The family of *I*-density type topologies

Grażyna Horbaczewska

Abstract. We investigate a family of topologies introduced similarly as the I-density topology. In particular, we compare these topologies with respect to inclusion and we look for conditions under which these topologies are identical.

Keywords: I-density point, family of topologies Classification: 54A10

We use here a standard notation. Let \mathbb{N} be the set of all positive integers, \mathcal{B} the family of subsets of the real line having the Baire property and I the σ -ideal of meager sets. For every set A and $x, t \in \mathbb{R}$, we set $A + x = \{a + x; a \in A\}$ and $t \cdot A = \{t \cdot a; a \in A\}$, where χ_A is the characteristic function of A and A' the complement of A.

Let S be the family of all nondecreasing and unbounded sequences of positive real numbers. Every sequence $\{s_n\}_{n \in \mathbb{N}} \in S$ is denoted by $\langle s \rangle$.

Let us recall the notion of an *I*-density point of a set $A \in \mathcal{B}$ ([PWW1]). The point 0 is an *I*-density point of a set $A \in \mathcal{B}$ if for every sequence $\{t_n\}_{n \in \mathbb{N}} \in S$ there exists a subsequence $\{t_{n_p}\}_{p \in \mathbb{N}}$ such that $\chi_{(t_{n_p} \cdot A) \cap [-1,1]} \xrightarrow{\longrightarrow} 1$ *I*-a.e. on [-1,1].

Based on the observation that starting from another fixed sequence different results can be obtained, the notion of an I-density point connected with a fixed sequence from the family S has been introduced in [HH].

Definition 1. Let $\langle s \rangle \in S$. The point 0 is an $\langle s \rangle$ -*I*-density point of a set $A \in \mathcal{B}$ if for every subsequence $\{s_{n_m}\}_{m \in \mathbb{N}} \subset \langle s \rangle$ there exists a subsequence $\{s_{n_{m_p}}\}_{p \in \mathbb{N}}$ such that $\chi_{(s_{n_{m_p}} \cdot A) \cap [-1,1]} \xrightarrow[n \to \infty]{} 1$ *I*-a.e. on [-1,1].

A point $x \in \mathbb{R}$ is an $\langle s \rangle$ -*I*-density point of *A* if 0 is an $\langle s \rangle$ -*I*-density point of the set A - x.

A point $x \in \mathbb{R}$ is an $\langle s \rangle$ -*I*-dispersion point of *A* if *x* is an $\langle s \rangle$ -*I*-density point of *A'*.

We can define one-sided $\langle s \rangle$ -*I*-density points in the natural way. For any $\langle s \rangle \in S$ and $A \in \mathcal{B}$, putting

 $\Phi_{\langle s\rangle I}(A)=\{x\in\mathbb{R};x\;\;\text{is an}\;\langle s\rangle\text{-}I\text{-density point of}\;A\}$

we get that $\Phi_{\langle s \rangle I} : \mathcal{B} \to \mathcal{B}$ is a lower density operator (see [HH]).

Applying this operator we define for every fixed sequence $\langle s \rangle$ the topology $\mathcal{T}_{\langle s \rangle I} = \{A \in \mathcal{B}; A \subset \Phi_{\langle s \rangle I}(A)\}$, which fulfils the inclusion: $\mathcal{T}_I \subset \mathcal{T}_{\langle s \rangle I}$, where \mathcal{T}_I denotes the *I*-density topology ([HH]).

The main aim of this paper is to compare topologies connected with different sequences.

First of all, if $\langle s \rangle$ is the sequence of all natural numbers then $\mathcal{T}_{\langle s \rangle I} = \mathcal{T}_{I}$ ([PWW1]).

Now we state the main results.

Let $S_0 = \{ \langle s \rangle \in \mathcal{S} : \liminf_{n \to \infty} \frac{s_n}{s_{n+1}} = 0 \}.$

Theorem 1. Let $\langle s \rangle \in S$. Then $\mathcal{T}_{\langle s \rangle I} = \mathcal{T}_I$ if and only if $\langle s \rangle \in S \setminus S_0$.

Theorem 2. Let $\langle s \rangle, \langle t \rangle \in S_0$ and $\lim_{m \to \infty} \frac{s_m}{t_m} = \alpha \in (0, +\infty)$. Then $\mathcal{T}_{\langle s \rangle I} = \mathcal{T}_{\langle t \rangle I}$ if and only if $\alpha = 1$.

Before presenting the proofs we need some properties of our topologies.

Properties.

- (1) Let $\langle s \rangle, \langle t \rangle \in S$. Then $\mathcal{T}_{\langle s \rangle I} = \mathcal{T}_{\langle t \rangle I}$ if and only if $\Phi_{\langle s \rangle I}(A) = \Phi_{\langle t \rangle I}(A)$ for every $A \in \mathcal{B}$.
- (2) Let $\langle s \rangle \in S$ and $1 \leq \alpha < \infty$. Then $\mathcal{T}_{\langle s \rangle I} \subset \mathcal{T}_{\langle \alpha s \rangle I}$, where $\langle \alpha s \rangle = \{\alpha s_n\}_{n \in \mathbb{N}}$.
- (3) Let $\langle s \rangle \in S$. Then for an arbitrary subsequence $\langle s' \rangle \subset \langle s \rangle$ we have $\mathcal{T}_{\langle s \rangle I} \subset \mathcal{T}_{\langle s' \rangle I}$.
- (4) Let $\langle s \rangle \in S$. If for any subsequence of the sequence of all natural numbers $\langle n' \rangle \subset \{n\}_{n \in \mathbb{N}}$ there exists a subsequence $\langle n'' \rangle \subset \langle n' \rangle$ such that $\mathcal{T}_{\langle s \rangle I} \subset \mathcal{T}_{\langle n'' \rangle I}$, then $\mathcal{T}_{\langle s \rangle I} \subset \mathcal{T}_{I}$.
- (5) $\forall \langle s \rangle \in S \ \forall x \in \mathbb{R} \ \forall A \in \mathcal{B} \ (A \in \mathcal{T}_{\langle s \rangle I} \Longrightarrow A + x \in \mathcal{T}_{\langle s \rangle I}).$
- (6) $\forall \langle s \rangle \in S \ \forall A \in \mathcal{B} \ (A \in \mathcal{T}_{\langle s \rangle I} \implies -A \in \mathcal{T}_{\langle s \rangle I}).$
- (7) $\forall \langle s \rangle \in S \ \forall |m| \ge 1 \ \forall A \in \mathcal{B} \ (A \in \mathcal{T}_{\langle s \rangle I} \implies m \cdot A \in \mathcal{T}_{\langle s \rangle I}).$
- (8) $\forall \langle s \rangle \in S_0 \ \exists A \in \mathcal{B} \ \forall |m| < 1 \ (A \in \mathcal{T}_{\langle s \rangle I} \land m \cdot A \notin \mathcal{T}_{\langle s \rangle I}).$

