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Direct limit of matricially Riesz normed spaces
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Abstract. In this paper, the F-Riesz norm for ordered F-bimodules is introduced and
characterized in terms of order theoretic and geometric concepts. Using this notion,
JF-Riesz normed bimodules are introduced and characterized as the inductive limits of
matricially Riesz normed spaces.
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1. Introduction

Effros and Ruan, as suggested by B.E. Johnson, initiated a study of normed F-
bimodules as direct limits of matrix normed spaces [2]. In [6] the authors studied
the direct limit of matrix ordered spaces. Continuing this line, in this paper we
discuss the direct limits of matricially Riesz normed spaces (studied by [4], [5]).
As a consequence we introduce the notion of F-Riesz normed bimodules.

We recall the following notions discussed in [6] (see also [2]).

Matricial notions.

Let V' be a complex vector space. Let M, (V') denote the set of all n x n matrices
with entries from V. For V = C, we denote M, (C) by My,. For o = [aij] e M,
and v = [v;;] € My (V) we define

n n
av = E aijvjk , va= E vijajk
J=1 J=1

Then My, (V) is a My-bimodule for all n € N. In particular My (V) is a complex
vector space for all n € N. For v € My, (V), w € Mp,(V), we define

v

vPw = [O

g] € My ym(V).

Next, we consider the family {M,,}. For each n,m € N define oy, ptm : Mp —
Mpstm by onntm(a) = a®0y,. Then oy nim is a vector space isomorphism with

On,n+m (aﬁ) = On,n+m (a)Un,n—i-m (ﬁ) .
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Thus we may “identify” M, in My+.,, as a subalgebra for every m € N. More
generally, we may identify M, in the set F of co x co complex matrices, having
entries zero after first n rows and first n columns. Then F may be considered as
the direct or inductive limit of the family {My,}. In this sense

o
F=J M.

n=1

Let e;; denote the oo x oo matrix with 1 at the (i,7)th entry and 0 elsewhere.
Then the collection {eij} is called the set of matrix units in F. We write 1,, for
i1 i

For i, j,k,l € N, we have e;je; = dj,e;. Note that for any o € F, there exist
complex numbers «;; such that

a= Z a;je;;  (a finite sum).
i7j

Thus F is an algebra.
For o = Zi,j ajjei; € F, we define o = Zi,j ajie;; € F. Then o — o is
an involution. In other words, F is a x-algebra.

Definition 1.1. Let V be a complex vector space. Consider the family { M, (V)}.
For each n,m € N, define Ty, nym : Mp(V) — Muim(V) by Tnptm(v) =
v ® O, Oy € My (V). Then Ty, 4 is an injective homomorphism. Let V be
the inductive limit of the directed family {Mn(V)7 Tnm_:,_m}. We shall call V the
matricial inductive limit or direct limit of V.

The matricial inductive limit of a complex vector space V may be characterized
in the following sense:

Theorem 1.2. Let W be a non-degenerate F-bimodule. Put W = ej1Weqy.
Then W is a complex vector space and W is its matricial inductive limit ([2]).

Definition 1.3 (Matrix normed space). Let V be a complex vector space. Then
My, (V), the space of n x n matrices with entries from V, is an Mj-bimodule for
all n € N. A matriz norm on V is a sequence {||-||,,} such that |-||,, is a norm
on My (V) for all n € N. We say that (V,{||-[|,,}) is a matriz normed space if
[0 Onll s = [0l and Bl < ol ol 18] for all v € Ma(V), . 8 € My
and n,m € N ([7]).

Definition 1.4 (F-bimodule norm). Let V be a non-degenerate F-bimodule. Let
I]| be a norm on V. Then we say ||| is an F-bimodule norm on V if |avg| <
Il loll 1BIl, for any «, 8 € F, v € V. In this case we say that V is a non-
degenerate normed F-bimodule.



