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Direct limit of matricially Riesz normed spaces
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Abstract. In this paper, the F-Riesz norm for ordered F-bimodules is introduced and
characterized in terms of order theoretic and geometric concepts. Using this notion,
F-Riesz normed bimodules are introduced and characterized as the inductive limits of
matricially Riesz normed spaces.
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1. Introduction

Effros and Ruan, as suggested by B.E. Johnson, initiated a study of normed F -
bimodules as direct limits of matrix normed spaces [2]. In [6] the authors studied
the direct limit of matrix ordered spaces. Continuing this line, in this paper we
discuss the direct limits of matricially Riesz normed spaces (studied by [4], [5]).
As a consequence we introduce the notion of F -Riesz normed bimodules.
We recall the following notions discussed in [6] (see also [2]).

Matricial notions.

Let V be a complex vector space. Let Mn(V ) denote the set of all n×n matrices
with entries from V . For V = C, we denote Mn(C) by Mn. For α =

[

αij
]

∈ Mn

and v =
[

vij
]

∈ Mn(V ) we define

αv =





n
∑

j=1

αijvjk



 , vα =





n
∑

j=1

vijαjk



 .

Then Mn (V ) is a Mn-bimodule for all n ∈ N. In particular Mn(V ) is a complex
vector space for all n ∈ N. For v ∈ Mn(V ), w ∈ Mm(V ), we define

v ⊕ w =

[

v 0
0 w

]

∈ Mn+m(V ).

Next, we consider the family {Mn}. For each n, m ∈ N define σn,n+m :Mn −→
Mn+m by σn,n+m(α) = α⊕0m. Then σn,n+m is a vector space isomorphism with

σn,n+m(αβ) = σn,n+m(α)σn,n+m(β).
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Thus we may “identify” Mn in Mn+m as a subalgebra for every m ∈ N. More
generally, we may identify Mn in the set F of ∞×∞ complex matrices, having
entries zero after first n rows and first n columns. Then F may be considered as
the direct or inductive limit of the family {Mn}. In this sense

F =

∞
⋃

n=1

Mn.

Let eij denote the ∞ × ∞ matrix with 1 at the (i, j)th entry and 0 elsewhere.

Then the collection
{

eij
}

is called the set of matrix units in F . We write 1n for
∑n

i=1 eii.
For i, j, k, l ∈ N, we have eijekl = δjkeil. Note that for any α ∈ F , there exist

complex numbers αij such that

α =
∑

i,j

αijeij (a finite sum).

Thus F is an algebra.
For α =

∑

i,j αijeij ∈ F , we define α∗ =
∑

i,j ᾱjieij ∈ F . Then α 7−→ α∗ is

an involution. In other words, F is a ∗-algebra.

Definition 1.1. Let V be a complex vector space. Consider the family {Mn(V )}.
For each n, m ∈ N, define Tn,n+m : Mn(V ) −→ Mn+m(V ) by Tn,n+m(v) =
v ⊕ 0m, 0m ∈ Mm(V ). Then Tn,n+m is an injective homomorphism. Let V be

the inductive limit of the directed family
{

Mn(V ), Tn,n+m
}

. We shall call V the
matricial inductive limit or direct limit of V .

The matricial inductive limit of a complex vector space V may be characterized
in the following sense:

Theorem 1.2. Let W be a non-degenerate F -bimodule. Put W = e11We11.
Then W is a complex vector space and W is its matricial inductive limit ([2]).

Definition 1.3 (Matrix normed space). Let V be a complex vector space. Then
Mn(V ), the space of n × n matrices with entries from V , is an Mn-bimodule for
all n ∈ N. A matrix norm on V is a sequence {‖·‖n} such that ‖·‖n is a norm
on Mn(V ) for all n ∈ N. We say that (V, {‖·‖n}) is a matrix normed space if
‖v ⊕ 0m‖n+m = ‖v‖n and ‖αvβ‖n ≤ ‖α‖ ‖v‖n ‖β‖ for all v ∈ Mn(V ), α, β ∈ Mn

and n, m ∈ N ([7]).

Definition 1.4 (F -bimodule norm). Let V be a non-degenerate F -bimodule. Let
‖·‖ be a norm on V . Then we say ‖·‖ is an F -bimodule norm on V if ‖αvβ‖ ≤
‖α‖ ‖v‖ ‖β‖, for any α, β ∈ F , v ∈ V . In this case we say that V is a non-
degenerate normed F-bimodule.
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Theorem 1.5. Let (V, {‖·‖n}) be a matrix normed space. Let V be the matricial
inductive limit of V . For each v ∈ V , we define ‖v‖ as follows: let n ∈ N be such

that 1nv1n = v. Write ‖v‖ = ‖v‖n. Then this definition is independent of the

choice of n and introduces an F -bimodule norm on V such that (V , ‖·‖) is a
non-degenerate normed F -bimodule.

