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On a weak form of uniform convergence

Jaroslav Fuka, Petr Holický

Dedicated to the memory of Professor Miroslav Katětov.

Abstract. The notion of ∆-convergence of a sequence of functions is stronger than point-
wise convergence and weaker than uniform convergence. It is inspired by the investi-
gation of ill-posed problems done by A.N. Tichonov. We answer a question posed by
M. Katětov around 1970 by showing that the only analytic metric spaces X for which
pointwise convergence of a sequence of continuous real valued functions to a (continu-
ous) limit function on X implies ∆-convergence are σ-compact spaces. We show that
the assumption of analyticity cannot be omitted.
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1. Introduction and main results

The investigation of ill-posed problems looks for properties that ensure some
kind of stability of numerical solutions to problems which are in principle nonsta-
ble. Inspired by the work of A.N. Tichonov (see [8]), M. Katětov introduced the
following notion of, in a sense, weakly uniform convergence on metric spaces.

Definition 1.1. Let fn, f , n ∈ N, be mappings of a metric space (X, ρ) to a met-
ric space (Y, τ). We say that fn ∆-converges to f if there is a sequence {δn}

∞
n=1 of

positive reals such that limn→∞ τ(fn(xn), f(x)) = 0, whenever ρ(xn, x) < δn for

n ∈ N. We write fn
∆
→ f in such a case. We say that a metric space (X, ρ) is a ∆-

space if every pointwise convergent sequence of continuous functions fn : X → R

to a continuous function f : X → R is ∆-convergent. We use the notation fn → f
for the pointwise convergence of fn’s to f .

It was an idea of M. Katětov that separable ∆-spaces might be possibly char-
acterized just by the properties of their topology. J. Fuka found an example of
a topologically complete separable metric space (X, ρ) which is not a ∆-space
around 1970. It is almost straightforward that σ-compact metric spaces are ∆-
spaces. These results were announced in [2] published in 1999. The example of
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J. Fuka lead M. Katětov to the hypothesis that σ-compactness should also be
a necessary topological property of ∆-spaces. We show that this conjecture is
essentially true. More exactly, among analytic spaces the only ∆-spaces are the
σ-compact ones. This is the main contribution of our Theorem 2.1. We also show
that it is consistent with ZFC that there are nonanalytic (possibly coanalytic)
separable ∆-spaces.
We begin with the proof of the above mentioned fact.

Proposition 1.2. Let (X, ρ) be a σ-compact metric space. Then for an arbitrary
metric space (Y, τ) the pointwise convergence fn → f of continuous mappings

fn : X → Y to a mapping f : X → Y implies fn
∆
→ f . In particular, (X, ρ) is a

∆-space.

Proof: We fix a sequence of compact subsets Xn of X such that Xn ⊂ Xn+1

for n ∈ N and
⋃

n∈N
Xn = X .

We consider a fixed n ∈ N for a while. Given an x ∈ Xn the continuity of fn

ensures the existence of a δn(x) > 0 such that τ(fn(x), fn(x
′)) < 1

n if ρ(x, x′) <

δn(x) and x′ ∈ X . By compactness of Xn there are kn ∈ N and a1, . . . , akn
∈ Xn

such that Xn ⊂
⋃kn

i=1 U(ai, δn(ai)/2), where U(a, δ) stands for the open ball in
(X, ρ) with center a and radius δ. Put δn = min{δn(ai)/2 : i = 1, . . . , kn}. We
consider now an arbitrary pair of points x ∈ Xn and x′ ∈ X with ρ(x, x′) < δn.
By the choice of a1, . . . , akn

there is an l ∈ {1, . . . , kn} such that ρ(al, x) <

δn(al)/2 which implies due to the choice of δn(x) that τ(fn(x), fn(al)) < 1
n .

Using the triangle inequality we also get that ρ(al, x
′) < δn(al)/2 + δn ≤ δn(al),

and the choice of δn(al) implies that τ(fn(al), fn(x
′)) < 1

n . Hence, using triangle
inequality once more, we have

(1) τ(fn(x), fn(x
′)) <

2

n
if x ∈ Xn, x′ ∈ X, and ρ(x, x′) < δn.