Direct limit of matricially Riesz normed spaces

Theorem 1.5. Let (V,{||-||,,}) be a matrix normed space. Let V be the matricial
inductive limit of V. For each v € V, we define ||v|| as follows: let n € N be such
that 1,vl,, = v. Write ||v|| = ||v||,,. Then this definition is independent of the
choice of n and introduces an F-bimodule norm on V such that (V,|||) is a
non-degenerate normed JF-bimodule.

Conversely, let OV, ||-||) be a non-degenerate normed F-bimodule and let W =
11y and |||, = ||| |ar, (w) for allm € N. Then (W, {|||,,}) is a matrix normed
space whose matricial inductive limit is (W, |-]|).

Remark. This characterization can be extended to * vector spaces as follows:
Let V be a x vector space and let V be the matricial inductive limit of V', so
that V is a non-degenerate F-bimodule ([6]). Let (V,{||-|/,,}) be a matrix normed
space such that for every n € N and v € My(V), |[v*|,, = |v|,,- Let (V,|[)
be the matricial inductive limit of the matrix normed space (V,{]-|,,}). Then
[lv*]| = ||v]| for all v € V.

Next, we recall the definition of an ordered F-bimodule and its characterization
as a matricial inductive limit space from [6]:

Definition 1.6 (Ordered F-bimodule). Let V be a *-F-bimodule. Let V* be a
bimodule cone in Vg,. That is

1. vi,v3 EVT = vy + vy € VT,
2. veEVT,acF=a*vaecVT.
Then (V, V) will be called an ordered F-bimodule.

The following result is obtained from [6].

Theorem 1.7. Let (V,{My,(V)"}) be a matrix ordered space. Let V be the
matricial inductive limit of V. Then (V,V*) is a non-degenerate ordered JF-
bimodule, where V* = (J7°; My (V)T. Conversely, let (W, W) be a non-
degenerate ordered F-bimodule. Put W = 1;W1; and M,(W)* = 1,\WT1,
for all n € N. Then (W,{M,(W)*}) is a matrix ordered space with WT =
UnZy Ma (W)™

2. F-Riesz norm

‘We now characterize F-bimodule norms.

Definition 2.1. Let V be a non-degenerate F-bimodule. Let U C V. We say
U is absolutely F-convex if Ele a;u;B; € U whenever uy,uo,...,up € U and

ar, a9, ... o B, B, By € F with 8 lag? < 1and K 1852 < 1. If
the property holds true only for k£ = 1 then we say U is F-circled.
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Theorem 2.2. The open unit ball of a non-degenerate normed F-bimodule
(W, |II) is absolutely F-convex and absorbing.

PRrROOF: Let U denote the open unit ball of (V,||-||). Let ui,ug,...,ux € U and
a1,09,.. '7ak7617627 cee 7/8k S ]: Wlth Zf‘:l Ha2||2 S 1 and Z?:l ||62||2 S 1.
Consider u = Zle o;ui3;. Then

k k k
S aguiil| < S lleall il 18] < 3 el 1]
=1 =1 =1

1/2

k 12,
< (Z |0<i||2> (Z ||ﬁz‘||2> <1
P i=1

Therefore w € U. Thus U is absolutely F-convex. To show that U is absorbing
consider av € V and € > 0. Put v; = m Then v1 € U and v = vy (||v]] + €).

Therefore U is absorbing. (I

Jul =

The following theorem completes the characterization of F-bimodule norms
among norms on V.

Theorem 2.3. Let A C V be absolutely F-convex and absorbing. Then the
gauge of A,
p(v) =inf{k > 0| v € kA}

determines an F-bimodule semi-norm on V.

