J.V. RAMANI, ANIL K. KARN, SUNIL YADAV

Abstract. In this paper, the \mathcal{F} -Riesz norm for ordered \mathcal{F} -bimodules is introduced and characterized in terms of order theoretic and geometric concepts. Using this notion, \mathcal{F} -Riesz normed bimodules are introduced and characterized as the inductive limits of matricially Riesz normed spaces.

Keywords: Riesz norm, matricially Riesz normed space, positively bounded, absolutely $\mathcal{F}\text{-convex},\ \mathcal{F}\text{-Riesz}$ norm

Classification: Primary 46L07

1. Introduction

Effros and Ruan, as suggested by B.E. Johnson, initiated a study of normed \mathcal{F} bimodules as direct limits of matrix normed spaces [2]. In [6] the authors studied the direct limit of matrix ordered spaces. Continuing this line, in this paper we discuss the direct limits of matricially Riesz normed spaces (studied by [4], [5]). As a consequence we introduce the notion of \mathcal{F} -Riesz normed bimodules.

We recall the following notions discussed in [6] (see also [2]).

Matricial notions.

Let V be a complex vector space. Let $M_n(V)$ denote the set of all $n \times n$ matrices with entries from V. For V = C, we denote $M_n(C)$ by M_n . For $\alpha = [\alpha_{ij}] \in M_n$ and $v = [v_{ij}] \in M_n(V)$ we define

$$\alpha v = \left[\sum_{j=1}^{n} \alpha_{ij} v_{jk}\right], \quad v\alpha = \left[\sum_{j=1}^{n} v_{ij} \alpha_{jk}\right].$$

Then $M_n(V)$ is a M_n -bimodule for all $n \in \mathbb{N}$. In particular $M_n(V)$ is a complex vector space for all $n \in \mathbb{N}$. For $v \in M_n(V)$, $w \in M_m(V)$, we define

$$v \oplus w = \begin{bmatrix} v & 0 \\ 0 & w \end{bmatrix} \in M_{n+m}(V).$$

Next, we consider the family $\{M_n\}$. For each $n, m \in \mathbb{N}$ define $\sigma_{n,n+m} : M_n \longrightarrow M_{n+m}$ by $\sigma_{n,n+m}(\alpha) = \alpha \oplus 0_m$. Then $\sigma_{n,n+m}$ is a vector space isomorphism with

$$\sigma_{n,n+m}(\alpha\beta) = \sigma_{n,n+m}(\alpha)\sigma_{n,n+m}(\beta).$$

Thus we may "identify" M_n in M_{n+m} as a subalgebra for every $m \in \mathbb{N}$. More generally, we may identify M_n in the set \mathcal{F} of $\infty \times \infty$ complex matrices, having entries zero after first n rows and first n columns. Then \mathcal{F} may be considered as the direct or inductive limit of the family $\{M_n\}$. In this sense

$$\mathcal{F} = \bigcup_{n=1}^{\infty} M_n.$$

Let e_{ij} denote the $\infty \times \infty$ matrix with 1 at the (i, j)th entry and 0 elsewhere. Then the collection $\{e_{ij}\}$ is called the set of matrix units in \mathcal{F} . We write 1_n for $\sum_{i=1}^n e_{ii}$.

For $i, j, k, l \in \mathbb{N}$, we have $e_{ij}e_{kl} = \delta_{jk}e_{il}$. Note that for any $\alpha \in \mathcal{F}$, there exist complex numbers α_{ij} such that

$$\alpha = \sum_{i,j} \alpha_{ij} e_{ij} \quad (\text{a finite sum}).$$

Thus \mathcal{F} is an algebra.

For $\alpha = \sum_{i,j} \alpha_{ij} e_{ij} \in \mathcal{F}$, we define $\alpha^* = \sum_{i,j} \bar{\alpha}_{ji} e_{ij} \in \mathcal{F}$. Then $\alpha \longmapsto \alpha^*$ is an involution. In other words, \mathcal{F} is a *-algebra.

Definition 1.1. Let V be a complex vector space. Consider the family $\{M_n(V)\}$. For each $n, m \in \mathbb{N}$, define $T_{n,n+m} : M_n(V) \longrightarrow M_{n+m}(V)$ by $T_{n,n+m}(v) = v \oplus 0_m, 0_m \in M_m(V)$. Then $T_{n,n+m}$ is an injective homomorphism. Let \mathcal{V} be the inductive limit of the directed family $\{M_n(V), T_{n,n+m}\}$. We shall call \mathcal{V} the matricial inductive limit or direct limit of V.

The matricial inductive limit of a complex vector space V may be characterized in the following sense:

Theorem 1.2. Let \mathcal{W} be a non-degenerate \mathcal{F} -bimodule. Put $W = e_{11}\mathcal{W}e_{11}$. Then W is a complex vector space and \mathcal{W} is its matricial inductive limit ([2]).

Definition 1.3 (Matrix normed space). Let V be a complex vector space. Then $M_n(V)$, the space of $n \times n$ matrices with entries from V, is an M_n -bimodule for all $n \in \mathbb{N}$. A matrix norm on V is a sequence $\{\|\cdot\|_n\}$ such that $\|\cdot\|_n$ is a norm on $M_n(V)$ for all $n \in \mathbb{N}$. We say that $(V, \{\|\cdot\|_n\})$ is a matrix normed space if $\|v \oplus 0_m\|_{n+m} = \|v\|_n$ and $\|\alpha v\beta\|_n \leq \|\alpha\| \|v\|_n \|\beta\|$ for all $v \in M_n(V)$, $\alpha, \beta \in M_n$ and $n, m \in \mathbb{N}$ ([7]).

Definition 1.4 (\mathcal{F} -bimodule norm). Let \mathcal{V} be a non-degenerate \mathcal{F} -bimodule. Let $\|\cdot\|$ be a norm on \mathcal{V} . Then we say $\|\cdot\|$ is an \mathcal{F} -bimodule norm on \mathcal{V} if $\|\alpha v\beta\| \leq \|\alpha\| \|v\| \|\beta\|$, for any $\alpha, \beta \in \mathcal{F}, v \in \mathcal{V}$. In this case we say that \mathcal{V} is a non-degenerate normed \mathcal{F} -bimodule.

Theorem 1.5. Let $(V, \{ \| \cdot \|_n \})$ be a matrix normed space. Let \mathcal{V} be the matricial inductive limit of V. For each $v \in \mathcal{V}$, we define ||v|| as follows: let $n \in \mathbb{N}$ be such that $1_n v 1_n = v$. Write $||v|| = ||v||_n$. Then this definition is independent of the choice of n and introduces an \mathcal{F} -bimodule norm on \mathcal{V} such that $(\mathcal{V}, \|\cdot\|)$ is a non-degenerate normed \mathcal{F} -bimodule.

Conversely, let $(W, \|\cdot\|)$ be a non-degenerate normed \mathcal{F} -bimodule and let W = $1_1 \mathcal{W} 1_1$ and $\|\cdot\|_n = \|\cdot\||_{M_n(W)}$ for all $n \in \mathbb{N}$. Then $(W, \{\|\|_n\})$ is a matrix normed space whose matricial inductive limit is $(\mathcal{W}, \|\cdot\|)$.