Conversely, let (W , ‖·‖) be a non-degenerate normed F -bimodule and let W =
11W11 and ‖·‖n = ‖·‖ |Mn(W ) for all n ∈ N. Then (W, {‖ ‖n}) is a matrix normed

space whose matricial inductive limit is (W , ‖·‖).

Remark. This characterization can be extended to ∗ vector spaces as follows:
Let V be a ∗ vector space and let V be the matricial inductive limit of V , so
that V is a non-degenerate F -bimodule ([6]). Let (V, {‖·‖n}) be a matrix normed
space such that for every n ∈ N and v ∈ Mn(V ), ‖v

∗‖n = ‖v‖n. Let (V , ‖·‖)
be the matricial inductive limit of the matrix normed space (V, {‖·‖n}). Then
‖v∗‖ = ‖v‖ for all v ∈ V .

Next, we recall the definition of an ordered F -bimodule and its characterization
as a matricial inductive limit space from [6]:

Definition 1.6 (Ordered F -bimodule). Let V be a ∗-F -bimodule. Let V+ be a
bimodule cone in Vsa. That is

1. v1, v2 ∈ V+ ⇒ v1 + v2 ∈ V+,
2. v ∈ V+, α ∈ F ⇒ α∗vα ∈ V+.

Then (V ,V+) will be called an ordered F-bimodule.

The following result is obtained from [6].

Theorem 1.7. Let (V,
{

Mn(V )
+
}

) be a matrix ordered space. Let V be the

matricial inductive limit of V . Then (V ,V+) is a non-degenerate ordered F -
bimodule, where V+ =

⋃∞
n=1Mn(V )

+. Conversely, let (W ,W+) be a non-

degenerate ordered F -bimodule. Put W = 11W11 and Mn(W )
+ = 1nW

+1n
for all n ∈ N. Then (W,

{

Mn(W )
+
}

) is a matrix ordered space with W+ =
⋃∞

n=1Mn(W )
+.

2. F-Riesz norm

We now characterize F -bimodule norms.

Definition 2.1. Let V be a non-degenerate F -bimodule. Let U ⊂ V . We say

U is absolutely F-convex if
∑k

i=1 αiuiβi ∈ U whenever u1, u2, . . . , uk ∈ U and

α1, α2, . . . , αk, β1, β2, . . . , βk ∈ F with
∑k

i=1 ‖αi‖
2 ≤ 1 and

∑k
i=1 ‖βi‖

2 ≤ 1. If
the property holds true only for k = 1 then we say U is F-circled .
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Theorem 2.2. The open unit ball of a non-degenerate normed F -bimodule
(V , ‖·‖) is absolutely F -convex and absorbing.

Proof: Let U denote the open unit ball of (V , ‖·‖). Let u1, u2, . . . , uk ∈ U and

α1, α2, . . . , αk, β1, β2, . . . , βk ∈ F with
∑k

i=1 ‖αi‖
2 ≤ 1 and

∑k
i=1 ‖βi‖

2 ≤ 1.

Consider u =
∑k

i=1 αiuiβi. Then

‖u‖ =

∥

∥

∥

∥

∥

k
∑

i=1

αiuiβi

∥

∥

∥

∥

∥

≤

k
∑

i=1

‖αi‖ ‖ui‖ ‖βi‖ <

k
∑

i=1

‖αi‖ ‖βi‖

≤

(

k
∑

i=1

‖αi‖
2

)1/2( k
∑

i=1

‖βi‖
2

)1/2

≤ 1.

Therefore u ∈ U . Thus U is absolutely F -convex. To show that U is absorbing
consider a v ∈ V and ǫ > 0. Put v1 =

v
(‖v‖+ǫ)

. Then v1 ∈ U and v = v1 (‖v‖+ ǫ).

Therefore U is absorbing. �

The following theorem completes the characterization of F -bimodule norms
among norms on V .

Theorem 2.3. Let A ⊂ V be absolutely F -convex and absorbing. Then the
gauge of A,

p(v) = inf {k > 0 | v ∈ kA}

determines an F -bimodule semi-norm on V .

Proof: First we note that p(v) ≥ 0 for all v ∈ V . From the definition, we get
that p(kv) = |k|p(v) for all k ∈ C. We now show that p(v + w) ≤ p(v) + p(w)
for all v, w ∈ V . Let v, w ∈ V and Sǫ > 0. Then there exist k1, k2 > 0 such that
k1 < p(v) + ǫ

2 with v ∈ k1A and k2 < p(w) + ǫ
2 with w ∈ k2A. We show that

v + w ∈ (k1 + k2)A. We set α = k1
k1+k2

, β = k2
k1+k2

. Then α + β = 1. Also
αv
k1
= v

k1+k2
, βw

k2
= w

k1+k2
. Thus we get αv

k1
+ βw

k2
= v+w

k1+k2
. As A is absolutely

F -convex, it is convex. Thus v + w ∈ (k1 + k2)A. It follows that

p(v + w) ≤ k1 + k2 < p(v) + p(w) + ǫ.

