . . . fks

ms
, o(B) is maximal.

If w(d, 2) = k, then it means that there are k irreducible polynomials of degree

d over GF(2), say, g1, g2, . . . , gk. Certainly o(U1(gi)) = ord(gi) divides 2
d − 1,

and also there exist gj , 1 ≤ j ≤ k, such that o(U1(gj)) = ord(gj) = 2
d − 1.

We are now ready for the first result.

Lemma 1. Let n = k1m1+k2m2+ · · ·+ksms, where k1, k2, . . . , ks, m1, m2, . . . ,
ms are positive integers and n ≥ 3. Let e = l.c.m. (2m1 − 1, 2m2 − 1, . . . , 2ms −
1) and t be the smallest integer with 2t ≥ max(k1, k2, . . . , ks). Then 2

te ∈
πe(PSL(n, 2)).

Proof: Let A ∈ PSL(n, 2) ∼= GL(n, 2) have characteristic polynomial f =

fk1
m1f

k2
m2 . . . fks

ms
, where fmi

is an irreducible polynomial over GF(2) of degree
mi and o(U1(fmi

)) = ord(fmi
) = 2mi − 1. Now, if A is conjugate to

diag{Uk1(fm1), Uk2(fm2), . . . , Uks
(fms)},

then by (4) and Theorem 3.8 in [10], we obtain that

o(A) = l.c.m. {o(Uk1(fm1)), o(Uk2(fm2)), . . . , o(Uks
(fms))}

= l.c.m. {2t1 ord(fm1), 2
t2 ord(fm2), . . . , 2ts ord(fms)}

= 2t × l.c.m. {ord(fm1), ord(fm2), . . . , ord(fms)}

= 2t × l.c.m. {2m1 − 1, 2m2 − 1, . . . , 2ms − 1},

where ti is the smallest integer with 2
ti ≥ ki, and t = max(t1, t2, . . . , ts). �
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Corollary 1. The following statements hold.

(a) For i ≥ 1 we have πe(PSL(i, 2)) ⊂ πe(PSL(i + 1, 2)). In particular, for
every 1 ≤ i ≤ n, 2i − 1 belong to πe(PSL(n, 2)).

(b) (qn−1)/d(q−1) and (qn−1−1)/d belong to µ(Ln(q)), where d = (n, q−1).
In particular, 2n−1 − 1 and 2n − 1 belong to µ(Ln(2)).

(c) 2s ∈ µ(PSL(n, 2)), where s is the smallest integer with 2s ≥ n.
(d) 2n − 1 is the maximal number in µ(PSL(n, 2)).
(e) k(2n−2 − 1) ∈ πe(PSL(n, 2)) if and only if k = 1, 2 or 3. Moreover
2(2n−2 − 1) is the maximal even number in µ(PSL(n, 2)).

(f) Let n =
∑s

i=1mi, where m1, m2, . . . , ms are positive integers and for

every i, j = 1, 2, . . . , s, (mi, mj) = 1. Then
∏s

i=1(2
mi−1) ∈ µ(PSL(n, 2)).

Proof: (a) Evidently, PSL(i, 2) →֒ PSL(i + 1, 2) for every i ≥ 1, and so
πe(PSL(i, 2)) ⊆ πe(PSL(i + 1, 2)). Moreover, PSL(i, 2) contains a Singer cycle
of order 2i − 1. This proves part (a).
(b) These facts are quite well-known, see for instance [9].
(c) Take A ∈ c = (fn

1 ), where f1 is irreducible polynomial over GF(2) of
degree 1. Then the result follows from Lemma 1.

(d) Let A ∈ PSL(n, 2) have characteristic polynomial f = fk1
m1f

k2
m2 . . . fks

ms
,

where fmi
is an irreducible polynomial over GF(2) of degree mi. Assume that

t and e are as in Lemma 1. Clearly o(A) divides 2te, and by noticing that
∑n

i=1miki = n, we conclude that

o(A) ≤ 2te ≤ 2t(2m1 − 1)(2m2 − 1) . . . (2ms − 1) ≤ 2(t+
Ps

i=1mi) − 1 ≤ 2n − 1,

completing the part (d).

