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The family of I-density type topologies

Grażyna Horbaczewska

Abstract. We investigate a family of topologies introduced similarly as the I-density
topology. In particular, we compare these topologies with respect to inclusion and we
look for conditions under which these topologies are identical.
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We use here a standard notation. Let N be the set of all positive integers, B
the family of subsets of the real line having the Baire property and I the σ-ideal
of meager sets. For every set A and x, t ∈ R, we set A + x = {a + x; a ∈ A} and
t · A = {t · a; a ∈ A}, where χA is the characteristic function of A and A′ the
complement of A.

Let S be the family of all nondecreasing and unbounded sequences of positive
real numbers. Every sequence {sn}n∈N ∈ S is denoted by 〈s〉.

Let us recall the notion of an I-density point of a set A ∈ B ([PWW1]). The
point 0 is an I-density point of a set A ∈ B if for every sequence {tn}n∈N ∈ S
there exists a subsequence {tnp}p∈N such that χ(tnp ·A)∩[−1,1] −→p→∞

1 I-a.e. on

[−1, 1].
Based on the observation that starting from another fixed sequence different

results can be obtained, the notion of an I-density point connected with a fixed
sequence from the family S has been introduced in [HH].

Definition 1. Let 〈s〉 ∈ S. The point 0 is an 〈s〉-I-density point of a set A ∈ B
if for every subsequence {snm}m∈N ⊂ 〈s〉 there exists a subsequence {snmp

}p∈N

such that χ(snmp
·A)∩[−1,1] −→

p→∞
1 I-a.e. on [−1, 1].

A point x ∈ R is an 〈s〉-I-density point of A if 0 is an 〈s〉-I-density point of
the set A − x.

A point x ∈ R is an 〈s〉-I-dispersion point of A if x is an 〈s〉-I-density point
of A′.

We can define one-sided 〈s〉-I-density points in the natural way.
For any 〈s〉 ∈ S and A ∈ B, putting

Φ〈s〉I (A) = {x ∈ R; x is an 〈s〉-I-density point of A}
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we get that Φ〈s〉I : B → B is a lower density operator (see [HH]).

Applying this operator we define for every fixed sequence 〈s〉 the topology
T〈s〉I = {A ∈ B; A ⊂ Φ〈s〉I(A)}, which fulfils the inclusion: TI ⊂ T〈s〉I , where TI

denotes the I-density topology ([HH]).
The main aim of this paper is to compare topologies connected with different

sequences.
First of all, if 〈s〉 is the sequence of all natural numbers then T〈s〉I = TI

([PWW1]).
Now we state the main results.
Let S0 = {〈s〉 ∈ S : lim infn→∞

sn
sn+1

= 0}.

Theorem 1. Let 〈s〉 ∈ S. Then T〈s〉I = TI if and only if 〈s〉 ∈ S \ S0.

Theorem 2. Let 〈s〉, 〈t〉 ∈ S0 and limm→∞
sm
tm

= α ∈ (0, +∞). Then T〈s〉I =
T〈t〉I if and only if α = 1.

Before presenting the proofs we need some properties of our topologies.

Properties.

(1) Let 〈s〉, 〈t〉 ∈ S. Then T〈s〉I = T〈t〉I if and only if Φ〈s〉I(A) = Φ〈t〉I (A) for
every A ∈ B.

(2) Let 〈s〉 ∈ S and 1 ≤ α < ∞. Then T〈s〉I ⊂ T〈αs〉I , where 〈αs〉 = {αsn}n∈N.

(3) Let 〈s〉 ∈ S. Then for an arbitrary subsequence 〈s′〉 ⊂ 〈s〉 we have
T〈s〉I ⊂ T〈s′〉I .

(4) Let 〈s〉 ∈ S. If for any subsequence of the sequence of all natural numbers
〈n′〉 ⊂ {n}n∈N there exists a subsequence 〈n′′〉 ⊂ 〈n′〉 such that
T〈s〉I ⊂ T〈n′′〉I , then T〈s〉I ⊂ TI .