Remark. This characterization can be extended to * vector spaces as follows: Let V be a * vector space and let V be the matricial inductive limit of V, so that \mathcal{V} is a non-degenerate \mathcal{F} -bimodule ([6]). Let $(V, \{\|\cdot\|_n\})$ be a matrix normed space such that for every $n \in \mathbb{N}$ and $v \in M_n(V)$, $\|v^*\|_n = \|v\|_n$. Let $(\mathcal{V}, \|\cdot\|)$ be the matricial inductive limit of the matrix normed space $(V, \{\|\cdot\|_n\})$. Then $||v^*|| = ||v||$ for all $v \in \mathcal{V}$.

Next, we recall the definition of an ordered \mathcal{F} -bimodule and its characterization as a matricial inductive limit space from [6]:

Definition 1.6 (Ordered \mathcal{F} -bimodule). Let \mathcal{V} be a *- \mathcal{F} -bimodule. Let \mathcal{V}^+ be a bimodule cone in \mathcal{V}_{sa} . That is

- 1. $v_1, v_2 \in \mathcal{V}^+ \Rightarrow v_1 + v_2 \in \mathcal{V}^+,$ 2. $v \in \mathcal{V}^+, \alpha \in \mathcal{F} \Rightarrow \alpha^* v \alpha \in \mathcal{V}^+.$

Then $(\mathcal{V}, \mathcal{V}^+)$ will be called an *ordered* \mathcal{F} -bimodule.

The following result is obtained from [6].

Theorem 1.7. Let $(V, \{M_n(V)^+\})$ be a matrix ordered space. Let \mathcal{V} be the matricial inductive limit of V. Then $(\mathcal{V}, \mathcal{V}^+)$ is a non-degenerate ordered \mathcal{F} bimodule, where $\mathcal{V}^+ = \bigcup_{n=1}^{\infty} M_n(V)^+$. Conversely, let $(\mathcal{W}, \mathcal{W}^+)$ be a nondegenerate ordered \mathcal{F} -bimodule. Put $W = 1_1 \mathcal{W} \mathbb{1}_1$ and $M_n(W)^+ = 1_n \mathcal{W}^+ \mathbb{1}_n$ for all $n \in \mathbb{N}$. Then $(W, \{M_n(W)^+\})$ is a matrix ordered space with $W^+ =$ $\bigcup_{n=1}^{\infty} M_n(W)^+$.

2. \mathcal{F} -Riesz norm

We now characterize \mathcal{F} -bimodule norms.

Definition 2.1. Let \mathcal{V} be a non-degenerate \mathcal{F} -bimodule. Let $\mathcal{U} \subset \mathcal{V}$. We say \mathcal{U} is absolutely \mathcal{F} -convex if $\sum_{i=1}^{k} \alpha_i u_i \beta_i \in \mathcal{U}$ whenever $u_1, u_2, \ldots, u_k \in \mathcal{U}$ and $\alpha_1, \alpha_2, \ldots, \alpha_k, \beta_1, \beta_2, \ldots, \beta_k \in \mathcal{F}$ with $\sum_{i=1}^{k} \|\alpha_i\|^2 \leq 1$ and $\sum_{i=1}^{k} \|\beta_i\|^2 \leq 1$. If the property holds true only for k = 1 then we say \mathcal{U} is \mathcal{F} -circled. **Theorem 2.2.** The open unit ball of a non-degenerate normed \mathcal{F} -bimodule $(\mathcal{V}, \|\cdot\|)$ is absolutely \mathcal{F} -convex and absorbing.

PROOF: Let \mathcal{U} denote the open unit ball of $(\mathcal{V}, \|\cdot\|)$. Let $u_1, u_2, \ldots, u_k \in \mathcal{U}$ and $\alpha_1, \alpha_2, \ldots, \alpha_k, \beta_1, \beta_2, \ldots, \beta_k \in \mathcal{F}$ with $\sum_{i=1}^k \|\alpha_i\|^2 \leq 1$ and $\sum_{i=1}^k \|\beta_i\|^2 \leq 1$. Consider $u = \sum_{i=1}^k \alpha_i u_i \beta_i$. Then

$$\|u\| = \left\|\sum_{i=1}^{k} \alpha_{i} u_{i} \beta_{i}\right\| \leq \sum_{i=1}^{k} \|\alpha_{i}\| \|u_{i}\| \|\beta_{i}\| < \sum_{i=1}^{k} \|\alpha_{i}\| \|\beta_{i}\|$$
$$\leq \left(\sum_{i=1}^{k} \|\alpha_{i}\|^{2}\right)^{1/2} \left(\sum_{i=1}^{k} \|\beta_{i}\|^{2}\right)^{1/2} \leq 1.$$

Therefore $u \in \mathcal{U}$. Thus \mathcal{U} is absolutely \mathcal{F} -convex. To show that \mathcal{U} is absorbing consider a $v \in \mathcal{V}$ and $\epsilon > 0$. Put $v_1 = \frac{v}{(\|v\| + \epsilon)}$. Then $v_1 \in \mathcal{U}$ and $v = v_1(\|v\| + \epsilon)$. Therefore \mathcal{U} is absorbing.

The following theorem completes the characterization of \mathcal{F} -bimodule norms among norms on \mathcal{V} .

Theorem 2.3. Let $\mathcal{A} \subset \mathcal{V}$ be absolutely \mathcal{F} -convex and absorbing. Then the gauge of \mathcal{A} ,

$$p(v) = \inf \left\{ k > 0 \mid v \in k\mathcal{A} \right\}$$

determines an \mathcal{F} -bimodule semi-norm on \mathcal{V} .

PROOF: First we note that $p(v) \geq 0$ for all $v \in \mathcal{V}$. From the definition, we get that p(kv) = |k|p(v) for all $k \in \mathcal{C}$. We now show that $p(v+w) \leq p(v) + p(w)$ for all $v, w \in \mathcal{V}$. Let $v, w \in \mathcal{V}$ and $S\epsilon > 0$. Then there exist $k_1, k_2 > 0$ such that $k_1 < p(v) + \frac{\epsilon}{2}$ with $v \in k_1\mathcal{A}$ and $k_2 < p(w) + \frac{\epsilon}{2}$ with $w \in k_2\mathcal{A}$. We show that $v + w \in (k_1 + k_2)\mathcal{A}$. We set $\alpha = \frac{k_1}{k_1 + k_2}, \ \beta = \frac{k_2}{k_1 + k_2}$. Then $\alpha + \beta = 1$. Also $\frac{\alpha v}{k_1} = \frac{v}{k_1 + k_2}, \ \frac{\beta w}{k_2} = \frac{w}{k_1 + k_2}$. Thus we get $\frac{\alpha v}{k_1} + \frac{\beta w}{k_2} = \frac{v + w}{k_1 + k_2}$. As \mathcal{A} is absolutely \mathcal{F} -convex, it is convex. Thus $v + w \in (k_1 + k_2)\mathcal{A}$. It follows that

$$p(v+w) \le k_1 + k_2 < p(v) + p(w) + \epsilon$$

As $\epsilon > 0$ is arbitrary we get that $p(v + w) \leq p(v) + p(w)$. Next, we show that $p(\alpha v\beta) \leq \|\alpha\| p(v) \|\beta\|$ for all $\alpha, \beta \in \mathcal{F}, v \in \mathcal{V}$. First, let $v \in \mathcal{A}$. Then $p(v) \leq 1$. Let $\alpha, \beta \in \mathcal{F}$ with $\|\alpha\| \leq 1$, $\|\beta\| \leq 1$. Since \mathcal{A} is absolutely \mathcal{F} -convex, $\alpha v\beta \in \mathcal{A}$. Therefore $p(\alpha v\beta) \leq 1$. Now let $v \in \mathcal{V}$ and $\alpha, \beta \in \mathcal{F}, \epsilon > 0$. Put $v_1 = \frac{v}{p(v) + \epsilon}$. Then $p(v_1) = \frac{p(v)}{p(v) + \epsilon} < 1$. That is $v_1 \in \mathcal{A}$. Without loss of generality we may take $\alpha \neq 0, \beta \neq 0$. Let $\alpha_1 = \frac{\alpha}{\|\alpha\|}, \beta_1 = \frac{\beta}{\|\beta\|}$. Then $p(\alpha_1 v_1 \beta_1) \leq 1$ so that $p(\alpha v\beta) \leq \|\alpha\| (p(v) + \epsilon) \|\beta\|$. As $\epsilon > 0$ is arbitrary we get

$$p(\alpha v\beta) \le \|\alpha\| \left(p(v) \right) \|\beta\|$$

Hence $p(\cdot)$ is a \mathcal{F} -semi-norm on \mathcal{V} .