PrOOF: First we note that p(v) > 0 for all v € V. From the definition, we get
that p(kv) = |k|p(v) for all & € C. We now show that p(v + w) < p(v) + p(w)
for all v,w € V. Let v,w € V and Se > 0. Then there exist k1, ko > 0 such that
k1 < p(v) + 5 with v € k1A and k2 < p(w) + § with w € ko A. We show that

v+w € (k1 + ko)A. We set o = kllj}ky 8 = kffkf Then o + 8 = 1. Also

av . w Bw _  w v Bw _ vtw .
k_l = m, k—2 = m Thus we get —1 —+ E = k1+k2 . AS A 1S abSOlutely
F-convex, it is convex. Thus v +w € (k1 + k2).A. It follows that

p(v+w) < ki + ks < p(v) + plw) + e

As € > 0 is arbitrary we get that p(v + w) < p(v) + p(w). Next, we show that
plavf) < |laf p(v) |8|| for all o, 3 € F, v € V. First, let v € A. Then p(v) < 1.
Let o, 8 € F with || < 1, ||8]] < 1. Since A is absolutely F-convex, avi3 € A.

Therefore p(avB) < 1. Now let v € V and o, € F, € > 0. Put v; = W.

Then p(v1) = pﬁf;)le < 1. That is v; € A. Without loss of generality we may

take a £ 0, 3 #0. Let ag = ﬁ, 61 = ﬁ Then p(ajv1B1) <1 so that

plawf) < laf (p(v) + ) [15] -
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As e > 0 is arbitrary we get

plawf) < el (p(v)) 15] -

Hence p(-) is a F-semi-norm on V. O

In the rest of the paper we will be dealing with non-degenerate ordered F-
bimodules. We introduce some more notations.

We write I, = 71 €4iy Jn = D iy €in+i for any n € N. Note that ||I,[ =
|Jnll = 1 and Jplp = 0, InJdy = Jpn, Jndn = 0, JpJi = In. Let (V,VT) be a
non-degenerate ordered F-bimodule ([6]). Let uj,us € V* and n € N such that
lpuily = ug, lpugly, = ug. We denote ug + JiuaJy by (uq, uz)x For any v € V
and an n € N with 1,01, = v we denote InvJy + Jrv* I, by sayn(v).

Before we define F-Riesz norm, we need the following reformulation of the concept
that V7T is generating.

Proposition 2.4. Let (V, V+) be a non-degenerate ordered F-bimodule. Then
VT is generating if and only if for every v € V there exist uy,us € VT such that
(u1,u9) + san(v) € VY, for a suitable n € N.

Note. In the notation (ug,us); + san(v) € V¥, we say that n € N is “suitable”
provided 1pu1l, = uy, lpual, = woe and 1pv1, = v. This terminology will be
used throughout the paper without any further explanation.

PROOF: First, let VT be generating. Let v € Vgq. Then by [6, Theorem 3.10]
there exist vy,va € V1 such that v = v; — v9. Put u = v1 + vg. Then u € V*
and u £ v € VT. Next let v € V be arbitrary. Find an n € N such that
1pvly, = v. Counsider san(v): san(v) = Invdp + Jiv*I, € Vsq. Then as above
there exists a u € VT such that u 4 sap(v) € V. Let u = Iypuls, € VT. Then
U £ san(v) € VT for Ioysan(v)lan, = san(v). Set up = Lyu' Iy, ug = Jpu' JE.
Then (uy,us), = Inu' I + gy (Jnulj;i) Jn. We show that (ug,u2), + san(v) €

VT, Note that
(1) Iyl — Inu' T Ty — T Jn Iy + T Jpd T Ty F san(v)
=(Ip—J}Jn) (ul + san(v)) (I, — J:Jn) e V.
Similarly
(2) It Iy + Ly JE Ty + JEJpt Iy + T T T Ty % san (v)
:@rhthdimMmyh+meevﬁ
Adding (1) and (2) suitably, we get

(u1,u2),} + san(v) = Inu' I + gy (Jnu/J:L) Jn £ sap(v) € VT.
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Conversely assume that for every v € V there exist uj,us € V' such that
(u1,u9) £ san(v) € VT, for a suitable n € N. We show that V* is generat-
ing. Let v € V. Then there exist u1,us € V1 such that (ul,ug)z + san(v) € VT,
for a suitable n € N. Therefore

(In + Jn) ((ul,ug)j{ + san(v)) (In+ J¥) e VT.
This gives uj + ug £ (v +v*) € V¥, Similarly
(In +iJn) ((ul,ug);t + san(v)) (I, —iJ}) e vt

which gives u3 +ug +1i (v —v*) € V. Put

vozi(ul—l—z@—l—v—kv*),
o= 7 (4w — (o —0%),
vzzi(UH—w—v—v*),
vg:%(ul—l—z@—l—i(v—v*)).