(5) ∀ 〈s〉 ∈ S ∀x ∈ R ∀A ∈ B (A ∈ T〈s〉I =⇒ A + x ∈ T〈s〉I ).

(6) ∀ 〈s〉 ∈ S ∀A ∈ B (A ∈ T〈s〉I =⇒ −A ∈ T〈s〉I).

(7) ∀ 〈s〉 ∈ S ∀ |m| ≥ 1 ∀A ∈ B (A ∈ T〈s〉I =⇒ m · A ∈ T〈s〉I ).

(8) ∀ 〈s〉 ∈ S0 ∃A ∈ B ∀ |m| < 1 (A ∈ T〈s〉I ∧ m · A /∈ T〈s〉I).

The first four are simple consequences of the definitions and properties of lower
densities. We want only to show one implication from (1) (the inverse is obvious).

Proof of (1): Let 〈s〉, 〈t〉 ∈ S. We assume that T〈s〉I = T〈t〉I and there exists a

set A ∈ B such that Φ〈s〉I (A) 6= Φ〈t〉I (A), for example Φ〈s〉I(A) * Φ〈t〉I (A). Since

Φ〈t〉I (A) ∈ T〈t〉I = T〈s〉I , by definition of T〈s〉I we have Φ〈t〉I (A) ⊂ Φ〈s〉I (Φ〈t〉I (A))

which is equal to Φ〈s〉I(A) because Φ〈t〉I (A) is equivalent to A (the Lebesgue

Density Theorem works here), so we get a contradiction. �

The next four properties have been already published ([HH], [H]). A justifica-
tion of (5)–(7) is again easy so we can omit it. We want only to sketch the proof
of the last one.
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Proof of (8): Let 〈s〉 ∈ S0. Then there exists a subsequence {snk
}k∈N of 〈s〉

such that limk→∞
snk

snk+1
= 0.

Put X =
⋃∞

j=1[ 1
snj+1

, 1√
snj

·snj+1
]. Then 0 is an 〈s〉-I-dispersion point of a

set X . Defining Y = −X ∪ X we have A = {0} ∪ (R \ Y ) ∈ T〈s〉I .

For m = 0 it is obvious that m · A /∈ T〈s〉I .

Now we want to show that 0 is not a right 〈s〉-I-dispersion point of the set m·X
for m ∈ (−1, 1) \ {0}. There is no loss of generality in assuming that m ∈ (0, 1).

We can find k0 ∈ N such that for any k > k0 we have
√

snk
snk+1

< m. Then 0 is not

a right 〈s〉-I-dispersion point of the set m · ⋃∞
j=k0

[ 1
snj+1

, 1√
snj

·snj+1
], so neither

of the set m · X . Hence m · A = {0} ∪ (R \ m · Y ) /∈ T〈s〉I .

For details see [HH]. �

Proof of Theorem 1: Sufficiency. Since TI ⊂ T〈s〉I for every sequence 〈s〉 ∈ S,

it is enough to show the inclusion: T〈s〉I ⊂ TI .

Let 〈s〉 ∈ S \ S0. We denote lim infk→∞
sk

sk+1
by λ, so λ > 0.

Let 〈n′〉 = {nj}j∈N denote an arbitrary sequence of natural numbers, 〈n′〉 ∈ S.
Then there exists j0 ∈ N such that for each j ≥ j0, j ∈ N, there exists kj ∈ N
which fulfils the condition skj

≤ nj ≤ skj+1. There is no loss of generality in

assuming that j0 = 1. Now we choose a subsequence {njl
}l∈N from the sequence

{nj}j∈N such that each interval [skjl
, skjl

+1] contains only one term of the se-

quence {njl
}l∈N. Since skjl

≤ njl
≤ skj+1 for each l ∈ N, we have

1 ≤ njl

skjl

≤
skjl

+1

skjl

and

1 ≤ lim sup
l→∞

njl

skjl

≤ lim sup
l→∞

skjl
+1

skjl

= 1/ lim inf
l→∞

skjl

skjl
+1

≤ 1/ lim inf
k→∞

sk

sk+1
=

1

λ
< +∞.