In the rest of the paper we will be dealing with non-degenerate ordered \mathcal{F} -bimodules. We introduce some more notations.

We write $I_n = \sum_{i=1}^n e_{ii}$, $J_n = \sum_{i=1}^n e_{i,n+i}$ for any $n \in \mathbb{N}$. Note that $||I_n|| = ||J_n|| = 1$ and $J_n I_n = 0$, $I_n J_n = J_n$, $J_n J_n = 0$, $J_n J_n^* = I_n$. Let $(\mathcal{V}, \mathcal{V}^+)$ be a non-degenerate ordered \mathcal{F} -bimodule ([6]). Let $u_1, u_2 \in \mathcal{V}^*$ and $n \in \mathbb{N}$ such that $1_n u_1 1_n = u_1$, $1_n u_2 1_n = u_2$. We denote $u_1 + J_n^* u_2 J_n$ by $(u_1, u_2)_n^+$. For any $v \in \mathcal{V}$ and an $n \in \mathbb{N}$ with $1_n v 1_n = v$ we denote $I_n v J_n + J_n^* v^* I_n$ by $sa_n(v)$.

Before we define \mathcal{F} -Riesz norm, we need the following reformulation of the concept that \mathcal{V}^+ is generating.

Proposition 2.4. Let $(\mathcal{V}, \mathcal{V}^+)$ be a non-degenerate ordered \mathcal{F} -bimodule. Then \mathcal{V}^+ is generating if and only if for every $v \in \mathcal{V}$ there exist $u_1, u_2 \in \mathcal{V}^+$ such that $(u_1, u_2)_n^+ \pm sa_n(v) \in \mathcal{V}^+$, for a suitable $n \in \mathbb{N}$.

Note. In the notation $(u_1, u_2)_n^+ \pm sa_n(v) \in \mathcal{V}^+$, we say that $n \in \mathbb{N}$ is "suitable" provided $1_n u_1 1_n = u_1$, $1_n u_2 1_n = u_2$ and $1_n v 1_n = v$. This terminology will be used throughout the paper without any further explanation.

PROOF: First, let \mathcal{V}^+ be generating. Let $v \in \mathcal{V}_{sa}$. Then by [6, Theorem 3.10] there exist $v_1, v_2 \in \mathcal{V}^+$ such that $v = v_1 - v_2$. Put $u = v_1 + v_2$. Then $u \in \mathcal{V}^+$ and $u \pm v \in \mathcal{V}^+$. Next let $v \in \mathcal{V}$ be arbitrary. Find an $n \in \mathbb{N}$ such that $1_nv1_n = v$. Consider $sa_n(v)$: $sa_n(v) = I_nvJ_n + J_n^*v^*I_n \in \mathcal{V}_{sa}$. Then as above there exists a $u \in \mathcal{V}^+$ such that $u \pm sa_n(v) \in \mathcal{V}^+$. Let $u' = I_{2n}uI_{2n} \in \mathcal{V}^+$. Then $u' \pm sa_n(v) \in \mathcal{V}^+$ for $I_{2n}sa_n(v)I_{2n} = sa_n(v)$. Set $u_1 = I_nu'I_n$, $u_2 = J_nu'J_n^*$. Then $(u_1, u_2)_n^+ = I_nu'I_n + J_n^* \left(J_nu'J_n^*\right)J_n$. We show that $(u_1, u_2)_n^+ \pm sa_n(v) \in \mathcal{V}^+$. Note that

(1)
$$I_n u' I_n - I_n u' J_n^* J_n - J_n^* J_n u' I_n + J_n^* J_n u' J_n^* J_n \mp sa_n(v)$$

= $(I_n - J_n^* J_n) \left(u' \pm sa_n(v) \right) (I_n - J_n^* J_n) \in \mathcal{V}^+.$

Similarly

(2)
$$I_n u' I_n + I_n u' J_n^* J_n + J_n^* J_n u' I_n + J_n^* J_n u' J_n^* J_n \pm sa_n(v)$$

= $(I_n + J_n^* J_n) \left(u' \pm sa_n(v) \right) (I_n + J_n^* J_n) \in \mathcal{V}^+.$

Adding (1) and (2) suitably, we get

$$(u_1, u_2)_n^+ \pm sa_n(v) = I_n u' I_n + J_n^* \left(J_n u' J_n^* \right) J_n \pm sa_n(v) \in \mathcal{V}^+.$$

 \square

Conversely assume that for every $v \in \mathcal{V}$ there exist $u_1, u_2 \in \mathcal{V}^+$ such that $(u_1, u_2)_n^+ \pm sa_n(v) \in \mathcal{V}^+$, for a suitable $n \in \mathbb{N}$. We show that \mathcal{V}^+ is generating. Let $v \in \mathcal{V}$. Then there exist $u_1, u_2 \in \mathcal{V}^+$ such that $(u_1, u_2)_n^+ \pm sa_n(v) \in \mathcal{V}^+$, for a suitable $n \in \mathbb{N}$. Therefore

$$(I_n + J_n) \left((u_1, u_2)_n^+ \pm s a_n(v) \right) (I_n + J_n^*) \in \mathcal{V}^+.$$

This gives $u_1 + u_2 \pm (v + v^*) \in \mathcal{V}^+$. Similarly

$$(I_n + iJ_n)\left((u_1, u_2)_n^+ \pm sa_n(v)\right)(I_n - iJ_n^*) \in \mathcal{V}^+$$

which gives $u_1 + u_2 \pm i (v - v^*) \in \mathcal{V}^+$. Put

$$v_{0} = \frac{1}{4} (u_{1} + u_{2} + v + v^{*}),$$

$$v_{1} = \frac{1}{4} (u_{1} + u_{2} - i(v - v^{*})),$$

$$v_{2} = \frac{1}{4} (u_{1} + u_{2} - v - v^{*}),$$

$$v_{3} = \frac{1}{4} (u_{1} + u_{2} + i(v - v^{*})).$$

Then $v_0, v_1, v_2, v_3 \in \mathcal{V}^+$ and we have

$$v_0 + iv_1 - v_2 - iv_3 = v.$$

Hence \mathcal{V}^+ is generating.