(e) Assume that A ∈ PSL(n, 2). Evidently A ∈ c = (fn−2f
k
i ) if and only if

(i, k) = (1, 2) or (2, 1). Using (4), in the first case we have o(A) = 2(2n−2 − 1),
and in the latter case we have

o(A) =

{

2n−2 − 1 if n is even,

3(2n−2 − 1) if n is odd.

Hence k(2n−2 − 1) ∈ πe(PSL(n, 2)) if and only if k = 1, 2 or 3. Now, with the
same argument as in (d) we may prove that 2(2n−2 − 1) is the maximal even
number in πe(PSL(n, 2)), which implies that 2(2n−2 − 1) ∈ µ(PSL(n, 2)).
(f) Assume that A ∈ c = (fm1 , fm2 , . . . , fms), where fmi

is an irreducible
polynomial over GF(2) of degreemi, and o(U1(fmi

)) = 2mi−1. Now by Lemma 1,
it is easy to see that

o(A) = l.c.m. (2m1 − 1, 2m2 − 1, . . . , 2ms − 1) =
s

∏

i=1

(2mi − 1),
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since (2mi − 1, 2mj − 1) = 2(mi,mj) − 1 = 1.

Now, we show that o(A) ∈ µ(PSL(n, 2)). Assume that PSL(n, 2) contains an

element, say, B, such that o(A) divides o(B). Suppose that B ∈ (fk1
d1

fk2
d2

. . . fkz

dz
),

where fdj
, 1 ≤ j ≤ z, is an irreducible polynomial over GF(2) of degree dj ,

∑z
j=1 kjdj = n and o(U1(fdj

)) = 2dj − 1. From Lemma 1, we have o(B) = 2te,

where t is the least positive integer such that 2t ≥ max(k1, k2, . . . , kz) and e =

l.c.m. (2d1−1, 2d2−1, . . . , 2dz−1). Since o(A) divides o(B), for each i there is a j(i)
such that mi | dj(i) , 1 ≤ i ≤ s. Hence mi ≤ dj(i) implying

∑s
i=1m1 ≤

∑s
i=1 dj(i) .

On the other hand, since ki ≥ 1, we obtain

z
∑

j=1

dj ≤

z
∑

i=1

kjdj =

s
∑

i=1

m1 ≤

s
∑

i=1

dj(i) .

Therefore equality holds, which implies s = z, ki = 1 and dj(i) = mi, for all i,

1 ≤ i ≤ s. Hence A = B, and the result follows. �

Lemma 2. Let G = PSL(n, 2), where n = 9, 10, 11, 12, 13. Then µ(G) is given
as in Table 4.

Proof: First of all, using (2) and (3) we calculate the values of w(n, 2) and pn

where 1 ≤ n ≤ 13, and list them in Table 1.

Table 1. The number of irreducible polynomials of degree n over Z2, and the
number of partitions of n.

n 1 2 3 4 5 6 7 8 9 10 11 12 13
w(n, 2) 2 1 2 3 6 9 18 30 56 99 186 335 630
pn 1 2 3 5 7 11 15 22 30 42 56 77 101

Next, we calculate the values of c(n, 2), where 1 ≤ n ≤ 13. In fact, using (1)
we obtain

(5)

∞
∑

n=0

c(n, 2)xn =

∞
∏

m=1

p(xm)w(m,2) = 1 + x+ 3x2 + 6x3 + 14x4 + 27x5 + 60x6

+117x7 + 246x8 + 490x9 + 1002x10 + 1998x11 + 4031x12 + 8066x13 + · · · .