The first four are simple consequences of the definitions and properties of lower densities. We want only to show one implication from (1) (the inverse is obvious).

PROOF OF (1): Let $\langle s \rangle, \langle t \rangle \in S$. We assume that $\mathcal{T}_{\langle s \rangle I} = \mathcal{T}_{\langle t \rangle I}$ and there exists a set $A \in \mathcal{B}$ such that $\Phi_{\langle s \rangle I}(A) \neq \Phi_{\langle t \rangle I}(A)$, for example $\Phi_{\langle s \rangle I}(A) \not\subseteq \Phi_{\langle t \rangle I}(A)$. Since $\Phi_{\langle t \rangle I}(A) \in \mathcal{T}_{\langle t \rangle I} = \mathcal{T}_{\langle s \rangle I}$, by definition of $\mathcal{T}_{\langle s \rangle I}$ we have $\Phi_{\langle t \rangle I}(A) \subset \Phi_{\langle s \rangle I}(\Phi_{\langle t \rangle I}(A))$ which is equal to $\Phi_{\langle s \rangle I}(A)$ because $\Phi_{\langle t \rangle I}(A)$ is equivalent to A (the Lebesgue Density Theorem works here), so we get a contradiction.

The next four properties have been already published ([HH], [H]). A justification of (5)–(7) is again easy so we can omit it. We want only to sketch the proof of the last one. **PROOF OF** (8): Let $\langle s \rangle \in S_0$. Then there exists a subsequence $\{s_{n_k}\}_{k \in \mathbb{N}}$ of $\langle s \rangle$ such that $\lim_{k\to\infty} \frac{s_{n_k}}{s_{n_k+1}} = 0.$

Put $X = \bigcup_{j=1}^{\infty} \left[\frac{1}{s_{n_j+1}}, \frac{1}{\sqrt{s_{n_j} \cdot s_{n_j+1}}}\right]$. Then 0 is an $\langle s \rangle$ -*I*-dispersion point of a set X. Defining $Y = -X \cup X$ we have $A = \{0\} \cup (\mathbb{R} \setminus Y) \in \mathcal{T}_{\langle s \rangle I}$.

For m = 0 it is obvious that $m \cdot A \notin \mathcal{T}_{\langle s \rangle I}$.

Now we want to show that 0 is not a right $\langle s \rangle$ -*I*-dispersion point of the set $m \cdot X$ for $m \in (-1,1) \setminus \{0\}$. There is no loss of generality in assuming that $m \in (0,1)$. We can find $k_0 \in \mathbb{N}$ such that for any $k > k_0$ we have $\sqrt{\frac{s_{n_k}}{s_{n_k+1}}} < m$. Then 0 is not a right $\langle s \rangle$ -*I*-dispersion point of the set $m \cdot \bigcup_{j=k_0}^{\infty} [\frac{1}{s_{n_j+1}}, \frac{1}{\sqrt{s_{n_j} \cdot s_{n_j+1}}}]$, so neither of the set $m \cdot X$. Hence $m \cdot A = \{0\} \cup (\mathbb{R} \setminus m \cdot Y) \notin \mathcal{T}_{\langle s \rangle I}$. \square

For details see [HH].

PROOF OF THEOREM 1: Sufficiency. Since $\mathcal{T}_I \subset \mathcal{T}_{\langle s \rangle I}$ for every sequence $\langle s \rangle \in \mathcal{S}$, it is enough to show the inclusion: $\mathcal{T}_{\langle s \rangle I} \subset \mathcal{T}_{I}$.

Let $\langle s \rangle \in S \setminus S_0$. We denote $\liminf_{k \to \infty} \frac{s_k}{s_{k+1}}$ by λ , so $\lambda > 0$.

Let $\langle n' \rangle = \{n_j\}_{j \in \mathbb{N}}$ denote an arbitrary sequence of natural numbers, $\langle n' \rangle \in S$. Then there exists $j_0 \in \mathbb{N}$ such that for each $j \geq j_0, j \in \mathbb{N}$, there exists $k_j \in \mathbb{N}$ which fulfils the condition $s_{k_i} \leq n_j \leq s_{k_i+1}$. There is no loss of generality in assuming that $j_0 = 1$. Now we choose a subsequence $\{n_{j_l}\}_{l \in \mathbb{N}}$ from the sequence $\{n_j\}_{j\in\mathbb{N}}$ such that each interval $[s_{k_{j_l}}, s_{k_{j_l}+1}]$ contains only one term of the sequence $\{n_{j_l}\}_{l\in\mathbb{N}}$. Since $s_{k_{j_l}} \leq n_{j_l} \leq s_{k_j+1}$ for each $l\in\mathbb{N}$, we have

$$1 \le \frac{n_{j_l}}{s_{k_{j_l}}} \le \frac{s_{k_{j_l}+1}}{s_{k_{j_l}}}$$

and

$$\begin{split} 1 \leq \limsup_{l \to \infty} \frac{n_{j_l}}{s_{k_{j_l}}} \leq \limsup_{l \to \infty} \frac{s_{k_{j_l}+1}}{s_{k_{j_l}}} \\ &= 1/\liminf_{l \to \infty} \frac{s_{k_{j_l}}}{s_{k_{j_l}+1}} \leq 1/\liminf_{k \to \infty} \frac{s_k}{s_{k+1}} = \frac{1}{\lambda} < +\infty. \end{split}$$