Definition 2.5. Let $(\mathcal{V}, \mathcal{V}^+)$ be a positively generated non-degenerate ordered \mathcal{F} -bimodule. Let $\|\cdot\|$ be an \mathcal{F} -bimodule norm on \mathcal{V} . We say $\|\cdot\|$ is an \mathcal{F} -Riesz norm on \mathcal{V} if for any $v \in \mathcal{V}$,

$$||v|| = \inf\{\max(||u_1||, ||u_2||) \mid (u_1, u_2)_N^+ \pm sa_N(v) \in \mathcal{V}^+$$
for some $u_1, u_2 \in \mathcal{V}^+$ and a suitable $N \in \mathbb{N}\}.$

In what follows we characterize \mathcal{F} -Riesz norms on a non-degenerate positively ordered \mathcal{F} -bimodule in the lines of Theorem 2.2.

Definition 2.6. Let $(\mathcal{V}, \mathcal{V}^+)$ be an ordered \mathcal{F} -bimodule and $\mathcal{A} \subset \mathcal{V}^+$. We define $\mathcal{S}(\mathcal{A})$ as follows:

$$\mathcal{S}(\mathcal{A}) = \{ v \in \mathcal{V} \mid (u_1, u_2)_N^+ \pm sa_N(v) \in \mathcal{V}^+ \\ \text{for some } u_1, u_2 \in \mathcal{A} \text{ and a suitable } N \in \mathbb{N} \}.$$

Remarks.

(a) $\mathcal{A} \subset \mathcal{S}(\mathcal{A})$. (b) $v^* \in \mathcal{S}(\mathcal{A})$ whenever $v \in \mathcal{S}(\mathcal{A})$.

Definition 2.7. Let $\mathcal{A} \subset \mathcal{V}^+$. Then we say that \mathcal{A} is order absolutely \mathcal{F} -convex if $\sum_{i=1}^k \alpha_i^* u_i \alpha_i \in \mathcal{A}$ whenever $u_1, u_2, \ldots, u_k \in \mathcal{A}$ and $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathcal{F}$ with $\sum_{i=1}^k \|\alpha_i^* \alpha_i\| \leq 1$.

If the above condition holds only for k = 1 for some $\mathcal{A} \subset \mathcal{V}^+$, then we say \mathcal{A} is order \mathcal{F} -circled.

Definition 2.8. $S \subset V^+$ is called \mathcal{F} -absorbing if for each $v \in V$ there exist $\alpha, \beta \in \mathcal{F}$ such that $\alpha v \beta \in S$.

Definition 2.9. $S \subset V^+$ is called *positively* \mathcal{F} -absorbing if for each $u \in V^+$ there exists a $\alpha \in \mathcal{F}$ such that $\alpha^* u \alpha \in \mathcal{S}$.

Lemma 2.10. Let $\mathcal{A} \subset \mathcal{V}^+$ be order absolutely \mathcal{F} -convex. Then $\mathcal{S}(\mathcal{A})$ is absolutely \mathcal{F} -convex.

PROOF: Let $v_1, v_2, \ldots, v_k \in \mathcal{S}(\mathcal{A})$ and let $\alpha_1, \alpha_2, \ldots, \alpha_k, \beta_1, \beta_2, \ldots, \beta_k \in \mathcal{F}$ with $\sum_{i=1}^k \|\alpha_i\|^2 \leq 1$ and $\sum_{i=1}^k \|\beta_i\|^2 \leq 1$. Then for each $i = 1, 2, \ldots, k$ there exist $N_i \in \mathbb{N}, u_1^i, u_2^i \in \mathcal{A}$ with $1_{N_i} v_i 1_{N_i} = v_i, 1_{N_i} u_1^i 1_{N_i} = u_1^i, 1_{N_i} u_2^i 1_{N_i} = u_2^i$ with $(u_1^i, u_2^i)_{N_i}^+ \pm sa_{N_i}(v_i) \in \mathcal{V}^+$. Now $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathcal{F}$. Therefore there exist $M_1, M_2, \ldots, M_k \in \mathbb{N}$ such that $1_{M_i} \alpha_i 1_{M_i} = \alpha_i, i = 1, 2, \ldots, k$. Also $\beta_1, \beta_2, \ldots, \beta_k \in \mathcal{F}$. Therefore there exist $P_1, P_2, \ldots, P_k \in \mathbb{N}$ such that $1_{P_i} \beta_i 1_{P_i} = \beta_i, i = 1, 2, \ldots, k$. Let $N = \max\{N_1, N_2, \ldots, N_k, M_1, \ldots, M_k, P_1, \ldots, P_k\}$. Then for each $i = 1, 2, \ldots, k$ we have $(u_1^i, u_2^i)_N^+ \pm sa_N(v_i) \in \mathcal{V}^+$. Now $((\alpha_i^*, \beta_i)_N^+)^* ((u_1^i, u_2^i)_N^+ \pm sa_N(v_i)) ((\alpha_i^*, \beta_i)_N^+) \in \mathcal{V}^+$ for all $i = 1, 2, \ldots, k$. This means $(\alpha_i u_1^i \alpha_i^*, \beta_i^* u_2^i \beta_i)_N^+ \pm sa_N (\alpha_i v_i \beta_i) \in \mathcal{V}^+$ for each $i = 1, 2, \ldots, k$. Adding $(\sum_{i=1}^k \alpha_i u_1^i \alpha_i^*, \sum_{i=1}^k \beta_i^* u_2^i \beta_i)_N^+ \pm sa_N (\sum_{i=1}^k \alpha_i v_i \beta_i) \in \mathcal{V}^+$. Since \mathcal{A} is absolutely convex and $\sum_{i=1}^k \|\beta_i\|^2 \leq 1$ and $\sum_{i=1}^k \|\beta_i\|^2 \leq 1$ we have $\sum_{i=1}^k \alpha_i u_1^i \alpha_i^* \in \mathcal{A}$ and $\sum_{i=1}^k \beta_i^* u_2^i \beta_i \in \mathcal{A}$. Therefore $\sum_{i=1}^k \alpha_i v_i \beta_i \in \mathcal{S}(\mathcal{A})$. Therefore $\mathcal{S}(\mathcal{A})$ is absolutely \mathcal{F} -convex.

Lemma 2.11. Let \mathcal{V}^+ be generating. Then $\mathcal{S}(\mathcal{A})$ is \mathcal{F} -absorbing if $\mathcal{A} \subset \mathcal{V}^+$ is positively \mathcal{F} -absorbing.

PROOF: Let $\mathcal{A} \subset \mathcal{V}^+$ be positively \mathcal{F} -absorbing. Let $v \in \mathcal{V}$. Since \mathcal{V}^+ is generating, by Proposition 2.4, there exist $u_1, u_2 \in \mathcal{V}^+$ and a suitable $N \in \mathbb{N}$ such that $(u_1, u_2)_N^+ \pm sa_N(v) \in \mathcal{V}^+$. Since \mathcal{A} is positively \mathcal{F} -absorbing and $u_1, u_2 \in \mathcal{V}^+$ there exist $\alpha, \beta \in \mathcal{F}$ such that $\alpha^* u_1 \alpha \in \mathcal{A}, \ \beta^* u_2 \beta \in \mathcal{A}$. Find $M \in \mathbb{N}$ such that $1_M u_1 1_M = u_1, \ 1_M u_2 1_M = u_2, \ 1_M v 1_M = v, \ 1_M \alpha 1_M = \alpha$, $1_M\beta 1_M = \beta. \text{ Then } \left((\alpha, \beta)_M^+ \right)^* \left((u_1, u_2)_M^+ \pm sa_M(v) \right) (\alpha, \beta)_M^+ \in \mathcal{V}^+. \text{ This gives} \\ (\alpha^* u_1 \alpha, \beta^* u_2 \beta)_M^+ \pm sa_M(\alpha^* v\beta) \in \mathcal{V}^+. \text{ Since } \alpha^* u_1 \alpha \in \mathcal{A} \text{ and } \beta^* u_2 \beta \in \mathcal{A}, \text{ we get} \\ \alpha^* v\beta \in \mathcal{S}(\mathcal{A}). \text{ Hence } \mathcal{S}(\mathcal{A}) \text{ is } \mathcal{F}\text{-absorbing.} \qquad \Box$

Some more concepts will be needed in the sequel.