As ǫ > 0 is arbitrary we get that p(v + w) ≤ p(v) + p(w). Next, we show that
p(αvβ) ≤ ‖α‖ p(v) ‖β‖ for all α, β ∈ F , v ∈ V . First, let v ∈ A. Then p(v) ≤ 1.
Let α, β ∈ F with ‖α‖ ≤ 1, ‖β‖ ≤ 1. Since A is absolutely F -convex, αvβ ∈ A.
Therefore p(αvβ) ≤ 1. Now let v ∈ V and α, β ∈ F , ǫ > 0. Put v1 =

v
p(v)+ǫ

.

Then p(v1) =
p(v)

p(v)+ǫ
< 1. That is v1 ∈ A. Without loss of generality we may

take α 6= 0, β 6= 0. Let α1 =
α

‖α‖
, β1 =

β
‖β‖
. Then p(α1v1β1) ≤ 1 so that

p(αvβ) ≤ ‖α‖ (p(v) + ǫ) ‖β‖ .
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As ǫ > 0 is arbitrary we get

p(αvβ) ≤ ‖α‖ (p(v)) ‖β‖ .

Hence p(·) is a F -semi-norm on V . �

In the rest of the paper we will be dealing with non-degenerate ordered F -
bimodules. We introduce some more notations.
We write In =

∑n
i=1 eii, Jn =

∑n
i=1 ei,n+i for any n ∈ N. Note that ‖In‖ =

‖Jn‖ = 1 and JnIn = 0, InJn = Jn, JnJn = 0, JnJ∗
n = In. Let (V ,V+) be a

non-degenerate ordered F -bimodule ([6]). Let u1, u2 ∈ V∗ and n ∈ N such that

1nu11n = u1, 1nu21n = u2. We denote u1+ J∗
nu2Jn by (u1, u2)

+
n . For any v ∈ V

and an n ∈ N with 1nv1n = v we denote InvJn + J∗
nv∗In by san(v).

Before we define F -Riesz norm, we need the following reformulation of the concept
that V+ is generating.

Proposition 2.4. Let
(

V ,V+
)

be a non-degenerate ordered F -bimodule. Then

V+ is generating if and only if for every v ∈ V there exist u1, u2 ∈ V+ such that
(u1, u2)

+
n ± san(v) ∈ V+, for a suitable n ∈ N.

Note. In the notation (u1, u2)
+
n ± san(v) ∈ V+, we say that n ∈ N is “suitable”

provided 1nu11n = u1, 1nu21n = u2 and 1nv1n = v. This terminology will be
used throughout the paper without any further explanation.

Proof: First, let V+ be generating. Let v ∈ Vsa. Then by [6, Theorem 3.10]
there exist v1, v2 ∈ V+ such that v = v1 − v2. Put u = v1 + v2. Then u ∈ V+

and u ± v ∈ V+. Next let v ∈ V be arbitrary. Find an n ∈ N such that
1nv1n = v. Consider san(v): san(v) = InvJn + J∗

nv∗In ∈ Vsa. Then as above

there exists a u ∈ V+ such that u ± san(v) ∈ V+. Let u
′

= I2nuI2n ∈ V+. Then

u
′

± san(v) ∈ V+ for I2nsan(v)I2n = san(v). Set u1 = Inu
′

In, u2 = Jnu
′

J∗
n.

Then (u1, u2)
+
n = Inu

′

In + J∗
n

(

Jnu
′

J∗
n

)

Jn. We show that (u1, u2)
+
n ± san(v) ∈

V+. Note that

(1) Inu′In − Inu′J∗
nJn − J∗

nJnu′In + J∗
nJnu′J∗

nJn ∓ san(v)

= (In − J∗
nJn)

(

u
′

± san(v)
)

(In − J∗
nJn) ∈ V+.

Similarly

(2) Inu
′

In + Inu
′

J∗
nJn + J∗

nJnu
′

In + J∗
nJnu

′

J∗
nJn ± san(v)

= (In + J∗
nJn)

(

u
′

± san(v)
)

(In + J∗
nJn) ∈ V+.

Adding (1) and (2) suitably, we get

(u1, u2)
+
n ± san(v) = Inu

′

In + J∗
n

(

Jnu
′

J∗
n

)

Jn ± san(v) ∈ V+.
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Conversely assume that for every v ∈ V there exist u1, u2 ∈ V+ such that
(u1, u2)

+
n ± san(v) ∈ V+, for a suitable n ∈ N. We show that V+ is generat-

ing. Let v ∈ V . Then there exist u1, u2 ∈ V+ such that (u1, u2)
+
n ± san(v) ∈ V+,

for a suitable n ∈ N. Therefore

(In + Jn)
(

(u1, u2)
+
n ± san(v)

)

(In + J∗
n) ∈ V+.