Therefore there exists a subsequence $\{\frac{n_{j_{l_p}}}{s_{k_{j_{l_n}}}}\}_{p \in \mathbb{N}} \subset \{\frac{n_{j_l}}{s_{k_{j_l}}}\}_{l \in \mathbb{N}}$ tending to α , where $1 \leq \alpha < \infty$. Then $\lim_{p \to +\infty} \frac{n_{j_{l_p}}}{\alpha \cdot s_{k_{j_{l_p}}}} = 1$. Using the notation:

$$\langle n''\rangle=\{n_{j_{l_p}}\}_{p\in\mathbb{N}}\quad\text{and}\quad \langle s''\rangle=\{s_{k_{j_{l_p}}}\}_{p\in\mathbb{N}}$$

we obtain (by Theorem 2, which will be proved later) the equality of topologies

$$\mathcal{T}_{\langle n^{\prime\prime}\rangle I} = \mathcal{T}_{\langle \alpha s^{\prime\prime}\rangle I}.$$

Furthermore, by Properties (2) and (3), we have

$$\mathcal{T}_{\langle s \rangle I} \subset \mathcal{T}_{\langle s' \rangle I} \subset \mathcal{T}_{\langle s'' \rangle I} \subset \mathcal{T}_{\langle \alpha s' \rangle I} = \mathcal{T}_{\langle n'' \rangle I}.$$

 \square

Property (4) now yields $\mathcal{T}_{\langle s \rangle I} \subset \mathcal{T}_I$ which is the desired conclusion.

Necessity of the condition $\langle s \rangle \in S \setminus S_0$ has been already stated in [HH]. We repeat here the proof. We want to show that if $\langle s \rangle \in S_0$ then $\mathcal{T}_{\langle s \rangle I} \nsubseteq \mathcal{T}_I$.

From our assumption there exists a subsequence $\{s_{n_k}\}_{k\in\mathbb{N}}\subset \{s_n\}_{n\in\mathbb{N}}$ such that $\lim_{k\to\infty}\frac{s_{n_k}}{s_{n_k+1}}=0$. We can assume that the sequence $\{\frac{s_{n_k}}{s_{n_k+1}}\}_{k\in\mathbb{N}}$ is decreasing (if necessary we can choose a subsequence).

Let

$$A = \bigcup_{j=1}^{\infty} \left[\frac{1}{s_{n_j+1}}, \frac{1}{\sqrt{s_{n_j} \cdot s_{n_j+1}}} \right].$$

We will show that 0 is a right $\langle s \rangle$ -*I*-dispersion point of the set *A*, it means that for each subsequence $\{s_{n_m}\}_{m \in \mathbb{N}} \subset \{s_n\}_{n \in \mathbb{N}}$ there exists a subsequence $\{s_{n_{m_p}}\}_{p \in \mathbb{N}}$ such that $\chi_{(s_{n_{m_p}} \cdot A) \cap [0,1]} \xrightarrow[p \to \infty]{} 0$ *I*-a.e. on [0,1]. Let $j(l) = \min\{j \in \mathbb{N} : l < n_j+1\}$. We observe that

$$\begin{split} & \left(s_{n_m} \cdot \bigcup_{j=1}^{\infty} \left[\frac{1}{s_{n_j+1}}, \frac{1}{\sqrt{s_{n_n} \cdot s_{n_j+1}}}\right]\right) \cap [0, 1] \\ &= \left(s_{n_m} \cdot \bigcup_{j=j(n_m)}^{\infty} \left[\frac{1}{s_{n_j+1}}, \frac{1}{\sqrt{s_{n_j} \cdot s_{n_j+1}}}\right]\right) \cap [0, 1] \\ &\subset \left(s_{n_m} \cdot \left[0, \frac{1}{\sqrt{s_{n_{j(n_m)} \cdot s_{n_{j(n_m)}+1}}}\right]\right) \cap [0, 1] \\ &= \left[0, \frac{s_{n_m}}{\sqrt{s_{n_{j(n_m)} \cdot s_{n_{j(n_m)}+1}}}\right] \cap [0, 1] \subset \left[0, \frac{s_{n_{j(n_m)} + 1}}{\sqrt{s_{n_{j(n_m)}+1}}}\right] \cap [0, 1] \\ &= \left[0, \sqrt{\frac{s_{n_{j(n_m)}}}{s_{n_{j(n_m)+1}}}}\right] \cap [0, 1]. \end{split}$$

Since $\limsup_m \left[0, \sqrt{\frac{s_{n_j(n_m)}}{s_{n_j(n_m)+1}}}\right] = \{0\}$, we have $\chi_{(s_{n_m} \cdot A) \cap [0,1]} \xrightarrow[m \to \infty]{} 0$ *I*-a.e. on [0,1], so 0 is an $\langle s \rangle$ -*I*-dispersion point of the set $\widetilde{A} = -A \cup A$.

738

Let $B = (0, \frac{1}{s_{n_1}}) \setminus A$ and $\widetilde{B} = -B \cup B \cup \{0\}$. Then $\widetilde{B} \in \mathcal{T}_{\langle s \rangle I}$. Of course $B = \bigcup_{j=1}^{\infty} \left(\frac{1}{\sqrt{s_{n_j} \cdot s_{n_j+1}}}, \frac{1}{s_{n_j}}\right)$.