Definition 2.12. Let $\mathcal{A} \subset \mathcal{V}^+$. \mathcal{A} is called *positively bounded* if for any $v \in \mathcal{V}_{sa}$, $v + k_n a_n \in \mathcal{V}^+$ for all $n \in \mathbb{N}$ implies $v \in \mathcal{V}^+$, where $\{a_n\}$ is a sequence in \mathcal{A} and $\{k_n\}$ is a sequence in $(0, \infty)$ with inf $k_n = 0$.

Definition 2.13. Let $\mathcal{A} \subset \mathcal{V}^+$. \mathcal{A} is called almost positively bounded if $(k_n u_1^n, k_n u_2^n)_{N_n}^+ \pm sa_{N_n}(v) \in \mathcal{V}^+$ for all $n \in \mathbb{N}$ implies v = 0 where $\{u_1^n\}, \{u_2^n\}$ are sequences in \mathcal{A} and $\{k_n\}$ is a sequence in $(0, \infty)$ with $\inf k_n = 0, \{N_n\}$ is a sequence in \mathbb{N} .

Lemma 2.14. Let \mathcal{V}^+ be proper. Let $\mathcal{A} \subset \mathcal{V}^+$ be order absolutely \mathcal{F} -convex and positively bounded. Then \mathcal{A} is almost positively bounded.

PROOF: Let $v \in \mathcal{V}$, sequences $\{u_1^n\}$, $\{u_2^n\}$ be in \mathcal{A} , $\{k_n\}$ be a sequence in $(0, \infty)$ with $\lim_{n \to \infty} k_n = 0$ and $\{N_n\}$ be a sequence in \mathbb{N} such that

$$Z_{N_n} = (k_n u_1^n, k_n u_2^n)_{N_n}^+ \pm sa_{N_n}(v) \in \mathcal{V}^+$$

for all $n \in \mathbb{N}$. Then

(1)
$$(I_{N_n} + J_{N_n}) Z_{N_n} (I_{N_n} + J_{N_n})^* = k_n u_1^n + k_n u_2^n \pm (v + v^*)$$

and

(2)
$$(I_{N_n} + iJ_{N_n}) Z_{N_n} (I_{N_n} + iJ_{N_n})^* = k_n u_1^n + k_n u_2^n \pm i (v - v^*).$$

Put $u_1^n + u_2^n = 2u_n$ for all $n \in \mathbb{N}$. From (1) and (2) we get

(3)
$$k_n u_n \pm \operatorname{Re}(v), \ k_n u_n \pm \operatorname{Im}(v) \in \mathcal{V}^+.$$

Since \mathcal{A} is convex as it is order absolutely \mathcal{F} -convex, $u_n \in \mathcal{A}$ for all $n \in \mathbb{N}$. As \mathcal{A} is positively bounded, from (3) we get $\pm \operatorname{Re} v, \pm \operatorname{Im} v \in \mathcal{V}^+$. Finally as \mathcal{V}^+ is proper, we have $\operatorname{Re} v = 0$, $\operatorname{Im} v = 0$. That is v = 0. Hence \mathcal{A} is almost positively bounded.

Remark. It may be noted that the notion of (almost-)positively bounded sets is introduced to generalize the notion of (almost-)Archimedean property of the cone ([5]).

Now we are in a position to characterize \mathcal{F} -Riesz norms.

Theorem 2.15. Let $(\mathcal{V}, \mathcal{V}^+)$ be a non-degenerate positively generated ordered \mathcal{F} -bimodule. Let $\mathcal{A} \subset \mathcal{V}^+$ be order absolutely \mathcal{F} -convex, almost positively bounded and positively \mathcal{F} -absorbing. Also assume that $\mathcal{S}(\mathcal{A}) \cap \mathcal{V}^+ = \mathcal{A}$. Let $p(\cdot)$ be the gauge of $\mathcal{S}(\mathcal{A})$. Then $p(\cdot)$ is an \mathcal{F} -Riesz norm on \mathcal{V} .

Conversely, let $\|\cdot\|$ be an \mathcal{F} -Riesz norm on \mathcal{V} where $(\mathcal{V}, \mathcal{V}^+)$ is a positively generated ordered \mathcal{F} -bimodule. Also let $\mathcal{U}^+ = \{v \in \mathcal{V}^+ \mid \|v\| < 1\} = \mathcal{U} \cap \mathcal{V}^+$, where \mathcal{U} is the open unit ball of $(\mathcal{V}, \|\cdot\|)$. Then \mathcal{U}^+ is order absolutely \mathcal{F} -convex, almost positively bounded and positively \mathcal{F} -absorbing.

PROOF: First assume that $(\mathcal{V}, \mathcal{V}^+)$ is a non-degenerate positively generated ordered \mathcal{F} -bimodule. Let $\mathcal{A} \subset \mathcal{V}^+$ be order absolutely \mathcal{F} -convex, almost positively bounded and positively \mathcal{F} -absorbing. Also assume that $\mathcal{S}(\mathcal{A}) \cap \mathcal{V}^+ = \mathcal{A}$. Let $p(\cdot)$ be the gauge of $\mathcal{S}(\mathcal{A})$. We show that $p(\cdot)$ is an \mathcal{F} -Riesz norm on \mathcal{V} . In the light of Theorem 2.3, Lemmas 2.10 and 2.11 we note that $p(\cdot)$ is a \mathcal{F} -semi-norm on \mathcal{V} . Let $v \in \mathcal{V}$. We show that

$$p(v) = \inf \{ \max(p(u_1), p(u_2)) \mid (u_1, u_2)_N^+ \pm sa_N(v) \in \mathcal{V}^+$$
for some $u_1, u_2 \in \mathcal{V}^+$ and a suitable $N \in \mathbb{N} \}$.

Since $\mathcal{S}(\mathcal{A})$ is \mathcal{F} -absorbing there exists some $\lambda > 0$ such that $\lambda v \in \mathcal{S}(\mathcal{A})$. This gives some $u_1, u_2 \in \mathcal{A}$ and a $N \in \mathbb{N}$ such that $(u_1, u_2)_N^+ \pm sa_N(\lambda v) \in \mathcal{V}^+$. That is $(\lambda^{-1}u_1, \lambda^{-1}u_2)_N^+ \pm sa_N(v) \in \mathcal{V}^+$. Also $p(\lambda^{-1}u_1) = \lambda^{-1}p(u_1)$. Since $p(\cdot)$ is the gauge of $\mathcal{S}(\mathcal{A})$ and $\mathcal{S}(\mathcal{A}) \cap \mathcal{V}^+ = \mathcal{A}$, we have $p(u_1) \leq 1$ and $p(u_2) \leq 1$. Therefore $p(\lambda^{-1}u_1) \leq \lambda^{-1}, \ p(\lambda^{-1}u_2) \leq \lambda^{-1}$. That is $\max\{p(\lambda^{-1}u_1), p(\lambda^{-1}u_2)\} \leq \lambda^{-1}$. Let $\epsilon > 0$. Then $(p(v) + \epsilon)^{-1}v \in \mathcal{S}(\mathcal{A})$. Replacing λ by $(p(v) + \epsilon)$ in the above discussion, there exist $u_1, u_2 \in \mathcal{V}^+$ and some $N \in \mathbb{N}$ such that $(u_1, u_2)_N^+ \pm sa_N(\lambda v) \in \mathcal{V}^+$ and $\max\{p(u_1), p(u_2)\} \leq (p(v) + \epsilon)$. That is,