Therefore there exists a subsequence {
njlp

skjlp

}p∈N ⊂ { njl
skjl

}l∈N tending to α, where

1 ≤ α < ∞. Then limp→+∞
njlp

α·skjlp

= 1. Using the notation:

〈n′′〉 = {njlp
}p∈N and 〈s′′〉 = {skjlp

}p∈N
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we obtain (by Theorem 2, which will be proved later) the equality of topologies

T〈n′′〉I = T〈αs′′〉I .

Furthermore, by Properties (2) and (3), we have

T〈s〉I ⊂ T〈s′〉I ⊂ T〈s′′〉I ⊂ T〈αs′〉I = T〈n′′〉I .

Property (4) now yields T〈s〉I ⊂ TI which is the desired conclusion. �

Necessity of the condition 〈s〉 ∈ S \ S0 has been already stated in [HH]. We
repeat here the proof. We want to show that if 〈s〉 ∈ S0 then T〈s〉I * TI .

From our assumption there exists a subsequence {snk
}k∈N ⊂ {sn}n∈N such

that limk→∞
snk

snk+1
= 0. We can assume that the sequence { snk

snk+1
}k∈N is de-

creasing (if necessary we can choose a subsequence).
Let

A =

∞⋃

j=1

[
1

snj+1
,

1
√

snj · snj+1

]
.

We will show that 0 is a right 〈s〉-I-dispersion point of the set A, it means that for
each subsequence {snm}m∈N ⊂ {sn}n∈N there exists a subsequence {snmp

}p∈N

such that χ(snmp
·A)∩[0,1] −→

p→∞
0 I-a.e. on [0, 1]. Let j(l) = min{j ∈ N : l < nj+1}.

We observe that

(
snm ·

∞⋃

j=1

[
1

snj+1
,

1
√

snn · snj+1

])
∩ [0, 1]

=

(
snm ·

∞⋃

j=j(nm)

[
1

snj+1
,

1
√

snj · snj+1

])
∩ [0, 1]

⊂
(

snm ·
[
0,

1
√

snj(nm)
· snj(nm)+1

])
∩ [0, 1]

=

[
0,

snm√
snj(nm)

· snj(nm)+1

]
∩ [0, 1] ⊂

[
0,

snj(nm)√
snj(nm)

· snj(nm)+1

]
∩ [0, 1]

=

[
0,

√
snj(nm)

snj(nm)+1

]
∩ [0, 1].

Since lim supm

[
0,

√
snj(nm)

snj(nm)+1

]
= {0}, we have χ(snm ·A)∩[0,1] −→

m→∞
0 I-a.e. on

[0,1], so 0 is an 〈s〉-I-dispersion point of the set Ã = −A ∪ A.
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Let B = (0, 1
sn1

) \ A and B̃ = −B ∪ B ∪ {0}. Then B̃ ∈ T〈s〉I . Of course

B =
⋃∞

j=1

(
1√

snj
·snj+1

, 1
snj

)
.

We will show that 0 is not a right I-density point of the set B, it means that
there exists a sequence {tk}k∈N ∈ S such that for each subsequence {tkp

}p∈N ⊂
{tk}k∈N, the convergence χ(tkp ·B)∩[0,1] −→

p→∞
1 I a.e. does not hold. Let

tk =
√

snk
· snk+1 for k ∈ N. Observe that

(tk · B) ∩ [0, 1] =

(
√

snk
· snk+1 ·

∞⋃

j=1

(
1

√
snj · snj+1

,
1

snj

))
∩ [0, 1]

=

(
√

snk
· snk+1 ·

∞⋃

j=k+1

(
1

√
snj · snj+1

,
1

snj

))
∩ [0, 1]

⊂
(
√

snk
· snk+1 ·

[
0,

1

snk+1

])
∩ [0, 1] ⊂

[
0,

√
snk

· snk+1

snk+1

]
∩ [0, 1]

=

[
0,

√
snk

snk+1

]
∩ [0, 1].