Then v, v1,v2,v3 € VT and we have
vo + U1 — v — tvg = 0.

Hence VT is generating. 0

Definition 2.5. Let (V, V"') be a positively generated non-degenerate ordered
F-bimodule. Let [|-|| be an F-bimodule norm on V. We say ||-|| is an F-Riesz
norm on V if for any v € V,

o]l = inf{max(flut |, [uz]]) | (u1,u2)§ = san(v) € V*

for some wuy,us € VT and a suitable N € N}.

In what follows we characterize F-Riesz norms on a non-degenerate positively
ordered F-bimodule in the lines of Theorem 2.2.

Definition 2.6. Let (V, V"') be an ordered F-bimodule and A C V. We define
S (A) as follows:
S(A) ={veV|(u,u)k £say(v) e VT
for some wuj,us € A and a suitable N € N}.
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Remarks.

(a) ACS(A).
(b) v* € S(A) whenever v € S(A).

Definition 2.7. Let A C V. Then we say that A is order absolutely F-convex
if Ele ajujo; € A whenever uy,ug,...,u; € A and aj,ag,...,qp € F with

3 e <1

If the above condition holds only for k& = 1 for some A C V7T, then we say A is
order JF-circled.

Definition 2.8. S C V7 is called F-absorbing if for each v € V there exist
a, B € F such that avg € S.

Definition 2.9. S C V7 is called positively F-absorbing if for each u € V' there
exists a o € F such that a*ua € S.

Lemma 2.10. Let A C VT be order absolutely F-convex. Then S(A) is abso-
lutely F-convex.

PROOF: Let vy, vo,...,v;, € S(A) and let a1, a9, ...,ak, 01,02, ...,0;, € F with

le ;|| < 1 and Zle 8> < 1. Then for each i = 1,2,...,k there ex-
ist N; € N, u’l,ué e A with Inviln, = v, 1Niu211Ni = u’l, 1Niu221Ni = u%
with (ull,ulz)j\}l + say,(v;) € VT. Now ai,ag,...,ap € F. Therefore there
exist My, Ma,..., My € N such that 1p,041p, = o4, @ = 1,2,...,k. Also
B1, 52, ..., B, € F. Therefore there exist P, P, ..., Py € Nsuchthat 1p,8;1p, =
Bi, i =1,2,...,k. Let N =max{Ny,No,...,Ng, M1,..., My, Pi,...,P}. Then
for each i = 1,2,..., k we have (ull,ué)j\_, + say(v;) € VT. Now

* . .
((af,ﬁ,);) ((ui,ué);isa]v(vi)) ((af,ﬁ,);) e vVt forallis = 1,2,... k.
This means (aiuﬁaf,ﬁjuéﬁi); + say (ov;3;) € VT for each i = 1,2,...,k.
. . +

Adding (Zle ufof, Zle ﬁz‘uéﬁ,)]v =+ say (Zle aivzﬂi) € V7. Since A is
absolutely convex and Zle lla;][? < 1 and Zle 18il1? < 1 we have
Zle aiu’ia: € Aand Zle BubB; € A. Therefore Zle a;v;0; € S(A). There-
fore S(A) is absolutely F-convex. O
Lemma 2.11. Let VT be generating. Then S(A) is F-absorbing if A C VT is
positively F-absorbing.