$$p(v) \ge \inf\{\max(p(u_1), p(u_2)) \mid (u_1, u_2)_N^+ \pm sa_N(v) \in \mathcal{V}^+$$

for some $u_1, u_2 \in \mathcal{V}^+$ and a suitable $N \in \mathbb{N}\}$

Let $u_1, u_2 \in \mathcal{V}^+$ and $(u_1, u_2)_N^+ \pm sa_N(v) \in \mathcal{V}^+$ for some $N \in \mathbb{N}$. Find a $\lambda > 0$ such that $\lambda u_1, \lambda u_2 \in \mathcal{S}(\mathcal{A})$. This gives $(\lambda u_1, \lambda u_2)_N^+ \pm sa_N(\lambda v) \in \mathcal{V}^+$. Since $\mathcal{S}(\mathcal{A}) \cap \mathcal{V}^+ = \mathcal{A}$, we get $\lambda u_1, \lambda u_2 \in \mathcal{A}$. That is $\lambda v \in \mathcal{S}(\mathcal{A})$. Therefore $p(v) \leq \lambda^{-1}$. Let $\epsilon > 0$. Put $\lambda = (\max\{p(u_1), p(u_2)\} + \epsilon)^{-1}$. Then $\lambda u_1, \lambda u_2 \in \mathcal{S}(\mathcal{A})$ so that $p(v) \leq \max\{p(u_1), p(u_2)\} + \epsilon$. This gives

$$p(v) \le \inf\{\max(p(u_1), p(u_2)) \mid (u_1, u_2)_N^+ \pm sa_N(v) \in \mathcal{V}^+$$
for some $u_1, u_2 \in \mathcal{V}^+$ and a suitable $N \in \mathbb{N}\}.$

Therefore $p(\cdot)$ is \mathcal{F} -Riesz semi-norm on \mathcal{V} . Now let $v \in \mathcal{V}$ be such that p(v) = 0. Then there is a sequence $\{k_n\}$ in $(0, \infty)$ with $\inf k_n = 0$ such that $k_n^{-1}v \in \mathcal{S}(\mathcal{A})$. Thus for every $n \in \mathbb{N}$, there exist $u_1^n, u_2^n \in \mathcal{A}$ such that $(u_1^n, u_2^n)_{N_n}^+ \pm sa_{N_n}(k_n^{-1}v) \in \mathcal{V}^+$ for suitable $N_n \in \mathbb{N}$. This means that $(k_n u_1^n, k_n u_2^n)_{N_n}^+ \pm sa_{N_n}(v) \in \mathcal{V}^+$. Since \mathcal{A} is almost positively bounded, we get v = 0. Hence $p(\cdot)$ is an \mathcal{F} -Riesz norm on \mathcal{V} .

Conversely, let $\|\cdot\|$ be an \mathcal{F} -Riesz norm on \mathcal{V} where $(\mathcal{V}, \mathcal{V}^+)$ is a positively generated ordered \mathcal{F} -bimodule. Also let $\mathcal{U}^+ = \{v \in \mathcal{V}^+ \mid \|v\| < 1\} = \mathcal{U} \cap \mathcal{V}^+$, where \mathcal{U} is the open unit ball of $(\mathcal{V}, \|\cdot\|)$. We show that \mathcal{U}^+ is order absolutely \mathcal{F} -convex, almost positively bounded and positively \mathcal{F} -absorbing.

Let $u \in \mathcal{U}$. Find an $\epsilon > 0$ such that $||u|| + \epsilon < 1$. Since $||\cdot||$ is an \mathcal{F} -Riesz norm there exist $u_1, u_2 \in \mathcal{V}^+$, a suitable $N \in \mathbb{N}$ such that $(u_1, u_2)_N^+ \pm sa_N(u) \in \mathcal{V}^+$ and $\max\{||u_1||, ||u_2||\} < ||u|| + \epsilon < 1$. That is $||u_1|| < 1, ||u_2|| < 1$. This means $u_1, u_2 \in \mathcal{U}^+$. That is $u \in \mathcal{S}(\mathcal{A})$. Thus $\mathcal{U} \subset \mathcal{S}(\mathcal{U}^+)$. Let $v \in \mathcal{S}(\mathcal{U}^+)$. Then there exist $u_1, u_2 \in \mathcal{U}^+$ and a suitable $N \in \mathbb{N}$ such that $(u_1, u_2,)_N^+ \pm sa_N(v) \in \mathcal{V}^+$. Since $||\cdot||$ is an \mathcal{F} -Riesz norm, we have $||v|| \le \max\{||u_1||, ||u_2||\} < 1$. Therefore $v \in \mathcal{U}$ or $\mathcal{S}(\mathcal{U}^+) \subset \mathcal{U}$. Therefore $\mathcal{S}(\mathcal{U}^+) = \mathcal{U}$. Next, let $u_1, u_2, \ldots, u_k \in \mathcal{U}^+$ and $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathcal{F}$ with $\sum_{i=1}^k ||\alpha_i^* \alpha_i|| \le 1$. Put $u = \sum_{i=1}^k \alpha_i^* u_i \alpha_i$. Then $u \in \mathcal{V}$ and

$$||u|| \le \sum_{i=1}^{k} ||\alpha_i||^2 ||u_i|| < \sum_{i=1}^{k} ||\alpha_i||^2 \le 1.$$

It follows \mathcal{U}^+ is order absolutely \mathcal{F} -convex. We now prove that \mathcal{U}^+ is almost positively bounded. Let $v \in \mathcal{V}$ and sequences $\{u_1^n\}, \{u_2^n\}$ be in \mathcal{U}^+ and $\{k_n\}$ in $(0,\infty)$ with $\inf k_n = 0$ and $\{N_n\}$ a sequence in \mathbb{N} such that $(k_n u_1^n, k_n u_2^n)_{N_n}^+ \pm sa_{N_n}(v) \in \mathcal{V}^+$ for all $n \in \mathbb{N}$. We show that $\|v\| = 0$. Let $\epsilon > 0$. Since $\inf k_n = 0$ there exists a $n_0 \in \mathbb{N}$ such that $k_{n_0} < \epsilon$. As $\|\cdot\|$ is an \mathcal{F} -Riesz norm and $\|u_1^{n_0}\| < 1$, $\|u_2^{n_0}\| < 1$, we have $\|v\| \leq \max\{\|k_{n_0}u_1^{n_0}\|, \|k_{n_0}u_2^{n_0}\|\} < k_{n_0} < \epsilon$. Since $\epsilon > 0$ is arbitrary, $\|v\| = 0$. Since $\|\cdot\|$ is a norm, v = 0. Hence \mathcal{U}^+ is almost-positively bounded. Finally, let $v \in \mathcal{V}^+$ and $\epsilon > 0$. Put $\alpha = (\|v\| + \epsilon)^{-\frac{1}{2}} \mathbf{1}_n$ where $\mathbf{1}_n v \mathbf{1}_n = v$. Then $\alpha^* v \alpha = \frac{1}{(\|v\| + \epsilon)} \mathbf{1}_n v \mathbf{1}_n = \frac{v}{(\|v\| + \epsilon)} \in \mathcal{U}^+$. Therefore \mathcal{U}^+ is positively \mathcal{F} absorbing. \Box

Theorem 2.16. Let $(\mathcal{V}, \mathcal{V}^+)$ be a non-degenerate ordered \mathcal{F} -bimodule. Let \mathcal{V}^+ be proper and generating. Let $\mathcal{A} \subset \mathcal{V}^+$ be order absolutely \mathcal{F} -convex, positively bounded and \mathcal{F} -absorbing. Assume that $\mathcal{S}(\mathcal{A}) \cap \mathcal{V}^+ = \mathcal{A}$. Let $p(\cdot)$ be the gauge of $\mathcal{S}(\mathcal{A})$. Then $p(\cdot)$ is an \mathcal{F} -Riesz norm on \mathcal{V} such that \mathcal{V}^+ is p-closed.