Since lim supk[0,
√

snk
snk+1

] = {0}, we have χtk·B∩[0,1](x) −→
k→∞

0 for x ∈ (0, 1].

Therefore B̃ /∈ TI . �

Corollary 1. For every sequence 〈s〉 ∈ S \ S0 and for every sequence 〈t〉 ∈ S0,

T〈s〉I ( T〈t〉I .

Now we can add one more property.

Corollary 2. For every sequence 〈s〉 ∈ S \ S0 and for every m ∈ R \ {0}, if
A ∈ T〈s〉I then m · A ∈ T〈s〉I .

For the proof of Theorem 2 we need two lemmas.

Lemma 1 ([PWW2]). Let A be an open set and let the sequences {in}n∈N

and {jn}n∈N have the following properties: in > 0, jn > 0 for each n ∈ N,
limn→∞ in = +∞, limn→∞ jn = +∞, limn→∞

jn

in
= 1 and let

χ(in·A)∩[−1,1] −→
n→∞

0 I-a.e. on [−1, 1]. Then also χ(jn·A)∩[−1,1] −→
n→∞

0 I-a.e. on

[−1, 1].

In Lemma 2 we state an equivalent condition for being an 〈s〉-I-dispersion point
of an open set. The idea was motivated by [ L].

Lemma 2. Let 〈s〉 ∈ S. The point 0 is a right-hand 〈s〉-I-dispersion point of
an open set G if and only if, for every natural number n, there exist a natural
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number k and a real number δ > 0 such that for each m ∈ N such that 1
sm

< δ

and for each i ∈ {1, . . . , n}, there exists a natural number j ∈ {1, . . . , k} such that

G ∩
((

i − 1

n
+

j − 1

nk

)
· 1

sm
,

(
i − 1

n
+

j

nk

)
· 1

sm

)
= ∅.

Proof: We shall first prove the necessity for 〈s〉-I-dispersion. Assume that 0 is
a right-hand 〈s〉-I-dispersion point of the open set G and suppose the assertion of
the lemma is false. Then we could find a natural number n0 such that, for each
k ∈ N and δk = 1

k , there exist mk ∈ N such that k < smk
and ik ∈ {1, . . . , n0}

such that, for each j ∈ {1, . . . , k}

G ∩
((

ik − 1

n0
+

j − 1

n0k

)
· 1

smk

,

(
ik − 1

n0
+

j

n0k

)
· 1

smk

)
6= ∅.

Since ik is chosen from a finite set, there exists a subsequence {smkl
}l∈N ⊂

{smk
}k∈N such that the number ikl

is common for all l. For simplicity we denote
it by i0 and the chosen subsequence by {smk

}k∈N. Let {smkz
}z∈N be any subse-

quence of {smk
}k∈N. For every natural number p ∈ N the set

⋃∞
z=p((smkz

· G) ∩
( i0−1

n0
, i0

n0
)) is open and dense on [ i0−1

n0
, i0

n0
], so

∞⋂

p=1

∞⋃

z=p

( (
smkz

· G
)
∩

[
i0 − 1

n0
,

i0
n0

])

is residual on [ i0−1
n0

, i0
n0

]. Consequently

lim sup
z

((
smkz

· G
)
∩ [−1, 1]

)
⊃

∞⋂

p=1

∞⋃

z=p

( (
smkz

· G
)
∩

[
i0 − 1

n0
,

i0
n0

])
/∈ I.