This gives u1 + u2 ± (v + v∗) ∈ V+. Similarly

(In + iJn)
(

(u1, u2)
+
n ± san(v)

)

(In − iJ∗
n) ∈ V+

which gives u1 + u2 ± i (v − v∗) ∈ V+. Put

v0 =
1

4
(u1 + u2 + v + v∗) ,

v1 =
1

4
(u1 + u2 − i(v − v∗)) ,

v2 =
1

4
(u1 + u2 − v − v∗) ,

v3 =
1

4
(u1 + u2 + i(v − v∗)) .

Then v0, v1, v2, v3 ∈ V+ and we have

v0 + iv1 − v2 − iv3 = v.

Hence V+ is generating. �

Definition 2.5. Let
(

V ,V+
)

be a positively generated non-degenerate ordered
F -bimodule. Let ‖·‖ be an F -bimodule norm on V . We say ‖·‖ is an F -Riesz
norm on V if for any v ∈ V ,

‖v‖ = inf{max(‖u1‖ , ‖u2‖) | (u1, u2)
+
N ± saN (v) ∈ V+

for some u1, u2 ∈ V+ and a suitable N ∈ N}.

In what follows we characterize F -Riesz norms on a non-degenerate positively
ordered F -bimodule in the lines of Theorem 2.2.

Definition 2.6. Let
(

V ,V+
)

be an ordered F -bimodule and A ⊂ V+. We define
S (A) as follows:

S (A) = {v ∈ V | (u1, u2)
+
N ± saN (v) ∈ V+

for some u1, u2 ∈ A and a suitable N ∈ N}.
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Remarks.

(a) A ⊂ S(A).
(b) v∗ ∈ S(A) whenever v ∈ S(A).

Definition 2.7. Let A ⊂ V+. Then we say that A is order absolutely F-convex

if
∑k

i=1 α∗
i uiαi ∈ A whenever u1, u2, . . . , uk ∈ A and α1, α2, . . . , αk ∈ F with

∑k
i=1

∥

∥α∗
i αi

∥

∥ ≤ 1.

If the above condition holds only for k = 1 for some A ⊂ V+, then we say A is
order F-circled .

Definition 2.8. S ⊂ V+ is called F-absorbing if for each v ∈ V there exist
α, β ∈ F such that αvβ ∈ S.

Definition 2.9. S ⊂ V+ is called positively F-absorbing if for each u ∈ V+ there
exists a α ∈ F such that α∗uα ∈ S.

Lemma 2.10. Let A ⊂ V+ be order absolutely F -convex. Then S(A) is abso-
lutely F -convex.

Proof: Let v1, v2, . . . , vk ∈ S(A) and let α1, α2, . . . , αk, β1, β2, . . . , βk ∈ F with
∑k

i=1 ‖αi‖
2 ≤ 1 and

∑k
i=1 ‖βi‖

2 ≤ 1. Then for each i = 1, 2, . . . , k there ex-

ist Ni ∈ N, ui
1, u

i
2 ∈ A with 1Ni

vi1Ni
= vi, 1Ni

ui
11Ni

= ui
1, 1Ni

ui
21Ni

= ui
2

with
(

ui
1, u

i
2

)+
Ni

± saNi
(vi) ∈ V+. Now α1, α2, . . . , αk ∈ F . Therefore there

exist M1, M2, . . . , Mk ∈ N such that 1Mi
αi1Mi

= αi, i = 1, 2, . . . , k. Also
β1, β2, . . . , βk ∈ F . Therefore there exist P1, P2, . . . , Pk ∈ N such that 1Pi

βi1Pi
=

βi, i = 1, 2, . . . , k. Let N = max{N1, N2, . . . , Nk, M1, . . . , Mk, P1, . . . , Pk}. Then

for each i = 1, 2, . . . , k we have
(

ui
1, u

i
2

)+
N ± saN (vi) ∈ V+. Now

(

(

α∗
i , βi

)+
N

)∗ ((
ui
1, u

i
2

)+
N ± saN (vi)

)(

(

α∗
i , βi

)+
N

)

∈ V+ for all i = 1, 2, . . . , k.

This means
(

αiu
i
1α

∗
i , β

∗
i ui
2βi
)+
N ± saN (αiviβi) ∈ V+ for each i = 1, 2, . . . , k.

Adding
(

∑k
i=1 αiu

i
1α

∗
i ,
∑k

i=1 β∗
i ui
2βi

)+

N
± saN

(

∑k
i=1 αiviβi

)

∈ V+. Since A is

absolutely convex and
∑k

i=1 ‖αi‖
2 ≤ 1 and

∑k
i=1 ‖βi‖

2 ≤ 1 we have
∑k

i=1 αiu
i
1α

∗
i ∈ A and

∑k
i=1 β∗

i ui
2βi ∈ A. Therefore

∑k
i=1 αiviβi ∈ S(A). There-

fore S(A) is absolutely F -convex. �

Lemma 2.11. Let V+ be generating. Then S(A) is F -absorbing if A ⊂ V+ is
positively F -absorbing.