We will show that 0 is not a right *I*-density point of the set *B*, it means that there exists a sequence $\{t_k\}_{k\in\mathbb{N}} \in S$ such that for each subsequence $\{t_{k_p}\}_{p\in\mathbb{N}} \subset$ $\{t_k\}_{k\in\mathbb{N}}$, the convergence $\chi_{(t_{k_p}\cdot B)\cap[0,1]} \xrightarrow{p\to\infty} 1$ *I* a.e. does not hold. Let $t_k = \sqrt{s_{n_k} \cdot s_{n_k+1}}$ for $k \in \mathbb{N}$. Observe that

$$\begin{aligned} (t_k \cdot B) \cap [0,1] &= \left(\sqrt{s_{n_k} \cdot s_{n_k+1}} \cdot \bigcup_{j=1}^{\infty} \left(\frac{1}{\sqrt{s_{n_j} \cdot s_{n_j+1}}}, \frac{1}{s_{n_j}}\right)\right) \cap [0,1] \\ &= \left(\sqrt{s_{n_k} \cdot s_{n_k+1}} \cdot \bigcup_{j=k+1}^{\infty} \left(\frac{1}{\sqrt{s_{n_j} \cdot s_{n_j+1}}}, \frac{1}{s_{n_j}}\right)\right) \cap [0,1] \\ &\subset \left(\sqrt{s_{n_k} \cdot s_{n_k+1}} \cdot \left[0, \frac{1}{s_{n_{k+1}}}\right]\right) \cap [0,1] \subset \left[0, \frac{\sqrt{s_{n_k} \cdot s_{n_k+1}}}{s_{n_k+1}}\right] \cap [0,1] \\ &= \left[0, \sqrt{\frac{s_{n_k}}{s_{n_k+1}}}\right] \cap [0,1]. \end{aligned}$$

Since $\limsup_k [0, \sqrt{\frac{s_{n_k}}{s_{n_k+1}}}] = \{0\}$, we have $\chi_{t_k \cdot B \cap [0,1]}(x) \xrightarrow[k \to \infty]{} 0$ for $x \in (0,1]$. Therefore $\widetilde{B} \notin \mathcal{T}_I$.

Corollary 1. For every sequence $\langle s \rangle \in S \setminus S_0$ and for every sequence $\langle t \rangle \in S_0$, $\mathcal{T}_{\langle s \rangle I} \subsetneq \mathcal{T}_{\langle t \rangle I}$.

Now we can add one more property.

Corollary 2. For every sequence $\langle s \rangle \in S \setminus S_0$ and for every $m \in \mathbb{R} \setminus \{0\}$, if $A \in \mathcal{T}_{\langle s \rangle I}$ then $m \cdot A \in \mathcal{T}_{\langle s \rangle I}$.

For the proof of Theorem 2 we need two lemmas.

Lemma 1 ([PWW2]). Let A be an open set and let the sequences $\{i_n\}_{n\in\mathbb{N}}$ and $\{j_n\}_{n\in\mathbb{N}}$ have the following properties: $i_n > 0$, $j_n > 0$ for each $n \in \mathbb{N}$, $\lim_{n\to\infty} i_n = +\infty$, $\lim_{n\to\infty} j_n = +\infty$, $\lim_{n\to\infty} \frac{j_n}{i_n} = 1$ and let $\chi_{(i_n \cdot A)\cap[-1,1]} \xrightarrow{\longrightarrow} 0$ I-a.e. on [-1,1]. Then also $\chi_{(j_n \cdot A)\cap[-1,1]} \xrightarrow{\longrightarrow} 0$ I-a.e. on [-1,1].

In Lemma 2 we state an equivalent condition for being an $\langle s \rangle$ -*I*-dispersion point of an open set. The idea was motivated by [L].

Lemma 2. Let $\langle s \rangle \in S$. The point 0 is a right-hand $\langle s \rangle$ -*I*-dispersion point of an open set *G* if and only if, for every natural number *n*, there exist a natural

G. Horbaczewska

number k and a real number $\delta > 0$ such that for each $m \in \mathbb{N}$ such that $\frac{1}{s_m} < \delta$ and for each $i \in \{1, \ldots, n\}$, there exists a natural number $j \in \{1, \ldots, k\}$ such that

$$G \cap \left(\left(\frac{i-1}{n} + \frac{j-1}{nk} \right) \cdot \frac{1}{s_m}, \quad \left(\frac{i-1}{n} + \frac{j}{nk} \right) \cdot \frac{1}{s_m} \right) = \emptyset.$$

PROOF: We shall first prove the necessity for $\langle s \rangle$ -*I*-dispersion. Assume that 0 is a right-hand $\langle s \rangle$ -*I*-dispersion point of the open set *G* and suppose the assertion of the lemma is false. Then we could find a natural number n_0 such that, for each $k \in \mathbb{N}$ and $\delta_k = \frac{1}{k}$, there exist $m_k \in \mathbb{N}$ such that $k < s_{m_k}$ and $i_k \in \{1, \ldots, n_0\}$ such that, for each $j \in \{1, \ldots, k\}$

$$G \cap \left(\left(\frac{i_k - 1}{n_0} + \frac{j - 1}{n_0 k} \right) \cdot \frac{1}{s_{m_k}}, \quad \left(\frac{i_k - 1}{n_0} + \frac{j}{n_0 k} \right) \cdot \frac{1}{s_{m_k}} \right) \neq \emptyset$$

Since i_k is chosen from a finite set, there exists a subsequence $\{s_{m_{k_l}}\}_{l\in\mathbb{N}} \subset \{s_{m_k}\}_{k\in\mathbb{N}}$ such that the number i_{k_l} is common for all l. For simplicity we denote it by i_0 and the chosen subsequence by $\{s_{m_k}\}_{k\in\mathbb{N}}$. Let $\{s_{m_{k_z}}\}_{z\in\mathbb{N}}$ be any subsequence of $\{s_{m_k}\}_{k\in\mathbb{N}}$. For every natural number $p\in\mathbb{N}$ the set $\bigcup_{z=p}^{\infty}((s_{m_{k_z}}\cdot G)\cap (\frac{i_0-1}{n_0},\frac{i_0}{n_0}))$ is open and dense on $[\frac{i_0-1}{n_0},\frac{i_0}{n_0}]$, so

$$\bigcap_{p=1}^{\infty}\bigcup_{z=p}^{\infty}\left(\left(s_{m_{k_{z}}}\cdot G\right)\cap\left[\frac{i_{0}-1}{n_{0}},\frac{i_{0}}{n_{0}}\right]\right)$$

is residual on $\left[\frac{i_0-1}{n_0}, \frac{i_0}{n_0}\right]$. Consequently

$$\limsup_{z} \left(\left(s_{m_{k_{z}}} \cdot G \right) \cap [-1,1] \right) \supset \bigcap_{p=1}^{\infty} \bigcup_{z=p}^{\infty} \left(\left(s_{m_{k_{z}}} \cdot G \right) \cap \left[\frac{i_{0}-1}{n_{0}}, \frac{i_{0}}{n_{0}} \right] \right) \notin I.$$

Hence there exists a sequence $\{s_{m_k}\}_{k\in\mathbb{N}}$ such that for each subsequence $\{s_{m_{k_z}}\}_{z\in\mathbb{N}} \subset \{s_{m_k}\}_{k\in\mathbb{N}}$, $\limsup_{z\in(s_{m_{k_z}}\cdot G)\cap[-1,1]$) is a not a meager set. This contradicts our assumption that 0 is an $\langle s \rangle$ -*I*-dispersion point of *G*.