Hence there exists a sequence {smk
}k∈N such that for each subsequence

{smkz
}z∈N ⊂ {smk

}k∈N, lim supz((smkz
·G)∩ [−1, 1]) is a not a meager set. This

contradicts our assumption that 0 is an 〈s〉-I-dispersion point of G.
Now assume that the condition from our lemma is true and our goal is to show

that 0 is a right-hand 〈s〉-I-dispersion point of G.
Let {smp}p∈N be an arbitrary subsequence of 〈s〉. The subsequence of

{smp}p∈N will be defined by induction. For n = 1 there exist k1 ∈ N and δ1 > 0

such that for each m ∈ N for which 1
sm

< δ1 and for i = 1 there exists j =

j(sm, 1) ∈ {1, . . . , k1} such that

G ∩
(

j − 1

k1
· 1

sm
,

j

k1
· 1

sm

)
= ∅.
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Let {smα1(z)
}z∈N be a subsequence of {smp}p∈N such that for each z ∈ N we

have 1
smα1(z)

< δ1 and the number j(smα1(z)
, 1) = j11 is common for all z ∈ N.

Put smp1
= smα1(1)

.

Assume the sequence {smαn−1(z)
}z∈N and smpn−1

= smαn−1(1)
to be defined.

For a natural number n there exist kn and δn > 0 such that for each m ∈ N for
which 1

sm
< δn and for i ∈ {1 . . . n} there exists j = j(sm, i) ∈ {1, . . . , kn} such

that

G ∩
((

i − 1

n
+

j − 1

n · kn

)
· 1

sm
,

(
i − 1

n
+

j

n · kn

)
· 1

sm

)
= ∅.

Let {smαn(z)
}z∈N be a subsequence of {smαn−1(z)

}z∈N such that for each z ∈ N

we have 1
smαn(z)

< δn and j = (smαn(z)
, 1) = jn1,..., j(smαn(z)

, n) = jnn are

common for all z ∈ N. Put smpn
= smαn(1)

. We proceed by induction.

The task is now to show that {x : χ(smpn
·G)∩[0,1] 9 0} ∈ I. Let (a, b) ⊂ [0, 1].

Then there exist a natural number n0 and i0 ∈ {1, . . . , n0} such that [ i0−1
n0

, i0
n0

] ⊂
(a, b).

We shall consider a sequence {smαn0 (z)
}z∈N and a natural number kn0 corre-

sponding to n0. Then for each n ≥ n0 smpn
∈ {smαn0 (z)

}z∈N. Hence for each

n ≥ n0 there exists j = jn0i0 such that

G ∩
((

i0 − 1

n0
,

j − 1

n0kn0

)
· 1

smpn

,

(
i0 − 1

n0
+

j

n0kn0

)
· 1

smpn

)
= ∅.

Let

(c, d) =

(
i0 − 1

n0
+

j − 1

n0kn0

,
i0 − 1

n0
+

j

n0kn0

)
.

Then (c, d) ⊂ (a, b) and for each n ≥ n0 we have

∅ = G ∩
(

c · 1

smpn

, d · 1

smpn

)
=

1

smpn

((
smpn

· G
)
∩ (c, d)

)
,

so
(c, d) ⊂ [0, 1] \

((
smpn

· G
)
∩ [0, 1]

)
.

Therefore

(c, d) ⊂
∞⋃

n=1

∞⋂

n=r

[0, 1] \
((

smpr
· G

)
∩ [0, 1]

)

and lim supr((smpr
· G) ∩ [0, 1]) is nowhere dense. Thus

χ(smpr
·G)∩[0,1] −→

r→∞
0 I a.e.
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which completes the proof. �

Proof of Theorem 2: Let 〈s〉, 〈t〉 ∈ S and limm→∞
sm
tm

= 1. Then using
Lemma 1 we get immediately the equality of topologies.

Now, let 〈s〉, 〈t〉 ∈ S0 and limm→∞
sm
tm

= α ∈ (0, +∞). Let us suppose that

0 < α < 1. We can assume that sm
tm

> 1
2α for all m ∈ N. We want to show that

T〈s〉I 6= T〈t〉I .