Proof: Let A ⊂ V+ be positively F -absorbing. Let v ∈ V . Since V+ is
generating, by Proposition 2.4, there exist u1, u2 ∈ V+ and a suitable N ∈ N

such that (u1, u2)
+
N ± saN (v) ∈ V+. Since A is positively F -absorbing and

u1, u2 ∈ V+ there exist α, β ∈ F such that α∗u1α ∈ A, β∗u2β ∈ A. Find
M ∈ N such that 1Mu11M = u1, 1Mu21M = u2, 1Mv1M = v, 1Mα1M = α,
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1Mβ1M = β. Then
(

(α, β)+M

)∗ (

(u1, u2)
+
M ± saM (v)

)

(α, β)+M ∈ V+. This gives

(α∗u1α, β∗u2β)
+
M ± saM (α

∗vβ) ∈ V+. Since α∗u1α ∈ A and β∗u2β ∈ A, we get
α∗vβ ∈ S(A). Hence S(A) is F -absorbing. �

Some more concepts will be needed in the sequel.

Definition 2.12. Let A ⊂ V+. A is called positively bounded if for any v ∈ Vsa,
v + knan ∈ V+ for all n ∈ N implies v ∈ V+, where {an} is a sequence in A and
{kn} is a sequence in (0,∞) with inf kn = 0.

Definition 2.13. Let A ⊂ V+. A is called almost positively bounded if
(

knun
1 , knun

2

)+
Nn

± saNn
(v) ∈ V+ for all n ∈ N implies v = 0 where {un

1}, {u
n
2}

are sequences in A and {kn} is a sequence in (0,∞) with inf kn = 0, {Nn} is a
sequence in N.

Lemma 2.14. Let V+ be proper. Let A ⊂ V+ be order absolutely F -convex
and positively bounded. Then A is almost positively bounded.

Proof: Let v ∈ V , sequences {un
1}, {u

n
2} be in A, {kn} be a sequence in (0,∞)

with inf kn = 0 and {Nn} be a sequence in N such that

ZNn
= (knun

1 , knun
2 )
+
Nn

± saNn
(v) ∈ V+

for all n ∈ N. Then

(1) (INn
+ JNn

)ZNn
(INn

+ JNn
)∗ = knun

1 + knun
2 ± (v + v∗)

and

(2) (INn
+ iJNn

)ZNn
(INn

+ iJNn
)∗ = knun

1 + knun
2 ± i (v − v∗) .

Put un
1 + un

2 = 2un for all n ∈ N. From (1) and (2) we get

(3) knun ± Re(v), knun ± Im(v) ∈ V+.

Since A is convex as it is order absolutely F -convex, un ∈ A for all n ∈ N. As
A is positively bounded, from (3) we get ±Re v,± Im v ∈ V+. Finally as V+ is
proper, we have Re v = 0, Im v = 0. That is v = 0. Hence A is almost positively
bounded. �

Remark. It may be noted that the notion of (almost-)positively bounded sets is
introduced to generalize the notion of (almost-)Archimedean property of the cone
([5]).

Now we are in a position to characterize F -Riesz norms.
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Theorem 2.15. Let
(

V ,V+
)

be a non-degenerate positively generated ordered

F -bimodule. LetA⊂V+ be order absolutely F -convex, almost positively bounded
and positively F -absorbing. Also assume that S(A) ∩ V+ = A. Let p(·) be the
gauge of S(A). Then p(·) is an F -Riesz norm on V .
Conversely, let ‖·‖ be an F -Riesz norm on V where

(

V ,V+
)

is a positively

generated ordered F -bimodule. Also let U+ = {v ∈ V+ | ‖v‖ < 1} = U ∩ V+,
where U is the open unit ball of (V , ‖·‖). Then U+ is order absolutely F -convex,
almost positively bounded and positively F -absorbing.

Proof: First assume that
(

V ,V+
)

is a non-degenerate positively generated or-

dered F -bimodule. Let A ⊂ V+ be order absolutely F -convex, almost positively
bounded and positively F -absorbing. Also assume that S(A) ∩V+ = A. Let p(·)
be the gauge of S(A). We show that p(·) is an F -Riesz norm on V . In the light
of Theorem 2.3, Lemmas 2.10 and 2.11 we note that p(·) is a F -semi-norm on V .
Let v ∈ V . We show that

p(v) = inf{max(p(u1), p(u2)) | (u1, u2)
+
N ± saN (v) ∈ V+

for some u1, u2 ∈ V+ and a suitable N ∈ N}.