Finally, we calculate o(Uk(fi)) with k ≥ 2 and ki ≤ 13, which is given in Table 2.
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Table 2. The order of A ∈ GL(ki, 2) having characteristic polynomial fk
i , where

k > 1 and ki ≤ 13.

k f1 f2 f3 f4 f5 f6
2 2 6 14 30 62 126
3 4 12 28 60
4 4 12 28
5 ≤ k ≤ 6 8 24
7 ≤ k ≤ 8 8
9 ≤ k ≤ 13 16

First suppose G = PSL(9, 2). By (5), G contains 490 conjugacy classes. Now,
by the previous explanations and using Lemma 1 and Table 2, we can easily
list these conjugacy classes and find the maximum order for all elements in the
conjugacy classes having the same characteristic polynomial, which is denoted by
m in the last column of Table 3. Therefore, we derive the set µ(G) from this
column, as required. Note that, in Table 3, Par(k) denotes the set of partitions
of k. We can find µ(PSL(n, 2)) for n = 10, 11, 12 and 13, in a similar manner.
The final result is tabulated in Table 4. �

Table 3. The order of elements of the simple group PSL(9, 2).

Type of c Conditions Number m

(fr
1 ) r ∈ Par(9) 30 16 = 24

(fr
2f1) r ∈ Par(4) 5 12 = 22.3
(fr
2f

s
1 ) r, s ∈ Par(3) 9 12 = 22.3

(fr
2f

s
1 ) r ∈ Par(2), s ∈ Par(5) 14 24 = 23.3

(f2f
r
1 ) r ∈ Par(7) 15 24 = 23.3

(fr
3 ) r ∈ Par(3) 10 28 = 22.7
(fr
3f2f1) r ∈ Par(2) 5 42 = 2.3.7
(fr
3f

s
1 ) r ∈ Par(2), s ∈ Par(3) 15 28 = 22.7

(f3f
r
2 ) r ∈ Par(3) 6 84 = 22.3.7

(f3f
r
2f

s
1 ) r, s ∈ Par(2) 8 42 = 2.3.7

(f3f2f
r
1 ) r ∈ Par(4) 10 84 = 22.3.7

(f3f
r
1 ) r ∈ Par(6) 22 56 = 23.7

(fr
4f1) r ∈ Par(2) 9 30 = 2.3.5
(f4f3f2) 6 105 = 3.5.7
(f4f3f

r
1 ) r ∈ Par(2) 12 210 = 2.3.5.7

(f4f
r
2f1) r ∈ Par(2) 6 30 = 2.3.5

(f4f2f
r
1 ) r ∈ Par(3) 9 60 = 22.3.5

(f4f
r
1 ) r ∈ Par(5) 21 120 = 23.3.5
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Type of c Conditions Number m
(f5f4) 18 465 = 3.5.31
(f5f3f1) 12 217=7.31
(f5f

r
2 ) r ∈ Par(2) 12 186 = 2.3.31

(f5f2f
r
1 ) r ∈ Par(2) 12 186 = 2.3.31

(f5f
r
1 ) r ∈ Par(4) 30 124 = 22.31

(f6f3) 18 63 = 32.7
(f6f2f1) 9 63 = 32.7
(f6f

r
1 ) r ∈ Par(3) 27 252 = 22.32.7

(f7f2) 18 381 = 3.127
(f7f

r
1 ) r ∈ Par(2) 36 254 = 2.127

(f8f1) 30 255 = 3.5.17
(f9) 56 511 = 7.73
Total 490

Table 4. The set of orders of elements of some projective special linear groups.

G µ(G)
PSL(9, 2) 16, 56, 120, 124, 186, 210, 217, 252, 254, 255, 381, 465, 511
PSL(10, 2) 16, 120, 168, 248, 252, 315, 372, 381, 420, 434, 465, 508, 510,

511, 651, 889, 930, 1023
PSL(11, 2) 48, 120, 248, 315, 372, 420, 504, 508, 762, 868, 889, 930,

1020, 1022, 1023, 1533, 1785, 1905, 1953, 2047
PSL(12, 2) 48, 112, 504, 630, 744, 840, 868, 1016, 1020, 1302, 1524, 1533,

1785, 1778, 1860, 1905, 1953, 2044, 2046, 2047, 2667, 3255,
3937, 4095

PSL(13, 2) 112, 240, 504, 744, 840, 1016, 1260, 1524, 1736, 1860, 2040,
2044, 2604, 3066, 3255, 3556, 3570, 3810, 3906, 3937, 4092,
4094, 4095, 6141, 7161, 7665, 7905, 8001, 8191

3. Recognizing PSL(13, 2) by its order elements

Our main result of this section is the characterization of PSL(13, 2) by its order
elements, in fact we prove the statement of the Main Theorem.
We begin with a well-known theorem due to Gruenberg and Kegel.