From the proof of Property (8) it follows that there exists a set Y , which is a
countable sum of closed intervals, such that {0} ∪ (R \ Y ) ∈ T〈t〉I and 0 is not

a 〈t〉-I-density point of the set R \ αY , which is equivalent to the fact that 0 is
not an 〈αt〉-I-dispersion point of the set Y , so neither of the set G = int Y since
Y \ int Y ∈ I.

It suffices to show that 0 is not an 〈s〉-I-dispersion point of the set G, because
it means that 0 is not an 〈s〉-I-dispersion point of Y , so {0} ∪ (R \ Y ) /∈ T〈s〉I .

For convenience we restrict our consideration to the right-hand case and sup-
pose, contrary to our claim, that 0 is a right-hand 〈s〉-I-dispersion point of the
open set G. By Lemma 2 we know that

(∗) for every natural number n there exist a natural number k and a real number

δ > 0 such that for every natural m satisfying 1
sm

< δ and for each

i ∈ {1, . . . , n} there exists a natural number j ∈ {1, . . . , k} such that

G ∩
((

i−1
n + j−1

nk

)
· 1

sm
,
(

i−1
n + j

nk

)
· 1

sm

)
= ∅.

We shall show that

for every natural number N there exist a natural number K and a real
number ∆ > 0 such that for every natural m satisfying the inequality

1
αtm

< ∆ and for each ĩ ∈ {1, . . . , N} there exists a natural number j̃ ∈
{1, . . . , K} such that Y ∩

((
ĩ−1
N + j̃−1

NK

)
· 1

αtm
,

(
ĩ−1
N + j̃

NK

)
· 1

αtm

)
= ∅.

Consider an arbitrary natural number N . Applying (∗) for n = N we choose
k ∈ N and δ > 0 satisfying (∗). Since, by assumption, sn

αtn
tends to 1, it follows

that

(∗∗) for every ǫ > 0 there exists a natural number nǫ such that for every n > nǫ

we have an inequality | sn−αtn
αtn

| < ǫ.

Set K = 3k and we fix ∆ > 0 such that

(1) ∆ < δ
2

and

(2) for every m ∈ N, if 1
sm

< 2∆ then m > nǫ, where ǫ = 1
2NK .

Therefore for every m ∈ N such that 1
αtm

< ∆ we have 1
sm

< 2∆ < δ (since
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1
αtm

> 1
2sm

), so by (2) and (∗∗) the following inequality holds:

∣∣∣∣
sm − αtm

αtm

∣∣∣∣ <
1

2NK
.

Fix an arbitrary ĩ ∈ {1, . . . , N}. From (∗) for i = ĩ there exists a natural
number j ∈ {1, . . . , k} such that

Y ∩
((

i − 1

n
+

j − 1

nk

)
· 1

sm
,

(
i − 1

n
+

j

nk

)
· 1

sm

)
= ∅.

To obtain a contradiction, suppose that for every j̃ ∈ {1, . . . , K} the set Y has

common points with the interval (( i−1
N + j̃−1

NK ) · 1
αtm

, ( i−1
N + j̃

NK ) · 1
αtm

), so for

every j̃ ∈ {1, . . . , K} there exists y ∈ G such that y ∈ ( i−1
n + j̃−1

3nk
, i−1

n + j̃
3nk

)· 1
αtm

,

it means y ∈ (0, 1
αtm

) and y ·αtm ∈ ( i−1
n + j̃−1

3nk
, i−1

n + j̃
3nk

). From (∗) we see that

there exists a number j ∈ {1, . . . , n} such that for any y ∈ Y the point y · sm does

not belong to the interval ( i−1
n + j−1

nk
, i−1

n + j
nk

). But for j̃ = 3j − 1 there exists

a point y ∈ Y such that y · αtm ∈ ( i−1
n + 3j−2

3nk , i−1
n + 3j−1

3nk ). Simultaneously

|y · αtm − y · sm| = |y · (αtm − sm)| < 1
αtm

|αtm − sm| < 1
2NK = 1

6nk , hence

y · sm ∈ { i−1
n + 3j−3

3nk
, i−1

n + 3j
3nk

) = ( i−1
n + j−1

nk
, i−1

n + j
nk

). This contradiction
completes the proof. �

By Theorem 1 it is obvious that for sequences belonging to S \S0 we can have
the same topology even if the sequences considered do not satisfy the condition
limn→∞

sn
tn

= 1.
The following theorems show more properties of the family of I-density type

topologies.