PrOOF: Let A C VT be positively F-absorbing. Let v € V. Since V7 is
generating, by Proposition 2.4, there exist u1,us € VT and a suitable N € N
such that (u1,u2)} £ say(v) € VT. Since A is positively F-absorbing and
ui,us € V1 there exist o, 3 € F such that a*uja € A, B*usB € A. Find
M € N such that 1yuilys = up, Lppuelpy = ug, 1yvly = v, 1yaly = a,
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*

1361 = B. Then ((a,ﬁ)j\;,) ((U17U2)L + SCLM(’U)) (a,ﬁ)j\;, € VT. This gives

(a*uya, 6*’&26)7\_4 + sapr(a*vB) € V. Since a*uja € A and f*usf € A, we get

a*vf € S(A). Hence S(A) is F-absorbing. O
Some more concepts will be needed in the sequel.

Definition 2.12. Let A C V. A is called positively bounded if for any v € Vs,
v+ kpan € VT for all n € N implies v € V1, where {a,} is a sequence in A and
{kn} is a sequence in (0, 00) with inf k, = 0.

Definition 2.13. Let A C V*. A is called almost positively bounded if
(knuf, knug);n + sap, (v) € V1 for all n € N implies v = 0 where {u]}, {u}}
are sequences in A and {kp} is a sequence in (0,00) with infk, = 0, {Nyp} is a
sequence in N.

Lemma 2.14. Let VT be proper. Let A C VT be order absolutely F-convex
and positively bounded. Then A is almost positively bounded.

PRrROOF: Let v € V, sequences {u]'}, {uy} be in A, {k,} be a sequence in (0, c0)
with inf k, = 0 and {N,} be a sequence in N such that

Zy, = (knu?, knug)j\}n +sap, (v) € Yyt

for all n € N. Then

(1) (In, +JIN,) Zn, (In, + IN,)" = Enul + knug £ (v+07)
and
(2) (INn + iJNn) ZNn (INn + ZJNn)* = knu? + knug +1 (’U — v*) .

Put u] + uf = 2uy, for all n € N. From (1) and (2) we get
(3) knun = Re(v), kpup £ Im(v) € V.

Since A is convex as it is order absolutely F-convex, u, € A for all n € N. As
A is positively bounded, from (3) we get = Rewv,+Imv € VT. Finally as V7T is
proper, we have Rev = 0, Imv = 0. That is v = 0. Hence A is almost positively
bounded. O

Remark. It may be noted that the notion of (almost-)positively bounded sets is
introduced to generalize the notion of (almost-)Archimedean property of the cone

(15])-

Now we are in a position to characterize F-Riesz norms.
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Theorem 2.15. Let (V, V"') be a non-degenerate positively generated ordered
F-bimodule. Let AC V7T be order absolutely F-convex, almost positively bounded
and positively F-absorbing. Also assume that S(A) NVt = A. Let p(-) be the
gauge of S(A). Then p(-) is an F-Riesz norm on V.

Conversely, let ||-|| be an F-Riesz norm on V where (V,V"') is a positively
generated ordered F-bimodule. Also let UT = {v € VT | |v|| < 1} =UN VT,
where U is the open unit ball of (V, ||-||). Then U™ is order absolutely F-convex,
almost positively bounded and positively F-absorbing.

ProOOF: First assume that (V, V"') is a non-degenerate positively generated or-
dered F-bimodule. Let A C VT be order absolutely F-convex, almost positively
bounded and positively F-absorbing. Also assume that S(A) N VT = A. Let p(-)
be the gauge of S(A). We show that p(-) is an F-Riesz norm on V. In the light
of Theorem 2.3, Lemmas 2.10 and 2.11 we note that p(-) is a F-semi-norm on V.
Let v € V. We show that

p(v) = inf{max(p(ui),p(u2)) | (u1, uz)?\} +say(v) € \as
for some wuy,us € VT and a suitable N € N}.