Now assume that the condition from our lemma is true and our goal is to show that 0 is a right-hand $\langle s \rangle$ -*I*-dispersion point of *G*.

Let $\{s_{m_p}\}_{p\in\mathbb{N}}$ be an arbitrary subsequence of $\langle s \rangle$. The subsequence of $\{s_{m_p}\}_{p\in\mathbb{N}}$ will be defined by induction. For n = 1 there exist $k_1 \in \mathbb{N}$ and $\delta_1 > 0$ such that for each $m \in \mathbb{N}$ for which $\frac{1}{s_m} < \delta_1$ and for i = 1 there exists $j = j(s_m, 1) \in \{1, \ldots, k_1\}$ such that

$$G \cap \left(\frac{j-1}{k_1} \cdot \frac{1}{s_m}, \frac{j}{k_1} \cdot \frac{1}{s_m}\right) = \emptyset.$$

Let $\{s_{m_{\alpha_1(z)}}\}_{z\in\mathbb{N}}$ be a subsequence of $\{s_{m_p}\}_{p\in\mathbb{N}}$ such that for each $z\in\mathbb{N}$ we have $\frac{1}{s_{m_{\alpha_1(z)}}} < \delta_1$ and the number $j(s_{m_{\alpha_1(z)}}, 1) = j_{11}$ is common for all $z\in\mathbb{N}$. Put $s_{m_{p_1}} = s_{m_{\alpha_1(1)}}$.

Assume the sequence $\{s_{m_{\alpha_{n-1}(z)}}\}_{z\in\mathbb{N}}$ and $s_{m_{p_{n-1}}} = s_{m_{\alpha_{n-1}(1)}}$ to be defined. For a natural number n there exist k_n and $\delta_n > 0$ such that for each $m \in \mathbb{N}$ for which $\frac{1}{s_m} < \delta_n$ and for $i \in \{1 \dots n\}$ there exists $j = j(s_m, i) \in \{1, \dots, k_n\}$ such that

$$G \cap \left(\left(\frac{i-1}{n} + \frac{j-1}{n \cdot k_n} \right) \cdot \frac{1}{s_m}, \quad \left(\frac{i-1}{n} + \frac{j}{n \cdot k_n} \right) \cdot \frac{1}{s_m} \right) = \emptyset.$$

Let $\{s_{m_{\alpha_n(z)}}\}_{z\in\mathbb{N}}$ be a subsequence of $\{s_{m_{\alpha_{n-1}(z)}}\}_{z\in\mathbb{N}}$ such that for each $z\in\mathbb{N}$ we have $\frac{1}{s_{m_{\alpha_n(z)}}} < \delta_n$ and $j = (s_{m_{\alpha_n(z)}}, 1) = j_{n1,\dots,j} (s_{m_{\alpha_n(z)}}, n) = j_{nn}$ are common for all $z\in\mathbb{N}$. Put $s_{m_{p_n}} = s_{m_{\alpha_n(1)}}$. We proceed by induction.

The task is now to show that $\{x : \chi_{(s_{m_{p_n}} \cdot G) \cap [0,1]} \neq 0\} \in I$. Let $(a, b) \subset [0,1]$. Then there exist a natural number n_0 and $i_0 \in \{1, \ldots, n_0\}$ such that $[\frac{i_0-1}{n_0}, \frac{i_0}{n_0}] \subset (a, b)$.

We shall consider a sequence $\{s_{m_{\alpha_{n_0}(z)}}\}_{z\in\mathbb{N}}$ and a natural number k_{n_0} corresponding to n_0 . Then for each $n \geq n_0$ $s_{m_{p_n}} \in \{s_{m_{\alpha_{n_0}(z)}}\}_{z\in\mathbb{N}}$. Hence for each $n \geq n_0$ there exists $j = j_{n_0}i_0$ such that

$$G \cap \left(\left(\frac{i_0 - 1}{n_0}, \frac{j - 1}{n_0 k_{n_0}} \right) \cdot \frac{1}{s_{m_{p_n}}}, \left(\frac{i_0 - 1}{n_0} + \frac{j}{n_0 k_{n_0}} \right) \cdot \frac{1}{s_{m_{p_n}}} \right) = \emptyset.$$

Let

$$(c,d) = \left(\frac{i_0 - 1}{n_0} + \frac{j - 1}{n_0 k_{n_0}}, \frac{i_0 - 1}{n_0} + \frac{j}{n_0 k_{n_0}}\right)$$

Then $(c,d) \subset (a,b)$ and for each $n \ge n_0$ we have

$$\emptyset = G \cap \left(c \cdot \frac{1}{s_{m_{p_n}}}, d \cdot \frac{1}{s_{m_{p_n}}}\right) = \frac{1}{s_{m_{p_n}}} \left(\left(s_{m_{p_n}} \cdot G\right) \cap (c, d) \right),$$

 \mathbf{SO}

$$(c,d) \subset [0,1] \setminus \left(\left(s_{m_{p_n}} \cdot G \right) \cap [0,1] \right).$$

Therefore

$$(c,d) \subset \bigcup_{n=1}^{\infty} \bigcap_{n=r}^{\infty} [0,1] \setminus \left(\left(s_{m_{p_r}} \cdot G \right) \cap [0,1] \right)$$

and $\limsup_r((s_{m_{p_r}} \cdot G) \cap [0,1])$ is nowhere dense. Thus

$$\chi_{(s_{m_{p_r}} \cdot G) \cap [0,1]} \xrightarrow[r \to \infty]{} 0 \quad I \ a.e.$$

which completes the proof.