Since S(A) is F -absorbing there exists some λ > 0 such that λv ∈ S(A). This

gives some u1, u2 ∈ A and a N ∈ N such that (u1, u2)
+
N ± saN (λv) ∈ V+. That is

(

λ−1u1, λ
−1u2

)+
N ± saN (v) ∈ V+. Also p(λ−1u1) = λ−1p(u1). Since p(·) is the

gauge of S(A) and S(A) ∩ V+ = A, we have p(u1) ≤ 1 and p(u2) ≤ 1. Therefore
p(λ−1u1) ≤ λ−1, p(λ−1u2) ≤ λ−1. That is max{p(λ−1u1), p(λ

−1u2)} ≤ λ−1.
Let ǫ > 0. Then (p(v) + ǫ)−1v ∈ S(A). Replacing λ by (p(v) + ǫ) in the above

discussion, there exist u1, u2 ∈ V+ and some N ∈ N such that (u1, u2)
+
N ±

saN (λv) ∈ V+ and max{p(u1), p(u2)} ≤ (p(v) + ǫ). That is,

p(v) ≥ inf{max(p(u1), p(u2)) | (u1, u2)
+
N ± saN (v) ∈ V+

for some u1, u2 ∈ V+ and a suitable N ∈ N}.

Let u1, u2 ∈ V+ and (u1, u2)
+
N ± saN (v) ∈ V+ for some N ∈ N. Find a λ > 0

such that λu1, λu2 ∈ S(A). This gives (λu1, λu2)
+
N ± saN (λv) ∈ V+. Since

S(A)∩V+ = A, we get λu1, λu2 ∈ A. That is λv ∈ S(A). Therefore p(v) ≤ λ−1.
Let ǫ > 0. Put λ = (max{p(u1), p(u2)} + ǫ)−1. Then λu1, λu2 ∈ S(A) so that
p(v) ≤ max{p(u1), p(u2)}+ ǫ. This gives

p(v) ≤ inf{max(p(u1), p(u2)) | (u1, u2)
+
N ± saN (v) ∈ V+

for some u1, u2 ∈ V+ and a suitable N ∈ N}.

Therefore p(·) is F -Riesz semi-norm on V . Now let v ∈ V be such that p(v) = 0.
Then there is a sequence {kn} in (0,∞) with inf kn = 0 such that k−1n v ∈ S(A).
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Thus for every n ∈ N, there exist un
1 , u

n
2 ∈ A such that (un

1 , u
n
2 )
+
Nn

±saNn
(k−1n v) ∈

V+ for suitable Nn ∈ N. This means that
(

knun
1 , knun

2

)+
Nn

±saNn
(v) ∈ V+. Since

A is almost positively bounded, we get v = 0. Hence p(·) is an F -Riesz norm
on V .
Conversely, let ‖·‖ be an F -Riesz norm on V where

(

V ,V+
)

is a positively

generated ordered F -bimodule. Also let U+ = {v ∈ V+ | ‖v‖ < 1} = U ∩ V+,
where U is the open unit ball of (V , ‖·‖). We show that U+ is order absolutely
F -convex, almost positively bounded and positively F -absorbing.
Let u ∈ U . Find an ǫ > 0 such that ‖u‖+ ǫ < 1. Since ‖·‖ is an F -Riesz norm

there exist u1, u2 ∈ V+, a suitable N ∈ N such that (u1, u2)
+
N ± saN (u) ∈ V+

and max{‖u1‖ , ‖u2‖} < ‖u‖ + ǫ < 1. That is ‖u1‖ < 1, ‖u2‖ < 1. This means
u1, u2 ∈ U+. That is u ∈ S(A). Thus U ⊂ S(U+). Let v ∈ S(U+). Then there

exist u1, u2 ∈ U+ and a suitable N ∈ N such that (u1, u2, )
+
N ± saN (v) ∈ V+.

Since ‖·‖ is an F -Riesz norm, we have ‖v‖ ≤ max{‖u1‖ , ‖u2‖} < 1. Therefore
v ∈ U or S(U+) ⊂ U . Therefore S(U+) = U . Next, let u1, u2, . . . , uk ∈ U+ and

α1, α2, . . . , αk ∈ F with
∑k

i=1

∥

∥α∗
i αi

∥

∥ ≤ 1. Put u =
∑k

i=1 α∗
i uiαi. Then u ∈ V

and

‖u‖ ≤

k
∑

i=1

‖αi‖
2 ‖ui‖ <

k
∑

i=1

‖αi‖
2 ≤ 1.

It follows U+ is order absolutely F -convex. We now prove that U+ is almost
positively bounded. Let v ∈ V and sequences {un

1}, {u
n
2} be in U+ and {kn} in

(0,∞) with inf kn = 0 and {Nn} a sequence in N such that
(

knun
1 , knun

2

)+
Nn

±

saNn
(v) ∈ V+ for all n ∈ N. We show that ‖v‖ = 0. Let ǫ > 0. Since inf kn = 0

there exists a n0 ∈ N such that kn0 < ǫ. As ‖·‖ is an F -Riesz norm and
∥

∥un0
1

∥

∥ < 1,
∥

∥un0
2

∥

∥ < 1, we have ‖v‖ ≤ max{
∥

∥kn0u
n0
1

∥

∥ ,
∥

∥kn0u
n0
2

∥

∥} < kn0 < ǫ. Since ǫ > 0

is arbitrary, ‖v‖ = 0. Since ‖·‖ is a norm, v = 0. Hence U+ is almost-positively

bounded. Finally, let v ∈ V+ and ǫ > 0. Put α = (‖v‖+ǫ)−
1

2 1n where 1nv1n = v.