Since S(A) is F-absorbing there exists some A > 0 such that Av € S(A). This
gives some u1,u2 € A and a N € N such that (uq, ug)j\} +san (M) € VT, That is
(z\‘lul,)\_IUQ)j\} + say(v) € V1. Also p(A"tu1) = A Ip(uq). Since p(-) is the
gauge of S(A) and S(A) N VT = A, we have p(u1) < 1 and p(ug) < 1. Therefore
p(Atug) < A7L p(Atug) < AL That is max{p(A~tu1), p(A"tug)} < A7L
Let € > 0. Then (p(v) + ¢)~1v € S(A). Replacing A by (p(v) + ¢) in the above
discussion, there exist uq1,us € VT and some N € N such that (ul,u2)j\} +
san(Av) € VT and max{p(u1),p(uz)} < (p(v) + €). That is,

p(v) > inf{max(p(ui),p(u2)) | (u1, ug)} +say(v) € yt
for some wuy,us € VT and a suitable N € N}.

Let ui,us € VT and (ul,u2)]"\} + san(v) € V1 for some N € N. Find a A > 0
such that Auj, Aug € S(A). This gives ()\ul,)\u2)]"’\} + say (M) € V. Since
S(A)NVT = A, we get \uj, \ug € A. That is Ao € S(A). Therefore p(v) < A1
Let € > 0. Put A\ = (max{p(u1),p(u2)} + €)~1. Then \uj, \us € S(A) so that
p(v) < max{p(u1),p(uz)} + €. This gives

p(v) < inf{max(p(ui),p(u2)) | (u1, uz)} +say(v) € yt
for some wuy,us € VT and a suitable N € N}.

Therefore p(-) is F-Riesz semi-norm on V. Now let v € V be such that p(v) = 0.
Then there is a sequence {ky} in (0, c0) with inf k, = 0 such that kv € S(A).
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Thus for every n € N, there exist uf, u € A such that (u7, ug)]"’\}n +sap, (ko) €

VT for suitable N,, € N. This means that (knu?, knug) ;'\_,n +sap, (v) € VT. Since
A is almost positively bounded, we get v = 0. Hence p(-) is an F-Riesz norm
on V.

Conversely, let ||-|| be an F-Riesz norm on V where (V,V"') is a positively
generated ordered F-bimodule. Also let U™ = {v € V't | v|| < 1} =U N VT,
where U is the open unit ball of (V,]-]|). We show that U™ is order absolutely
F-convex, almost positively bounded and positively F-absorbing.

Let v € Y. Find an € > 0 such that ||u|| + € < 1. Since ||| is an F-Riesz norm
there exist uy,us € V1, a suitable N € N such that (ul,u2)]"\} + san(u) € VT
and max{||u1]|,||uz||} < |lu|]| +e€ < 1. That is |Jui] < 1,|luz|| < 1. This means
uy,uz € UT. That is u € S(A). Thus U C S(UT). Let v € S(UT). Then there
exist u1,ug € U and a suitable N € N such that (u1,u2,)} + say(v) € V*.

Since ||-|| is an F-Riesz norm, we have |[v|| < max{|luy|l, ||uz||} < 1. Therefore
v €U or S(UT) C U. Therefore S(UT) = U. Next, let uy,uz,...,u; € UT and
al, a9, ..., qp € F with Zle Hoz;kaiH <1. Putu= le aju;a;. Then u € V
and

k k
2 2
lull <7 Nl [l < fleall® < 1.
=1 i=1

It follows U™ is order absolutely F-convex. We now prove that T is almost

positively bounded. Let v € V and sequences {u'}, {u}} be in U* and {k,} in
(0,00) with inf k, = 0 and {N,,} a sequence in N such that (knu?,knug‘)j\}n +
sap, (v) € VT for all n € N. We show that ||v|| = 0. Let € > 0. Since infk, =0
there exists ang € N such that kn, < e. As |-[| is an F-Riesz norm and ||u}°|| < 1,

lus®]| < 1, we have ||v]| < max{||knou®||, ||knous®||} < kno < €. Since e >0

is arbitrary, ||v|| = 0. Since ||| is a norm, v = 0. Hence U™ is almost-positively
bounded. Finally, let v € VT and e > 0. Put a = (||v||—|—e)_%1n where 1,01, = v.
Then a*va = mlnvln = (”vﬁ’_,’_e) € UT. Therefore U™ is positively F-
absorbing. ([l

Theorem 2.16. Let (V,V") be a non-degenerate ordered F-bimodule. Let VT
be proper and generating. Let A C VT be order absolutely JF-convex, positively
bounded and F-absorbing. Assume that S(A) N V* = A. Let p(-) be the gauge
of S(A). Then p(-) is an F-Riesz norm on V such that V' is p-closed.