PROOF OF THEOREM 2: Let $\langle s \rangle, \langle t \rangle \in S$ and $\lim_{m \to \infty} \frac{s_m}{t_m} = 1$. Then using Lemma 1 we get immediately the equality of topologies.

Now, let $\langle s \rangle, \langle t \rangle \in S_0$ and $\lim_{m \to \infty} \frac{s_m}{t_m} = \alpha \in (0, +\infty)$. Let us suppose that $0 < \alpha < 1$. We can assume that $\frac{s_m}{t_m} > \frac{1}{2}\alpha$ for all $m \in \mathbb{N}$. We want to show that $\mathcal{T}_{\langle s \rangle I} \neq \mathcal{T}_{\langle t \rangle I}$.

From the proof of Property (8) it follows that there exists a set Y, which is a countable sum of closed intervals, such that $\{0\} \cup (\mathbb{R} \setminus Y) \in \mathcal{T}_{\langle t \rangle I}$ and 0 is not a $\langle t \rangle$ -*I*-density point of the set $\mathbb{R} \setminus \alpha Y$, which is equivalent to the fact that 0 is not an $\langle \alpha t \rangle$ -*I*-dispersion point of the set Y, so neither of the set $G = \operatorname{int} Y$ since $Y \setminus \operatorname{int} Y \in I$.

It suffices to show that 0 is not an $\langle s \rangle$ -*I*-dispersion point of the set *G*, because it means that 0 is not an $\langle s \rangle$ -*I*-dispersion point of *Y*, so $\{0\} \cup (\mathbb{R} \setminus Y) \notin \mathcal{T}_{\langle s \rangle I}$.

For convenience we restrict our consideration to the right-hand case and suppose, contrary to our claim, that 0 is a right-hand $\langle s \rangle$ -*I*-dispersion point of the open set *G*. By Lemma 2 we know that

(*) for every natural number *n* there exist a natural number *k* and a real number $\delta > 0$ such that for every natural *m* satisfying $\frac{1}{s_m} < \delta$ and for each $i \in \{1, \ldots, n\}$ there exists a natural number $j \in \{1, \ldots, k\}$ such that $G \cap \left(\left(\frac{i-1}{n} + \frac{j-1}{nk}\right) \cdot \frac{1}{s_m}, \left(\frac{i-1}{n} + \frac{j}{nk}\right) \cdot \frac{1}{s_m}\right) = \emptyset.$

We shall show that

for every natural number N there exist a natural number K and a real number $\Delta > 0$ such that for every natural m satisfying the inequality $\frac{1}{\alpha t_m} < \Delta$ and for each $\tilde{i} \in \{1, \ldots, N\}$ there exists a natural number $\tilde{j} \in \{1, \ldots, K\}$ such that $Y \cap \left(\left(\frac{\tilde{i}-1}{N} + \frac{\tilde{j}-1}{NK}\right) \cdot \frac{1}{\alpha t_m}, \left(\frac{\tilde{i}-1}{N} + \frac{\tilde{j}}{NK}\right) \cdot \frac{1}{\alpha t_m}\right) = \emptyset$.

Consider an arbitrary natural number N. Applying (*) for n = N we choose $k \in N$ and $\delta > 0$ satisfying (*). Since, by assumption, $\frac{s_n}{\alpha t_n}$ tends to 1, it follows that

(**) for every $\epsilon > 0$ there exists a natural number n_{ϵ} such that for every $n > n_{\epsilon}$ we have an inequality $|\frac{s_n - \alpha t_n}{\alpha t_n}| < \epsilon$.

Set K = 3k and we fix $\Delta > 0$ such that

(1) $\Delta < \frac{\delta}{2}$

and

(2) for every
$$m \in \mathbb{N}$$
, if $\frac{1}{s_m} < 2\Delta$ then $m > n_{\epsilon}$, where $\epsilon = \frac{1}{2NK}$.
Therefore for every $m \in \mathbb{N}$ such that $\frac{1}{\alpha t_m} < \Delta$ we have $\frac{1}{s_m} < 2\Delta < \delta$ (since

 $\frac{1}{\alpha t_m} > \frac{1}{2s_m}$), so by (2) and (**) the following inequality holds:

$$\left|\frac{s_m - \alpha t_m}{\alpha t_m}\right| < \frac{1}{2NK}.$$

Fix an arbitrary $\tilde{i} \in \{1, ..., N\}$. From (*) for $i = \tilde{i}$ there exists a natural number $j \in \{1, ..., k\}$ such that

$$Y \cap \left(\left(\frac{i-1}{n} + \frac{j-1}{nk} \right) \cdot \frac{1}{s_m}, \ \left(\frac{i-1}{n} + \frac{j}{nk} \right) \cdot \frac{1}{s_m} \right) = \emptyset.$$