Gruenberg-Kegel Theorem (see [18, Theorem A]). If G is a finite group with
disconnected prime graph Γ(G) then one of the following holds.

(1) t(G) = 2 and G is either a Frobenius or a 2-Frobenius group.
(2) G is an extension of a π1(G)-group N by a group G1, where P E G1 E

Aut(P ), P is a non-abelian simple group and G1/P is a π1(G)-group.
Moreover t(P ) ≥ t(G) and for every i, 2 ≤ i ≤ t(G), there exists j,
2 ≤ j ≤ t(P ), such that πj(P ) = πi(G).
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By Lemma 2, we know that 26 /∈ µ(PSL(13, 2)). Now, in the following lemma
we prove that there is an outer automorphism of PSL(13, 2) of order 26, which
certainly proves that πe(PSL(13, 2)) $ πe(Aut(PSL(13, 2))).

Lemma 3. The group Aut(PSL(13, 2)) contains an element of order 26.

Proof: Let θ be an involuntary graph automorphism of G = PSL(13, 2). Using
the notation in [2] we have G+ = Aut(G) = G · 〈θ〉 = G ∪ θG. The conjugacy
classes of G+ which lie in θG are called negative classes and by Theorem 1 in [2],
G+ has only one negative conjugacy class of involutions with representative θI
and we have

|CG+(θI)| = 2
37(22 − 1)(24 − 1) · · · (212 − 1) = 237 · 38 · 53 · 72 · 11 · 13 · 17 · 31,

where I is the identity matrix. Now, we deduce that 2 · 13 ∈ πe(G
+). �

Lemma 4. If G is a simple group of Lie type such that

8191 ∈ π(G) ⊆ π(PSL(13, 2)),

then G is isomorphic to PSL(13, 2) or PSL(2, 8191).

Proof: Suppose G is a finite simple group of Lie type over a finite field of order
q = pn, where p is a prime and n is a natural number. Evidently p ∈ π(G), hence
p may be equal to 2, 3, 5, 7, 11, 13, 17, 23, 31, 73, 89, 127 or 8191. If p = 2, then it
is clear that the order of 2 modulo 8191 is 13, and there is no natural number m
such that 2m+1 ≡ 0(mod 8191). Thus if 2k −1 divides |G| and 8191 ∈ π(2k −1),
for some k, then k must be a multiple of 13. Therefore, from Table 6 in [1], the
only candidate for G under our assumptions is A12(2) ∼= PSL(13, 2). Suppose
p = 3. In this case the calculations show that the order of 3 modulo 8191 is
greater than 100. Now, if G is a simple group of Lie type in characteristic 3, the
order of which is divisible by 8191, from Table 6 in [1], no candidates for G will
arise. Similarly for p = 5, 7, 11, 13, 17, 23, 31, 73, 89, 127, there is no group with
the above property. If p = 8191, then q must be a power of 8191 and the only
possible group is G = A1(8191) ∼= PSL(2, 8191). The lemma is proved. �

Lemma 5. The special linear group PSL(13, 2) has a Frobenius subgroup of
shape 33 : 13.