Then α∗vα = 1
(‖v‖+ǫ)

1nv1n =
v

(‖v‖+ǫ)
∈ U+. Therefore U+ is positively F -

absorbing. �

Theorem 2.16. Let (V ,V+) be a non-degenerate ordered F -bimodule. Let V+

be proper and generating. Let A ⊂ V+ be order absolutely F -convex, positively
bounded and F -absorbing. Assume that S(A) ∩ V+ = A. Let p(·) be the gauge
of S(A). Then p(·) is an F -Riesz norm on V such that V+ is p-closed.
Conversely, let (V ,V+) be an ordered F -bimodule and V+ be generating. Let

‖·‖ be an F -Riesz norm on V such that V+ is closed. Let U+ = {v ∈ V+ | ‖v‖ <
1}. Then U+ is order absolutely F -convex, positively bounded and positively
F -absorbing such that S(U+) ∩ V+ = U+. Moreover V+ is proper.

Proof: First assume that V+ is proper and generating. Let A ⊂ V+ be order
absolutely F -convex, positively bounded and F -absorbing. Assume that S(A) ∩
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V+ = A. Let p(·) be the gauge of S(A). We show that p(·) is an F -Riesz norm
on V+ such that V+ is p-closed. In the light of Lemma 2.14 and Theorem 2.15
it suffices to prove that V+ is p-closed. We shall show that Vsa\V

+ is p-open.
Define for v ∈ Vsa,

r(v) = inf{α ∈ R | v + αa ∈ V+ for some a ∈ A}.

We first show that r(v) ≤ 0 if and only if v ∈ V+. Let v ∈ V+. Then v+0a ∈ V+

for all a ∈ A. That is r(v) ≤ 0. To show the other way let r(v) ≤ 0. Then

for every n ∈ N there exists an an ∈ A such that v + (r(v) + 1
n )an ∈ V+.

Also v + (r(v) + 1
n )an ≤ v + ( 1n )an as r(v) ≤ 0. That is v + ( 1n )an ∈ V+

for every n ∈ N. As A is positively bounded, v ∈ V+. We now show that
p(v) − r(v) ≥ 0 for all v ∈ Vsa. Suppose p(v) − r(v) < 0 for some v ∈ Vsa.

Put ǫ = 1
2 (r(v) − p(v)) > 0. Since p(·) is F -Riesz norm on V , there exists an

a ∈ A such that (p(v) + ǫ)a ± v ∈ V+. Then (r(v) − ǫ)a ± v ∈ V+. In particular
(r(v) − ǫ)a + v ∈ V+. This contradicts the definition of r(v). Thus p(v) ≥ r(v)
for all v ∈ Vsa. Finally we show that Vsa\V

+ is p-open. Let v ∈ Vsa, v /∈ V+.

Since v /∈ V+, r(v) > 0. Let δ = 1
2r(v). Let D = {w ∈ Vsa | p(v − w) < δ}.

Let w ∈ D. Then δ > p(v − w) ≥ r(v − w). So there exists an a ∈ A such that

δa+ (v −w) ∈ V+. If w ∈ V+, then δa+ v ∈ V+. Thus r(v) ≤ δ =
r(v)
2 , which is

a contradiction. Therefore w /∈ V+. That is Vsa\V
+ is p-open.

For the converse it suffices to prove that U+ is positively bounded and that
V+ is proper in light of Theorem 2.15. We show that U+ is positively bounded.
Let v ∈ V+ and wn = v + knun ∈ V+ for all n ∈ N, where {un} is a sequence in
U+ and {kn} is a sequence in (0,∞) with inf kn = 0. Without loss of generality
we can take {kn} to be decreasing. Now {wn} is a convergent sequence because
‖v − wn‖ = ‖knun‖ < kn −→ 0. Therefore wn −→ v. Since V+ is closed, v ∈ V+.
Therefore U+ is positively bounded.
Finally we show that V+ is proper. Let ±v ∈ V+. Then as v is self-adjoint,

‖v‖ = inf{‖u‖ | u ∈ V+, u ± v ∈ V+}. Also 0 ∈ V+ and 0 ± v ∈ V+. That is
‖v‖ ≤ ‖0‖ = 0. That is v = 0. Therefore V+ is proper. �

Now we move to the final result of the paper.

Definition 2.17 (F -Riesz normed bimodule). Let (V ,V+) be a non-degenerate
ordered F -bimodule such that V+ is proper and generating. Assume that ‖·‖ is
an F -Riesz norm on V such that V+ is norm closed. Then the triple

(

V ,V+, ‖·‖
)

is called an F -Riesz normed bimodule.