Conversely, let (V, V1) be an ordered F-bimodule and V1 be generating. Let
|-l be an F-Riesz norm on V such that V7 is closed. Let Ut = {v € VT | |]v| <
1}. Then U is order absolutely F-convex, positively bounded and positively
F-absorbing such that SUT) N VT =UT. Moreover V7 is proper.

PRrOOF: First assume that V' is proper and generating. Let A C VT be order
absolutely F-convex, positively bounded and F-absorbing. Assume that S(A) N
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Y+ = A. Let p(:) be the gauge of S(A). We show that p(-) is an F-Riesz norm
on VT such that VT is p-closed. In the light of Lemma 2.14 and Theorem 2.15
it suffices to prove that V7' is p-closed. We shall show that Vsq\V™T is p-open.
Define for v € Vgq,

r(v) =inf{a € R |v+aa € V' for some a € A}.

We first show that r(v) < 0 if and only if v € VT. Let v € V*. Then v+0a € VT
for all @ € A. That is r(v) < 0. To show the other way let r(v) < 0. Then
for every n € N there exists an a, € A such that v + (r(v) + %)an € Vt.
Also v + (r(v) + %)an < v+ (%)an as r(v) < 0. That is v + (%)an e Vvt
for every n € N. As A is positively bounded, v € VT. We now show that
p(v) — r(v) > 0 for all v € Vsq. Suppose p(v) — r(v) < 0 for some v € Vgq.
Put € = %(r(v) —p(v)) > 0. Since p(-) is F-Riesz norm on V, there exists an
a € A such that (p(v) + €)a v € VT. Then (r(v) — €)a £ v € VT. In particular
(r(v) — €)a+v € VT. This contradicts the definition of 7(v). Thus p(v) > r(v)
for all v € V4. Finally we show that Vsa\V+ is p-open. Let v € Vgq, v ¢ v+,
Since v ¢ V*, r(v) > 0. Let § = %T(’U). Let D = {w € Vsq | p(v — w) < 6}.
Let w € D. Then ¢ > p(v — w) > r(v — w). So there exists an a € A such that
da+ (v—w) e VT. Ifwe VT, then da+v € V*. Thus r(v) <4 = sz), which is
a contradiction. Therefore w ¢ VT. That is Vsq\VT is p-open.

For the converse it suffices to prove that & is positively bounded and that
VT is proper in light of Theorem 2.15. We show that U™ is positively bounded.
Let v € VT and wy, = v + kpuy, € VT for all n € N, where {u,} is a sequence in
UT and {ky} is a sequence in (0, 00) with inf k,, = 0. Without loss of generality
we can take {k,} to be decreasing. Now {wy} is a convergent sequence because
lv — wp|| = ||knun|| < kn — 0. Therefore wy, — v. Since V7 is closed, v € V.
Therefore U is positively bounded.

Finally we show that VT is proper. Let v € V1. Then as v is self-adjoint,
o] = inf{||lul| | v € VT, u+v € VT}. Also 0 € VT and 0+ v € VT. That is
lvl| < |0 = 0. That is v = 0. Therefore V7 is proper. O

Now we move to the final result of the paper.

Definition 2.17 (F-Riesz normed bimodule). Let (V,VT) be a non-degenerate
ordered F-bimodule such that V' is proper and generating. Assume that |-|| is
an F-Riesz norm on V such that V1 is norm closed. Then the triple (V, VT, ]|[)
is called an F-Riesz normed bimodule.

Definition 2.18 (Matricially Riesz normed space). Let (V,{My(V)T}) be a po-
sitively generated matrix ordered space and suppose that {||-||,,} is a matrix norm
on V. Then the triplet (V,{||,,},{Mn(V)T}) is called a matricially normed
space if for each n € N, [|-||,, is a Riesz norm on M, (V) and M, (V)T is closed.