Proof: Let F be the finite field with 33 elements. Let H be the cyclic subgroup
of F× with order 13. Then it is easy to verify that

G = {fa,b : F → F | fa,b(x) = ax+ b, a ∈ H, b ∈ F, ∀x ∈ F}

is a Frobenius group with complement H and kernel the additive group of F
which is an elementary abelian group of order 33. Therefore the existence of the
Frobenius group G of the shape 33 : 13 is established.
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But from [6, p. 68] the complex character table of the group G can be con-
structed. In particular, G has 13 irreducible complex characters of degree 1 and
two with degree 13, apparently the characters of degree 13 are faithful. But it
is well-known that the degrees of the irreducible characters of any finite group G
over a field whose characteristic does not divide the order of G are the same
as the degrees of ordinary irreducible characters of G. Therefore the Frobenius
group G = 33 : 13 has an irreducible character of degree 13 over a field with
characteristic 2 which is denoted by K. Therefore we have the faithful repre-
sentation G → GL(13, K) affording the character of degree 13. But the above
representation can be realized over a field with two elements. Therefore we have
a monomorphism G → GL(13, 2) proving the lemma. �

Now we are able to prove the Main Theorem of this section.

Proof of Main Theorem: We only need to prove the sufficiency part. Let
G be a finite group for which πe(G) = πe(PSL(13, 2)). Then t(G) = 2 and the
connected components of the prime graph of Γ(G) are:

π1(G) = {2, 3, 5, 7, 11, 13, 17, 23, 31, 73, 89, 127} and π2(G) = {8191}

(see [8]). We will prove that G is isomorphic to PSL(13, 2). First of all, from [11]
G is non-soluble and so G is not a 2-Frobenius group. On the other hand, since
2 ·13 /∈ πe(G), by Lemma 2.7 in [3] it follows that G cannot be a Frobenius group.
Now, we adhere to the notation of item (2) of the Gruenberg-Kegel theorem.

We invoke the Classification of Finite Simple Groups to eliminate all possibilities
for P (see [1]). Note that π2(G) = πj(P ) = {8191} for some j ≥ 2. We claim that
P ∼= PSL(13, 2). If P is an alternating group An, n ≥ 5, then since 8191 ∈ π(P ),
we deduce n ≥ 8191. But then 19 ∈ π(G), which is a contradiction. Also, P
cannot be a sporadic simple group, because otherwise the maximum prime in
P would be 71, whereas 8191 ∈ π(P ), which is a contradiction. Finally, we
assume that P is a simple group of Lie type. In this case, by Lemma 4, we
obtain P ∼= PSL(13, 2) or PSL(2, 8191). If P ∼= PSL(2, 8191), then we get 4096 ∈
πe(P )\πe(G), which is a contradiction. Therefore, P ∼= PSL(13, 2), as claimed.
Now, we show that N = 1. Assume the contrary. Without loss of generality

we may assume that N = Or(G) for some prime r ∈ π1(G). Moreover, we may
assume thatN is an elementary abelian subgroup and CG1(N) = N . LetK = 〈A〉

where A ∈ GL(12, 2) and o(A) = 212 − 1. Then

L =

{[

1 a1 a2 . . . a12
0 X

]

∣

∣ X ∈ K, ai ∈ GF (2), 1 ≤ i ≤ 12

}

≤ PSL(13, 2).

We put

S =

{[

1 a1 a2 . . . a12
0 I

]

∣

∣ ai ∈ GF (2), 1 ≤ i ≤ 12

}

,
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and

T =

{[

1 0
0 X

]

∣

∣ X ∈ K

}

.

Then we form the semi-direct product L = T ⋊S = 212 : (212−1) ≤ PSL(13, 2) ≤
G1 ≤ G/N . Now, if r 6= 2, then by Lemma 6 in [14], we get r · (212 − 1) ∈ πe(G),
which contradicts Lemma 2. Thus, N is a non-trivial 2-subgroup. In this case,
we have 33 : 13 < PSL(13, 2) by Lemma 5, and again by Lemma 6 in [14], we
obtain 26 ∈ πe(G), which contradicts Lemma 2. Therefore N = 1.
Finally, we claim that G ∼= PSL(13, 2). Because N = 1, we obtain

PSL(13, 2) ≤ G ≤ Aut(PSL(13, 2)).

Moreover, since |Out(PSL(13, 2))| = 2, it follows that G ∼= PSL(13, 2) or G ∼=
Aut(PSL(13, 2)). However, by Lemma 3 we have πe(G) $ πe(Aut(PSL(13, 2))),
which implies that G ∼= PSL(13, 2), as claimed. �
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