To obtain a contradiction, suppose that for every $\tilde{j} \in \{1, \ldots, K\}$ the set Y has common points with the interval $((\frac{i-1}{N} + \frac{\tilde{j}-1}{NK}) \cdot \frac{1}{\alpha t_m}, (\frac{i-1}{N} + \frac{\tilde{j}}{NK}) \cdot \frac{1}{\alpha t_m})$, so for every $\tilde{j} \in \{1, \ldots, K\}$ there exists $y \in G$ such that $y \in (\frac{i-1}{n} + \frac{\tilde{j}-1}{3nk}, \frac{i-1}{n} + \frac{\tilde{j}}{3nk}) \cdot \frac{1}{\alpha t_m}$, it means $y \in (0, \frac{1}{\alpha t_m})$ and $y \cdot \alpha t_m \in (\frac{i-1}{n} + \frac{\tilde{j}-1}{3nk}, \frac{i-1}{n} + \frac{\tilde{j}}{3nk})$. From (*) we see that there exists a number $j \in \{1, \ldots, n\}$ such that for any $y \in Y$ the point $y \cdot s_m$ does not belong to the interval $(\frac{i-1}{n} + \frac{j-1}{nk}, \frac{i-1}{n} + \frac{j}{nk})$. But for $\tilde{j} = 3j - 1$ there exists a point $y \in Y$ such that $y \cdot \alpha t_m \in (\frac{i-1}{n} + \frac{3j-2}{3nk}, \frac{i-1}{n} + \frac{3j-1}{3nk})$. Simultaneously $|y \cdot \alpha t_m - y \cdot s_m| = |y \cdot (\alpha t_m - s_m)| < \frac{1}{\alpha t_m} |\alpha t_m - s_m| < \frac{1}{2NK} = \frac{1}{6nk}$, hence $y \cdot s_m \in \{\frac{i-1}{n} + \frac{3j-3}{3nk}, \frac{i-1}{n} + \frac{3j}{3nk}\} = (\frac{i-1}{n} + \frac{j-1}{nk}, \frac{i-1}{n} + \frac{j}{nk})$. This contradiction completes the proof.

By Theorem 1 it is obvious that for sequences belonging to $S \setminus S_0$ we can have the same topology even if the sequences considered do not satisfy the condition $\lim_{n\to\infty} \frac{s_n}{t_n} = 1.$

The following theorems show more properties of the family of *I*-density type topologies.

Theorem 3. For every sequence $\langle t \rangle \in S_0$ there exists a sequence $\langle s \rangle \in S_0$ such that $\mathcal{T}_{\langle s \rangle I} \subsetneq \mathcal{T}_{\langle t \rangle I}$.

PROOF: Let $\langle t \rangle \in S_0$. Then set $\alpha \in (0,1)$ and let $\langle s \rangle = \langle \alpha t \rangle$. Then $\langle s \rangle \in S_0$ and $\lim_{n \to \infty} \frac{s_n}{t_n} = \alpha \neq 1$, so by Theorem 2 $\mathcal{T}_{\langle t \rangle I} \neq \mathcal{T}_{\langle s \rangle I}$ and by Property (2) $\mathcal{T}_{\langle s \rangle I} \subseteq \mathcal{T}_{\langle t \rangle I}$.

Theorem 4. For every sequence $\langle t \rangle \in S$ there exists a sequence $\langle s \rangle \in S$ such that $\mathcal{T}_{\langle t \rangle I} \subsetneq \mathcal{T}_{\langle s \rangle I}$.

PROOF: If $\langle t \rangle \in S \setminus S_0$ then $\mathcal{T}_{\langle t \rangle I} = \mathcal{T}_I$ and it is sufficient to take an arbitrary sequence $\langle s \rangle \in S_0$. Let us assume that $\langle t \rangle \in S_0$. We define $\langle s \rangle = \langle \alpha t \rangle$, where $\alpha \in \mathbb{R}$ and $\alpha > 1$. Then by Property (2), $\mathcal{T}_{\langle t \rangle I} \subset \mathcal{T}_{\langle s \rangle I}$ and from Theorem 2 it follows that $\mathcal{T}_{\langle t \rangle I} \neq \mathcal{T}_{\langle s \rangle I}$.

Theorem 5. There exist sequences $\langle s \rangle$, $\langle t \rangle \in S_0$ such that $\mathcal{T}_{\langle s \rangle I} \setminus \mathcal{T}_{\langle t \rangle I} \neq \emptyset$ and $\mathcal{T}_{\langle t \rangle I} \setminus \mathcal{T}_{\langle s \rangle I} \neq \emptyset$.

PROOF: Let $\langle s \rangle = \{(2n-1)!\}_{n \in \mathbb{N}}, \langle t \rangle = \{(2n)!\}_{n \in \mathbb{N}}.$ Of course $\langle s \rangle, \langle t \rangle \in S_0$. Set $Y_1 = \bigcup_{k=1}^{\infty} (\frac{1}{(2k)!}, \frac{1}{(2k-1)!}), Y_2 = \bigcup_{k=2}^{\infty} (\frac{1}{(2k-1)!}, \frac{1}{(2k-2)!}).$ We have $Y_1 \cap Y_2 = \emptyset$ and $[0, 1] \setminus (Y_1 \cup Y_2) \in I$. Moreover

$$(t_n \cdot Y_1) \cap [0, 1] = \left((2n)! \cdot \bigcup_{k=1}^{\infty} \left(\frac{1}{(2k)!}, \frac{1}{(2k-1)!} \right) \right) \cap [0, 1]$$
$$= \left((2n)! \cdot \bigcup_{k=n+1}^{\infty} \left(\frac{1}{(2k)!}, \frac{1}{(2k-1)!} \right) \right) \cap [0, 1]$$
$$\subset \left((2n)! \cdot \left[0, \frac{1}{(2n+1)!} \right) \right) \cap [0, 1]$$
$$= \left[0, \frac{(2n)!}{(2n+1)!} \right) \cap [0, 1] = \left[0, \frac{1}{2n+1} \right)$$

and, of course, for any subsequence $\{t_{n_p}\}_{p\in\mathbb{N}} \subset \langle t \rangle$, $(t_{n_p} \cdot Y_1) \cap [0,1] \subset [0,\frac{1}{2n_p+1})$. It follows that $\limsup_p(t_{n_p} \cdot Y_1) \cap [0,1] = \{0\} \in I$, hence 0 is a right-hand $\langle t \rangle$ - *I*-dispersion point of Y_1 , which gives that it is a right-hand $\langle t \rangle$ -*I*-density point of Y_2 . Finally $Z_2 = (-Y_2) \cup \{0\} \cup Y_2 \in \mathcal{T}_{\langle t \rangle I}$.

In the same manner we can see that $(s_n \cdot Y_2) \cap [0,1] \subset [0,\frac{1}{2n})$ and conclude that $Z_1 = (-Y_1) \cup \{0\} \cup Y_1 \in \mathcal{T}_{\langle s \rangle I}$. We thus get $Z_1 \in \mathcal{T}_{\langle s \rangle I} \setminus \mathcal{T}_{\langle t \rangle I}$ and $Z_2 \in \mathcal{T}_{\langle t \rangle I} \setminus \mathcal{T}_{\langle s \rangle I}$.