Definition 2.18 (Matricially Riesz normed space). Let (V, {Mn(V )
+}) be a po-

sitively generated matrix ordered space and suppose that {‖·‖n} is a matrix norm
on V . Then the triplet (V, {‖·‖n}, {Mn(V )

+}) is called a matricially normed

space if for each n ∈ N, ‖·‖n is a Riesz norm on Mn(V ) and Mn(V )
+ is closed.
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Theorem 2.19. Let
(

V,
{

Mn(V )
+
}

, {‖·‖n}
)

be a matricially Riesz normed

space. Let (V ,V+) be the matricial inductive limit of the matrix ordered space
(

V,
{

Mn(V )
+
})

and let (V , ‖·‖) be the matricial inductive limit of matrix normed

space (V, {‖·‖n}). Then
(

V ,V+, ‖·‖
)

is a non-degenerate F -Riesz normed bimod-

ule. Conversely, let
(

W ,W+, ‖·‖
)

be a non-degenerate F -Riesz normed bimodule.

Let W = 11W11 and Mn(W )
+ = 1nW

+1n and ‖·‖n = ‖·‖ |Mn(W ) for all n ∈ N.

Then
(

W,
{

Mn(W )
+
}

, {‖·‖n}
)

is a matricially Riesz normed space whose induc-

tive limit is
(

W ,W+, ‖·‖
)

.

Proof: Let
(

V,
{

Mn(V )
+
}

, {‖·‖n}
)

be a matricially Riesz normed space. We
show that ‖·‖ is an F -Riesz norm on V . Let v ∈ V . Then there exists a smallest
n ∈ N such that 1nv1n = v. Then

‖v‖ = ‖v‖n = inf{max(‖u1‖n , ‖u2‖n) | (u1, u2)
+
n ± san(v) ∈ M2n(V )

+

for some u1, u2 ∈ Mn(V )
+}.

Let

p(v) = inf{max(‖u1‖ , ‖u2‖) | (u1, u2)
+
N ± saN (v) ∈ V+

for some u1, u2 ∈ V+ and a suitable N ∈ N}.

Then p(v) ≤ ‖v‖. Let ǫ > 0. Then there exist u1, u2 ∈ V+, N ∈ N such that

(u1, u2)
+
N ± saN (v) ∈ V+ and max(‖u1‖ , ‖u2‖) < p(v) + ǫ. In this case N ≥ n.

Put u
′

1 = 1nu11n, u
′

2 = 1nu21n. Then u
′

1, u
′

2 ∈ Mn(V )
+. Also

(

(1n, 1n)
+
n

)∗
[

(u1, u2)
+
N ± saN (v)

]

(

(1n, 1n)
+
n

)

= (u
′

1, u
′

2)
+
n ± san(v) ∈ M2n(V )

+

as 1nv1n = v. Next
∥

∥

∥
u
′

1

∥

∥

∥

n
≤ ‖u1‖,

∥

∥

∥
u
′

2

∥

∥

∥

n
≤ ‖u2‖ so that

‖v‖ = ‖v‖n ≤ max(
∥

∥

∥
u
′

1

∥

∥

∥

n
,
∥

∥

∥
u
′

2

∥

∥

∥

n
) ≤ max(‖u1‖ , ‖u2‖) < p(v) + ǫ.

Since ǫ > 0 is arbitrary, ‖v‖ ≤ p(v). Therefore p(v) = ‖v‖. Hence ‖·‖ is an

F -Riesz norm on V . We show that V+ is ‖·‖ closed. Let v ∈ V̄+. Then there
exists a sequence {vk} ⊂ V+ such that vk −→ v in ‖·‖. Hence v ∈ Vsa. Find an

n ∈ N such that 1nv1n = v. Then v
′

k = 1nvk1n −→ 1nv1n = v in ‖·‖n. Since

Mn(V )
+ is closed, we have v ∈ Mn(V )

+ ⊂ V+. Therefore V+ is closed.
For the converse it is enough to show that ‖·‖n is a Riesz norm on Mn(W ) for

all n ∈ N. Fix an n ∈ N and w ∈ Mn(W ). Let

r(w) = inf{max(‖u1‖n , ‖u2‖n) | (u1, u2)
+
n ± san(w) ∈ M2n(W )

+

for some u1, u2 ∈ Mn(W )
+}.
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Recall that

‖w‖n = ‖w‖ = inf{max(‖u1‖ , ‖u2‖) | (u1, u2)
+
N ± saN (w) ∈ W+

for some u1, u2 ∈ W+ and a suitable N ∈ N}.

Then ‖w‖n ≤ r(w). Let ǫ > 0. Then as above using (1n, 1n)
+
n , we may conclude

that r(w) ≤ ‖w‖n + ǫ. Therefore r(w) = ‖w‖n. That is ‖·‖n is a Riesz norm on

Mn(W ). Also Mn(W )
+ is ‖·‖n closed. �
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