Theorem 3. For every sequence 〈t〉 ∈ S0 there exists a sequence 〈s〉 ∈ S0 such

that T〈s〉I ( T〈t〉I .
Proof: Let 〈t〉 ∈ S0. Then set α ∈ (0, 1) and let 〈s〉 = 〈αt〉. Then 〈s〉 ∈ S0

and limn→∞
sn
tn

= α 6= 1, so by Theorem 2 T〈t〉I 6= T〈s〉I and by Property (2)
T〈s〉I ⊆ T〈t〉I . �

Theorem 4. For every sequence 〈t〉 ∈ S there exists a sequence 〈s〉 ∈ S such
that T〈t〉I ( T〈s〉I .
Proof: If 〈t〉 ∈ S \ S0 then T〈t〉I = TI and it is sufficient to take an arbitrary

sequence 〈s〉 ∈ S0. Let us assume that 〈t〉 ∈ S0. We define 〈s〉 = 〈αt〉, where
α ∈ R and α > 1. Then by Property (2), T〈t〉I ⊂ T〈s〉I and from Theorem 2 it

follows that T〈t〉I 6= T〈s〉I . �
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Theorem 5. There exist sequences 〈s〉, 〈t〉 ∈ S0 such that T〈s〉I \ T〈t〉I 6= ∅ and
T〈t〉I \ T〈s〉I 6= ∅.
Proof: Let 〈s〉 = {(2n− 1)!}n∈N, 〈t〉 = {(2n)!}n∈N. Of course 〈s〉, 〈t〉 ∈ S0. Set

Y1 =
⋃∞

k=1( 1
(2k)!

, 1
(2k−1)!

), Y2 =
⋃∞

k=2( 1
(2k−1)!

, 1
(2k−2)!

). We have Y1 ∩ Y2 = ∅
and [0, 1] \ (Y1 ∪ Y2) ∈ I. Moreover

(tn · Y1) ∩ [0, 1] =

(
(2n)! ·

∞⋃

k=1

(
1

(2k)!
,

1

(2k − 1)!

))
∩ [0, 1]

=

(
(2n)! ·

∞⋃

k=n+1

(
1

(2k)!
,

1

(2k − 1)!

))
∩ [0, 1]

⊂
(

(2n)! ·
[
0,

1

(2n + 1)!

))
∩ [0, 1]

=

[
0,

(2n)!

(2n + 1)!

)
∩ [0, 1] =

[
0,

1

2n + 1

)

and, of course, for any subsequence {tnp}p∈N ⊂ 〈t〉, (tnp ·Y1)∩ [0, 1] ⊂ [0, 1
2np+1 ).

It follows that lim supp(tnp · Y1) ∩ [0, 1] = {0} ∈ I, hence 0 is a right-hand 〈t〉-
I-dispersion point of Y1, which gives that it is a right-hand 〈t〉-I-density point
of Y2. Finally Z2 = (−Y2) ∪ {0} ∪ Y2 ∈ T〈t〉I .

In the same manner we can see that (sn ·Y2)∩ [0, 1] ⊂ [0, 1
2n ) and conclude that

Z1 = (−Y1)∪{0}∪Y1 ∈ T〈s〉I . We thus get Z1 ∈ T〈s〉I \T〈t〉I and Z2 ∈ T〈t〉I \T〈s〉I .
�

Theorem 6. Let T ∗ be a topology generated by
⋃

〈s〉∈S T〈s〉I . Then⋃
〈s〉∈S T〈s〉I 6= T ∗ = 2R.