We are going to conclude the proof by showing that the previously found
sequence {δn}

∞
n=1 is the required sequence of positive numbers which ensures

the ∆-convergence of fn to f . Let x, xn ∈ X , n ∈ N, be such that ρ(x, xn) < δn.
There is an n0 ∈ N such that x ∈ Xn0 , and so, by the monotonicity of Xn’s,
x ∈ Xn for n ≥ n0. Given ε > 0 we find n1 ≥ n0 such that 2/n1 < ε/2 and
τ(fn(x), f(x)) < ε/2 for n ≥ n1. Thus, using (1), we have that τ(fn(xn), f(x)) ≤
τ(fn(xn), fn(x))+τ(fn(x), f(x)) < 2/n+ε/2 < ε for n ≥ n1. So fn(xn) converge
to f(x). �

2. Analytic spaces and ∆-convergence

In this section we show that the assertion of Proposition 1.2 may be reversed
within the class of analytic metric spaces. In this sense, we give the positive
answer to the above stated question of M. Katětov for analytic spaces. Let us



On a weak form of uniform convergence 639

point out that although the ∆-convergence on a metric space depends on the
metric, Theorem 2.1 shows that in fact being a ∆-space is a topological property
of analytic metric spaces.
A metrizable space is analytic if it is a continuous image of some Polish, i.e.,

separable and completely metrizable, space. In what follows we also use the
notation Kσ for the class of σ-compact spaces.

Theorem 2.1. Let (X, ρ) be an analytic space. Then the following are equiva-
lent.

(a) (X, ρ) is a ∆-space.
(b) If fn → f for some continuous mappings fn of (X, ρ) to a metric space

(Y, τ), then fn
∆
→ f .

(c) X is Kσ.

Obviously, (a) implies (b). Due to Proposition 1.2, (c) implies (a), and so it
is enough to show that any analytic metric space X which is not Kσ is not a
∆-space. We show it first for a particular space. Let us endow the Baire space
N

N with the only metric ρB for which ρB(x, y) = max{ 1k : k ∈ N, x(k) 6= y(k)}

if x, y ∈ N
N and x 6= y. This is a metric compatible with the topology τB of the

Baire space, i.e., the product topology of the countable product of discrete copies
of N = {1, 2, . . .}. Our proof proceeds in several steps. The example constructed
in the following lemma is the crucial part of it.

Lemma 2.2. The metric space (NN, ρB) is not a ∆-space.

Proof: Let x ∈ N
N be arbitrary. Define N(x) = min{n ∈ N : x(n) = 1} (N(x)

is not defined if the set {n ∈ N : x(n) = 1} is empty).

We will consider the elements of NN as composed of blocks, revealing their inner
structure as indicated below. For this reason, we put N0(x) = 0 and Nk(x) =
Nk−1(x) + x(Nk−1(x) + 1) for k ∈ N.

1st block
︷ ︸︸ ︷

x(1), . . . , x(N1(x)), . . . ,

nth block
︷ ︸︸ ︷

x(Nn−1(x) + 1), . . . , x(Nn(x)), . . .

Further, let K(x) be the smallest natural number k such that Nk(x) ≥ N(x).

Thus a typical sequence x ∈ N
N with N(x) ∈ N looks as follows

x(1) times
︷ ︸︸ ︷

x(1), . . . , x(N1(x)), . . . ,

x(NK(x)−1(x)+1) times
︷ ︸︸ ︷

x(NK(x)−1(x) + 1), . . . , x(N(x)) = 1, . . . , x(NK(x)(x)), . . .

Finally, we define fk(x) = 1 if K(x) is defined and k = K(x), or fk(x) = 0
otherwise.
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Obviously, limk→∞ fk(x) = 0 (as fk(x) 6= 0 for at most one k) for every

x ∈ N
N.

Fix n ∈ N and x ∈ N
N. If N(x) ∈ N is defined and y(1) = x(1), . . . , y(N(x)) =

x(N(x)) = 1, then Nk(x) = Nk(y) for k = 1, 2, . . . , K(x), so K(y) = K(x) and
fn(x) = fn(y). Thus fn is continuous at x. If x(k) 6= 1 for every k ∈ N and
y(1) = x(1), . . . , y(Nn(x)) = x(Nn(x)), then K(y) > n if defined and fn(y) = 0.
Thus fn is continuous at x again.
Let δn > 0 be arbitrary. We put N0 = 0 and choose Nn ∈ N so that Nn −

Nn−1 > 1 and 1/Nn < δn for n ∈ N. We define x ∈ N
N by x(Nk+1) = Nk+1−Nk

for k = 0, 1, . . . and x(N) = 2 otherwise. The sequence x has the form

N1 times
︷ ︸︸ ︷

N1, 2, . . . , 2, . . . ,

Nn−Nn−1 times
︷ ︸︸ ︷

x(Nn−1 + 1) = Nn − Nn−1, 2, . . . , xn(Nn) = 2, . . .