Conversely, let $(\mathcal{V}, \mathcal{V}^+)$ be an ordered \mathcal{F} -bimodule and \mathcal{V}^+ be generating. Let $\|\cdot\|$ be an \mathcal{F} -Riesz norm on \mathcal{V} such that \mathcal{V}^+ is closed. Let $\mathcal{U}^+ = \{v \in \mathcal{V}^+ \mid \|v\| < 1\}$. Then \mathcal{U}^+ is order absolutely \mathcal{F} -convex, positively bounded and positively \mathcal{F} -absorbing such that $\mathcal{S}(\mathcal{U}^+) \cap \mathcal{V}^+ = \mathcal{U}^+$. Moreover \mathcal{V}^+ is proper.

PROOF: First assume that \mathcal{V}^+ is proper and generating. Let $\mathcal{A} \subset \mathcal{V}^+$ be order absolutely \mathcal{F} -convex, positively bounded and \mathcal{F} -absorbing. Assume that $\mathcal{S}(\mathcal{A}) \cap$ $\mathcal{V}^+ = \mathcal{A}$. Let $p(\cdot)$ be the gauge of $\mathcal{S}(\mathcal{A})$. We show that $p(\cdot)$ is an \mathcal{F} -Riesz norm on \mathcal{V}^+ such that \mathcal{V}^+ is *p*-closed. In the light of Lemma 2.14 and Theorem 2.15 it suffices to prove that \mathcal{V}^+ is *p*-closed. We shall show that $\mathcal{V}_{sa} \setminus \mathcal{V}^+$ is *p*-open. Define for $v \in \mathcal{V}_{sa}$,

$$r(v) = \inf\{\alpha \in \mathcal{R} \mid v + \alpha a \in \mathcal{V}^+ \text{ for some } a \in \mathcal{A}\}.$$

We first show that $r(v) \leq 0$ if and only if $v \in \mathcal{V}^+$. Let $v \in \mathcal{V}^+$. Then $v + 0a \in \mathcal{V}^+$ for all $a \in \mathcal{A}$. That is $r(v) \leq 0$. To show the other way let $r(v) \leq 0$. Then for every $n \in \mathbb{N}$ there exists an $a_n \in \mathcal{A}$ such that $v + (r(v) + \frac{1}{n})a_n \in \mathcal{V}^+$. Also $v + (r(v) + \frac{1}{n})a_n \leq v + (\frac{1}{n})a_n$ as $r(v) \leq 0$. That is $v + (\frac{1}{n})a_n \in \mathcal{V}^+$ for every $n \in \mathbb{N}$. As \mathcal{A} is positively bounded, $v \in \mathcal{V}^+$. We now show that $p(v) - r(v) \geq 0$ for all $v \in \mathcal{V}_{sa}$. Suppose p(v) - r(v) < 0 for some $v \in \mathcal{V}_{sa}$. Put $\epsilon = \frac{1}{2}(r(v) - p(v)) > 0$. Since $p(\cdot)$ is \mathcal{F} -Riesz norm on \mathcal{V} , there exists an $a \in \mathcal{A}$ such that $(p(v) + \epsilon)a \pm v \in \mathcal{V}^+$. Then $(r(v) - \epsilon)a \pm v \in \mathcal{V}^+$. In particular $(r(v) - \epsilon)a + v \in \mathcal{V}^+$. This contradicts the definition of r(v). Thus $p(v) \geq r(v)$ for all $v \in \mathcal{V}_{sa}$. Finally we show that $\mathcal{V}_{sa} \setminus \mathcal{V}^+$ is p-open. Let $v \in \mathcal{V}_{sa}, v \notin \mathcal{V}^+$. Since $v \notin \mathcal{V}^+$, r(v) > 0. Let $\delta = \frac{1}{2}r(v)$. Let $\mathcal{D} = \{w \in \mathcal{V}_{sa} \mid p(v - w) < \delta\}$. Let $w \in \mathcal{D}$. Then $\delta > p(v - w) \geq r(v - w)$. So there exists an $a \in \mathcal{A}$ such that $\delta a + (v - w) \in \mathcal{V}^+$. If $w \in \mathcal{V}^+$, then $\delta a + v \in \mathcal{V}^+$. Thus $r(v) \leq \delta = \frac{r(v)}{2}$, which is a contradiction. Therefore $w \notin \mathcal{V}^+$. That is $\mathcal{V}_{sa} \setminus \mathcal{V}^+$ is p-open.

For the converse it suffices to prove that \mathcal{U}^+ is positively bounded and that \mathcal{V}^+ is proper in light of Theorem 2.15. We show that \mathcal{U}^+ is positively bounded. Let $v \in \mathcal{V}^+$ and $w_n = v + k_n u_n \in \mathcal{V}^+$ for all $n \in \mathbb{N}$, where $\{u_n\}$ is a sequence in \mathcal{U}^+ and $\{k_n\}$ is a sequence in $(0, \infty)$ with $\inf k_n = 0$. Without loss of generality we can take $\{k_n\}$ to be decreasing. Now $\{w_n\}$ is a convergent sequence because $\|v - w_n\| = \|k_n u_n\| < k_n \longrightarrow 0$. Therefore $w_n \longrightarrow v$. Since \mathcal{V}^+ is closed, $v \in \mathcal{V}^+$. Therefore \mathcal{U}^+ is positively bounded.

Finally we show that \mathcal{V}^+ is proper. Let $\pm v \in \mathcal{V}^+$. Then as v is self-adjoint, $\|v\| = \inf\{\|u\| \mid u \in \mathcal{V}^+, u \pm v \in \mathcal{V}^+\}$. Also $0 \in \mathcal{V}^+$ and $0 \pm v \in \mathcal{V}^+$. That is $\|v\| \leq \|0\| = 0$. That is v = 0. Therefore \mathcal{V}^+ is proper.

Now we move to the final result of the paper.

Definition 2.17 (\mathcal{F} -Riesz normed bimodule). Let $(\mathcal{V}, \mathcal{V}^+)$ be a non-degenerate ordered \mathcal{F} -bimodule such that \mathcal{V}^+ is proper and generating. Assume that $\|\cdot\|$ is an \mathcal{F} -Riesz norm on \mathcal{V} such that \mathcal{V}^+ is norm closed. Then the triple $(\mathcal{V}, \mathcal{V}^+, \|\cdot\|)$ is called an \mathcal{F} -Riesz normed bimodule.