Theorem 6. Let \mathcal{T}^* be a topology generated by $\bigcup_{\langle s \rangle \in S} \mathcal{T}_{\langle s \rangle I}$. Then $\bigcup_{\langle s \rangle \in S} \mathcal{T}_{\langle s \rangle I} \neq \mathcal{T}^* = 2^{\mathbb{R}}$.

PROOF: It is immediate that $\bigcup_{\langle s \rangle \in S} \mathcal{T}_{\langle s \rangle I} \neq 2^{\mathbb{R}}$ because $\bigcup_{\langle s \rangle \in S} \mathcal{T}_{\langle s \rangle} \subset \mathcal{B}$. Our proof starts with the observation that if for every $x \in A$, where $A \in \mathcal{B}$, there exists a sequence $\langle s \rangle \in S$ such that $x \in \Phi_{\langle s \rangle I}(A)$ then $A \in \mathcal{T}^*$. Indeed, let $A \in \mathcal{B}$, $x \in A$ and $\langle s \rangle \in S$ be a sequence such that $x \in \Phi_{\langle s \rangle I}(A)$. Since $(\Phi_I(A) \triangle A) \in I$, we have $x \in \Phi_{\langle s \rangle I}(A \cap \Phi_I(A))$. Simultaneously $A \cap \Phi_I(A) \in \mathcal{T}_I \subset \mathcal{T}_{\langle s \rangle I}$. Therefore $(A \cap \Phi_I(A)) \cup \{x\} \in \mathcal{T}_{\langle s \rangle I} \subset \mathcal{T}^*$ and finally $A = \bigcup_{x \in A} ((A \cap \Phi_I(A)) \cup \{x\}) \in \mathcal{T}^*$.

We next show that singletons are open in \mathcal{T}^* . Let $E = \bigcup_{n=1}^{\infty} (\frac{1}{a_n}, \frac{1}{b_n})$ where $a_n = (2n+1)!, b_n = (2n)!$ for $n \in \mathbb{N}$. Then $\langle a \rangle, \langle b \rangle \in S$. We claim that 0 is a right-hand $\langle a \rangle$ -*I*-dispersion point of the set *E*, because $(a_n \cdot E) \cap [0,1] \subset (0, \frac{1}{2n+2})$ and hence $\chi_{(a_n \cdot E) \cap [0,1]} \xrightarrow{m \to \infty} 0$ *I* a.e. on [0,1] and so does each subsequence. Similarly 0 is a right-hand $\langle b \rangle$ -*I*-density point of the set *E*, because $(b_n \cdot E) \cap [0,1] \supset (\frac{1}{2n+1},1)$ and hence $\chi_{(b_n \cdot E) \cap [0,1]} \xrightarrow{m \to \infty} 1$ *I*-a.e. on [0,1] and so does each subsequence.

Putting $A = E \cup \{0\} \cup (-E)$ we obtain $0 \in \Phi_{\langle b \rangle I}(A)$ and for the set $B = \bigcup_{n=1}^{\infty} ((\frac{1}{b_{n+1}}, \frac{1}{a_n}) \cup (-\frac{1}{a_n}, -\frac{1}{b_{n+1}})) \cup \{0\}$ we have $0 \in \Phi_{\langle a \rangle I}(B)$, so by the above $A, B \in \mathcal{T}^*$. Therefore $\{0\} = A \cap B \in \mathcal{T}^*$. Since the topologies considered are invariant under translations, we have $\{x\} = (A+x) \cap (B+x) \in \mathcal{T}^*$ for any $x \in \mathbb{R}$, and finally $\mathcal{T}^* = 2^{\mathbb{R}}$.

Theorem 7. Let $\mathcal{T} = \{T_{\langle s \rangle I}; \langle s \rangle \in S\} = \{\mathcal{T}_I\} \cup \{\mathcal{T}_{\langle s \rangle I}; \langle s \rangle \in S_0\}$. Then $\operatorname{card}(\mathcal{T}) = \mathfrak{c}$.

PROOF: Obviously $\operatorname{card}(\mathcal{T}) \leq \mathfrak{c}$.

If $\langle s \rangle \in S_0$ then for every $\alpha > 0$ a sequence $\langle \alpha s \rangle \in S_0$. By Theorem 2 for every $\alpha, \beta > 0, \alpha \neq \beta$ we have $\mathcal{T}_{\langle \alpha s \rangle I} \neq \mathcal{T}_{\langle \beta s \rangle I}$ so $\operatorname{card}(\mathcal{T}) \geq \mathfrak{c}$.

References

- [FFH] Filipczak M., Filipczak T., Hejduk J., On the comparison of the density type topologies, Atti Sem. Mat. Fis. Univ. Modena, to appear.
- [FH] Filipczak M., Hejduk J., On topologies associated with the Lebesgue measure, Tatra Mountains, Mathematical Publications 28 (2004), 187–197.
- [HH] Hejduk J., Horbaczewska G., On I-density topologies with respect to a fixed sequence, Reports on Real Analysis, Conference at Rowy 2003, pp. 78–85.
- [H] Horbaczewska G., On I-density topologies with respect to a fixed sequence further properties, Tatra Mountains, Mathematical Publications, to appear.
- [L] Lazarow E., On the Baire class of I-approximate derivatives, Proc. Amer. Math. Soc. 100 (1987), no. 4, 669–674.
- [PWW1] Poreda W., Wagner-Bojakowska E., Wilczyński W., A category analogue of the density topology, Fund. Math. 125 (1985), 167–173.
- [PWW2] Poreda W., Wagner-Bojakowska E., Wilczyński W., Remarks on I-density and Iapproximately continuous functions, Comment. Math. Univ. Carolinae 26 (1985), no. 3, 241–265.

University of Łódź, Faculty of Mathematics, ul. Banacha 22, PL-90-238 Łódź, Poland

E-mail: grhorb@math.uni.lodz.pl

(Received December 16, 2004, revised July 12, 2005)