Proof: It is immediate that
⋃

〈s〉∈S T〈s〉I 6= 2R because
⋃

〈s〉∈S T〈s〉 ⊂ B. Our

proof starts with the observation that if for every x ∈ A, where A ∈ B, there
exists a sequence 〈s〉 ∈ S such that x ∈ Φ〈s〉I (A) then A ∈ T ∗. Indeed, let A ∈ B,

x ∈ A and 〈s〉 ∈ S be a sequence such that x ∈ Φ〈s〉I(A). Since (ΦI(A)△A) ∈ I,

we have x ∈ Φ〈s〉I(A∩ΦI(A)). Simultaneously A∩ΦI(A) ∈ TI ⊂ T〈s〉I . Therefore

(A ∩ ΦI(A)) ∪ {x} ∈ T〈s〉I ⊂ T ∗ and finally A =
⋃

x∈A((A ∩ ΦI(A)) ∪ {x}) ∈ T ∗.

We next show that singletons are open in T ∗. Let E =
⋃∞

n=1( 1
an

, 1
bn

) where

an = (2n+1)!, bn = (2n)! for n ∈ N. Then 〈a〉, 〈b〉 ∈ S. We claim that 0 is a right-

hand 〈a〉-I-dispersion point of the set E, because (an ·E)∩ [0, 1] ⊂ (0, 1
2n+2 ) and

hence χ(an·E)∩[0,1] −→
n→∞

0 I a.e. on [0, 1] and so does each subsequence. Similarly

0 is a right-hand 〈b〉-I-density point of the set E, because (bn·E)∩[0, 1] ⊃ ( 1
2n+1 , 1)

and hence χ(bn·E)∩[0,1] −→
n→∞

1 I-a.e. on [0, 1] and so does each subsequence.
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Putting A = E ∪ {0} ∪ (−E) we obtain 0 ∈ Φ〈b〉I (A) and for the set B =⋃∞
n=1(( 1

bn+1
, 1

an
) ∪ (− 1

an
,− 1

bn+1
)) ∪ {0} we have 0 ∈ Φ〈a〉I (B), so by the above

A, B ∈ T ∗. Therefore {0} = A ∩ B ∈ T ∗. Since the topologies considered are
invariant under translations, we have {x} = (A+x)∩(B +x) ∈ T ∗ for any x ∈ R,

and finally T ∗ = 2R. �

Theorem 7. Let T = {T〈s〉I ; 〈s〉 ∈ S} = {TI} ∪ {T〈s〉I ; 〈s〉 ∈ S0}. Then
card(T ) = c.

Proof: Obviously card(T ) ≤ c.
If 〈s〉 ∈ S0 then for every α > 0 a sequence 〈αs〉 ∈ S0. By Theorem 2 for every

α, β > 0, α 6= β we have T〈αs〉I 6= T〈βs〉I so card(T ) ≥ c. �

References

[FFH] Filipczak M., Filipczak T., Hejduk J., On the comparison of the density type topolo-
gies, Atti Sem. Mat. Fis. Univ. Modena, to appear.

[FH] Filipczak M., Hejduk J., On topologies associated with the Lebesgue measure, Tatra
Mountains, Mathematical Publications 28 (2004), 187–197.

[HH] Hejduk J., Horbaczewska G., On I-density topologies with respect to a fixed sequence,
Reports on Real Analysis, Conference at Rowy 2003, pp. 78–85.

[H] Horbaczewska G., On I-density topologies with respect to a fixed sequence – further

properties, Tatra Mountains, Mathematical Publications, to appear.
[ L]  Lazarow E., On the Baire class of I-approximate derivatives, Proc. Amer. Math. Soc.

100 (1987), no. 4, 669–674.
[PWW1] Poreda W., Wagner-Bojakowska E., Wilczyński W., A category analogue of the density
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