Similarly we define xn(Nk + 1) = Nk+1 − Nk for k = 0, . . . , n − 1, xn(Nn) = 1,

and xn(N) = 2 otherwise. Thus we have a sequence xn ∈ N
N of the form

N1 times
︷ ︸︸ ︷

N1, 2, . . . , 2, . . . ,

Nn−Nn−1 times
︷ ︸︸ ︷

xn(Nn−1 + 1) = Nn − Nn−1, 2, . . . , xn(Nn) = 1, . . .

Now N(xn) = Nn because of Nk − Nk−1 > 1 for k ∈ N. The equality Nn =
Nn(xn) follows from the definition of the last quantity. SoK(xn) = n, fn(xn) = 1,
and ρB(xn, x) = 1/Nn < δn. Thus the fn’s do not ∆-converge to the zero
function. �

The following easy observation shows that N
N is not a ∆-space if it is endowed

with any metric compatible with τB .

Lemma 2.3. Let ρ be a metric on the Baire space N
N compatible with the

product topology τB . Then there is a homeomorphism h of the Baire space
N

N onto itself such that ρ(h(x), h(y)) ≤ ρB(x, y) if x, y ∈ N
N are such that

ρB(x, y) ≤ 1
2 . Consequently, (N

N, ρ) is not a ∆-space.

Proof: It is easy to find partitions Pn = {Pn
k1,...,kn

: k1, . . . , kn ∈ N}, n ∈ N, of

N
N consisting of clopen pairwise disjoint sets Pn

k1,...,kn
so that the ρ-diameter of

each P ∈ Pn is at most
1

n+1 and so that Pn+1
k1,...,kn,kn+1

⊂ Pn
k1,...,kn

(we use the

existence of a basis consisting of clopen sets without isolated points and the separa-
bility of NN). Given an x ∈ N

N let h(x) be the only element of
⋂

n∈N
Pn

x(1),...,x(n).

Note that h({x ∈ N
N : x(1) = x0(1), . . . , x(n) = x0(n)}) = Pn

x0(1),...,x0(n)
for

x0(1), . . . , x0(n) ∈ N. Let 0 < ρB(x, y) = 1
n+1 ≤

1
2 . Then both h(x) and h(y) are

elements of the same Pn
x(1),...,x(n) ∈ Pn and so ρ(h(x), h(y)) ≤ 1

n+1 = ρB(x, y).
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Let fn, f be continuous functions on N
N witnessing the fact that (NN, ρB) is

not a ∆-space. Considering fn−f and the zero function, we may suppose without
loss of generality that f is the zero function. Thus we have fn → 0 and for every
sequence of δn > 0 there are xn, x ∈ N

N with ρB(xn, x) < δn such that the
statement limn→∞ fn(xn) = 0 is false.
Put gn = fn◦h−1. Consider an arbitrary sequence of positive real numbers δn.

Let 0 < δ′n ≤ δn be such that δ′n ≤ 1
2 . By our assumptions there are xn, x ∈ N

N

such that ρB(xn, x) < δ′n and the statement limn→∞ fn(xn) = 0 is false. Now,
for yn = h(xn) and y = h(x) we have ρ(yn, y) ≤ ρB(xn, x) < δ′n ≤ δn and the
statement limn→∞ gn(yn) = 0 is false. �

We are going to use a classical result of Hurewicz to reduce the proof of The-
orem 2.1 to the preceding lemma. We need one more simple observation.

Lemma 2.4. If (F, ρ) is a closed subspace of a ∆-space (X, ρ), then (F, ρ) is also
a ∆-space.