Definition 2.18 (Matricially Riesz normed space). Let $(V, \{M_n(V)^+\})$ be a positively generated matrix ordered space and suppose that $\{\|\cdot\|_n\}$ is a matrix norm on V. Then the triplet $(V, \{\|\cdot\|_n\}, \{M_n(V)^+\})$ is called a *matricially normed space* if for each $n \in \mathbb{N}, \|\cdot\|_n$ is a Riesz norm on $M_n(V)$ and $M_n(V)^+$ is closed.

Theorem 2.19. Let $(V, \{M_n(V)^+\}, \{\|\cdot\|_n\})$ be a matricially Riesz normed space. Let $(\mathcal{V}, \mathcal{V}^+)$ be the matricial inductive limit of the matrix ordered space $(V, \{M_n(V)^+\})$ and let $(\mathcal{V}, \|\cdot\|)$ be the matricial inductive limit of matrix normed space $(V, \{\|\cdot\|_n\})$. Then $(\mathcal{V}, \mathcal{V}^+, \|\cdot\|)$ is a non-degenerate \mathcal{F} -Riesz normed bimodule. Conversely, let $(\mathcal{W}, \mathcal{W}^+, \|\cdot\|)$ be a non-degenerate \mathcal{F} -Riesz normed bimodule. Let $W = 1_1 \mathcal{W} 1_1$ and $M_n(W)^+ = 1_n \mathcal{W}^+ 1_n$ and $\|\cdot\|_n = \|\cdot\||_{M_n(W)}$ for all $n \in \mathbb{N}$. Then $(W, \{M_n(W)^+\}, \{\|\cdot\|_n\})$ is a matricially Riesz normed space whose inductive limit is $(\mathcal{W}, \mathcal{W}^+, \|\cdot\|)$.

PROOF: Let $(V, \{M_n(V)^+\}, \{\|\cdot\|_n\})$ be a matricially Riesz normed space. We show that $\|\cdot\|$ is an \mathcal{F} -Riesz norm on \mathcal{V} . Let $v \in \mathcal{V}$. Then there exists a smallest $n \in \mathbb{N}$ such that $1_n v 1_n = v$. Then

$$||v|| = ||v||_n = \inf\{\max(||u_1||_n, ||u_2||_n) \mid (u_1, u_2)_n^+ \pm sa_n(v) \in M_{2n}(V)^+$$
for some $u_1, u_2 \in M_n(V)^+\}.$

Let

$$p(v) = \inf\{\max(\|u_1\|, \|u_2\|) \mid (u_1, u_2)_N^+ \pm sa_N(v) \in \mathcal{V}^+$$
for some $u_1, u_2 \in \mathcal{V}^+$ and a suitable $N \in \mathbb{N}\}.$

Then $p(v) \leq ||v||$. Let $\epsilon > 0$. Then there exist $u_1, u_2 \in \mathcal{V}^+$, $N \in \mathbb{N}$ such that $(u_1, u_2)_N^+ \pm sa_N(v) \in \mathcal{V}^+$ and $\max(||u_1||, ||u_2||) < p(v) + \epsilon$. In this case $N \geq n$. Put $u_1' = 1_n u_1 1_n$, $u_2' = 1_n u_2 1_n$. Then $u_1', u_2' \in M_n(V)^+$. Also

$$\left((1_n, 1_n)_n^+\right)^* \left[(u_1, u_2)_N^+ \pm sa_N(v)\right] \left((1_n, 1_n)_n^+\right) = (u_1', u_2')_n^+ \pm sa_n(v) \in M_{2n}(V)^+$$

as $1_n v 1_n = v$. Next $\left\| u'_1 \right\|_n \le \|u_1\|, \left\| u'_2 \right\|_n \le \|u_2\|$ so that

$$||v|| = ||v||_n \le \max(||u_1'||_n, ||u_2'||_n) \le \max(||u_1||, ||u_2||) < p(v) + \epsilon.$$

Since $\epsilon > 0$ is arbitrary, $\|v\| \le p(v)$. Therefore $p(v) = \|v\|$. Hence $\|\cdot\|$ is an \mathcal{F} -Riesz norm on \mathcal{V} . We show that \mathcal{V}^+ is $\|\cdot\|$ closed. Let $v \in \overline{\mathcal{V}^+}$. Then there exists a sequence $\{v_k\} \subset \mathcal{V}^+$ such that $v_k \longrightarrow v$ in $\|\cdot\|$. Hence $v \in \mathcal{V}_{sa}$. Find an $n \in \mathbb{N}$ such that $1_n v 1_n = v$. Then $v'_k = 1_n v_k 1_n \longrightarrow 1_n v 1_n = v$ in $\|\cdot\|_n$. Since $M_n(V)^+$ is closed, we have $v \in M_n(V)^+ \subset \mathcal{V}^+$. Therefore \mathcal{V}^+ is closed.

For the converse it is enough to show that $\|\cdot\|_n$ is a Riesz norm on $M_n(W)$ for all $n \in \mathbb{N}$. Fix an $n \in \mathbb{N}$ and $w \in M_n(W)$. Let

$$r(w) = \inf\{\max(\|u_1\|_n, \|u_2\|_n) \mid (u_1, u_2)_n^+ \pm sa_n(w) \in M_{2n}(W)^+$$

for some $u_1, u_2 \in M_n(W)^+\}.$

Recall that

$$||w||_{n} = ||w|| = \inf\{\max(||u_{1}||, ||u_{2}||) \mid (u_{1}, u_{2})_{N}^{+} \pm sa_{N}(w) \in \mathcal{W}^{+}$$

for some $u_{1}, u_{2} \in \mathcal{W}^{+}$ and a suitable $N \in \mathbb{N}\}.$

Then $||w||_n \leq r(w)$. Let $\epsilon > 0$. Then as above using $(1_n, 1_n)_n^+$, we may conclude that $r(w) \leq ||w||_n + \epsilon$. Therefore $r(w) = ||w||_n$. That is $||\cdot||_n$ is a Riesz norm on $M_n(W)$. Also $M_n(W)^+$ is $||\cdot||_n$ closed.

Acknowledgment. The authors are grateful to the referees for their valuable suggestions.

References

- [1] Choi M.D., Effros E.G., Injectivity and operator spaces, J. Funct. Anal. 24 (1977), 156-209.
- [2] Effros E.G., Ruan Z.J., On matricially normed spaces, Pacific J. Math. 132 (1988), no. 2, 243-264.
- [3] Karn A.K., Approximate matrix order unit spaces, Ph.D. Thesis, University of Delhi, Delhi, 1997.
- [4] Karn A.K., Vasudevan R., Approximate matrix order unit spaces, Yokohama Math. J. 44 (1997), 73–91.
- Karn A.K., Vasudevan R., Characterization of matricially Riesz normed spaces, Yokohama Math. J. 47 (2000), 143–153.
- [6] Ramani J.V., Karn A.K., Yadav S., Direct limit of matrix ordered spaces, Glasnik Matematicki 40 (2005), no. 2, 303–312.
- [7] Ruan Z.J., Subspaces of C*-algebras, J. Funct. Anal. 76 (1988), 217–230.

Department of Mathematics, Agra College, Agra, India

E-mail: ramaniji@yahoo.com

DEPARTMENT OF MATHEMATICS, DEEN DAYAL UPADHYAYA COLLEGE, UNIVERSITY OF DELHI, KARAM PURA, NEW DELHI 110 015, INDIA

E-mail: anilkarn@rediffmail.com

DEPARTMENT OF MATHEMATICS, AGRA COLLEGE, AGRA, INDIA *E-mail*: drsy@rediffmail.com

(Received April 26, 2005, revised November 23, 2005)