Proof: As in the proof of Lemma 2.3 we may suppose that there are continuous
functions fn : F → R such that limn→∞ fn(x) = 0 for all x ∈ F but the sequence
{fn}

∞
n=1 does not ∆-converge to the zero function. Since X is normal we may find

continuous functions gn : X → R such that gn = fn on F and such that gn(x) = 0

if distρ(x, F ) ≥ 1
n . Obviously, the functions gn converge to zero pointwise and

the convergence is not the ∆-convergence. �

We now conclude the proof of Theorem 2.1. Let (X, ρ) be an analytic metric
space which is not Kσ. So it is not Fσ in its metrizable compactification and
it contains a closed subspace F which is homeomorphic to the Baire space N

N

(see, e.g., [5, Theorem 21.18]). The space (F, ρ) is not a ∆-space by Lemma 2.3.
Finally, (X, ρ) is not a ∆-space by Lemma 2.4.

3. Nonanalytic spaces and ∆-convergence

Remark 3.1. If A ⊂ [0, 1] is any Gδ set that is not Kσ, and B ⊂ [2, 3] is
arbitrary, then the space A ∪ B endowed with the Euclidean metric ρE is not
a ∆-space. It is easy to observe that a suitable choice of B shows that such a
set can be coanalytic non-Borel, nonmeasurable, etc. In the following proposition
we show that, at least under ZFC with additional axioms, there are nonanalytic
∆-spaces.

A subset B of N
N is bounded if there is an x ∈ N

N such that the set {n ∈ N :
x(n) < y(n)} is finite for every y ∈ B. The smallest cardinal of an unbounded

subset of N
N is denoted by b.

Proposition 3.2. (a) There is a model of ZFC which ensures the existence of
a coanalytic subset C of the real line which is not analytic and (C, ρE) is
a ∆-space.
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(b) There is a model of ZFC which ensures the existence of a subset C of the
real line which is not Lebesgue measurable and (C, ρE) is a ∆-space.

Moreover, in both cases if fn → f on C for continuous mappings fn : X →

(Y, τ), then fn
∆
→ f .

Proof: To prove (a) we consider a model of ZFC in which Martin’s axiom holds
together with the negation of continuum hypothesis obtained by a ccc forcing
in [7]. By [3, Corollary on page 178] ccc forcing preserves cardinals. So, taking

V = L as the ground model, we may suppose that moreover ωL
1 = ω1 in the model

of our consideration. Consequently, by [6, Theorem 3.2], we have that every set

C ⊂ R of cardinality ℵ1 is coanalytic. At the same time, as ℵ1 < 2ℵ0 , the set
C is not analytic (it follows, e.g., from [5, Theorem 29.1]). Let a sequence of
continuous mappings fn : X → Y converge pointwise to f on C. For every x ∈ C
we may find a δn(x) such that τ(fn(y), fn(x)) < 1

n whenever |y − x| < δn(x). We

may find natural numbers kn(x) such that
1

kn(x)
< δn(x) for every x ∈ C and

every n ∈ N. The set {{kn(x)}
∞
n=1 : x ∈ C} is a bounded subset of NN in the sense

recalled above as b > ℵ1 by [4, Theorem 19.22], i.e., there is a {k(n)}
∞
n=1 ∈ N

N

with the sets {n ∈ N : k(n) < kn(x)}, x ∈ C, finite. Put δn =
1

k(n)
. Given a

sequence of xn’s in C such that |xn − x| < δn for some x ∈ C, we have |xn −x| <

δn =
1

k(n)
≤ 1

kn(x)
< δn(x) for sufficiently large n’s. As limn→∞ fn(x) = f(x)

and τ(fn(xn), fn(x)) < 1
n we have that limn→∞ fn(xn) = f(x). Thus (C, ρE) is

a ∆-space.
According to [1, table on page 5] there is a model of ZFC in which b = 2ℵ0 and

there is a set C ⊂ R of cardinality less than continuum which is not Lebesgue null.
Thus C is not Lebesgue measurable, since otherwise it would contain a Borel set
of positive Lebesgue measure and therefore its cardinality would be that of the
continuum (we may use, e.g., [5, Theorem 29.1] again). This gives (b) using the
same argument as in the proof of (a). �

Acknowledgment. We would like to thank Ondřej Kalenda for his help in find-
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401–423.

[2] Fuka J., On the δ-convergence, Acta Universitatis Purkynianae 42, Czech-Polish Mathe-
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