185
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Theorem 2.19. Let (V,{M,(V)"} {|||l,}) be a matricially Riesz normed
space. Let (V, V1) be the matricial inductive limit of the matrix ordered space
(V,{Mn(V)T}) and let (V, ||||) be the matricial inductive limit of matrix normed
space (V, {||'|,,})- Then (V,VT,|-||) is a non-degenerate F-Riesz normed bimod-
ule. Conversely, let (W, W™ ,|-||) be a non-degenerate F-Riesz normed bimodule.
Let W = 1;W1y and Mp(W)T =1, W11, and |-, = ||| |ag, (w) for all n € N.
Then (W, {Mp,(W)*} {||ll,,}) is a matricially Riesz normed space whose induc-
tive limit is (W, W+, ||]).

ProoF: Let (V,{M,(V)*},{|'ll,,}) be a matricially Riesz normed space. We

show that ||| is an F-Riesz norm on V. Let v € V. Then there exists a smallest
n € N such that 1,v1,, = v. Then

[oll = l[vll,, = inf{max(|furll, . [luzll,,) | (u1,u2); + san(v) € Man(V)*
for some u1,uy € My(V)T}.

Let

p(v) = inf{max(|lu | , [[uz]]) | (u1,u2)f + san(v) € V*
for some wuy,us € VT and a suitable N € N}.

Then p(v) < |[v|. Let € > 0. Then there exist uj,ug € V¥, N € N such that
(u1,u2)} £ san(v) € VT and max(||uz ], |Juz|]) < p(v) + €. In this case N > n.
Put ull = 1lpuily, u/2 = 1pugl,. Then ull,u/2 € M,(V)T. Also

((ln L))" |(uru2)§ £ san ()] ((Lns o)) = (u), up);t & san(v) € Man (V)

as 1pvl, = v. Next Hu;Hn < Juz ||,

ugH < |lug]| so that
n

’ ’
ol = loll, < max((fun | [ua )< max(lunll, fusl) < pw) +c.
Since € > 0 is arbitrary, [[v| < p(v). Therefore p(v) = [jv||. Hence [-| is an
F-Riesz norm on V. We show that V7 is ||| closed. Let v € Vt. Then there
exists a sequence {vg} C V7 such that vy — v in ||-||. Hence v € Vsq. Find an

n € N such that 1,v1, = v. Then v;g = lyvgply — 1pvly = v in ||-||,,. Since
M, (V)T is closed, we have v € M, (V)™ C VT. Therefore V7 is closed.

For the converse it is enough to show that ||-||,, is a Riesz norm on M, (W) for
alln € N. Fix an n € N and w € Mp(W). Let

r(w) = inf{max(|[u ], , [uall,,) | (u1,u);} + san(w) € Mo, (W)T
for some wuy,us € My(W)T}.
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Recall that

[wll,, = llwl| = inf{max(|uz |, [luz]]) | (u1,u2)} + san(w) € WF
for some wui,ups € W and a suitable N € N}.

Then |[w||,, < 7(w). Let ¢ > 0. Then as above using (15, 1,);", we may conclude
that r(w) < ||w||,, + €. Therefore r(w) = ||wl|,,. That is ||-||,, is a Riesz norm on
My (W). Also My (W)™ is ||-]|,, closed. O

Acknowledgment. The authors are grateful to the referees for their valuable
suggestions.

REFERENCES

[1] Choi M.D., Effros E.G., Injectivity and operator spaces, J. Funct. Anal. 24 (1977), 156—209.

[2] Effros E.G., Ruan Z.J., On matricially normed spaces, Pacific J. Math. 132 (1988), no. 2,
243-264.

[3] Karn A.K., Approzimate matriz order unit spaces, Ph.D. Thesis, University of Delhi, Delhi,
1997.

[4] Karn A.K., Vasudevan R., Approzimate matriz order unit spaces, Yokohama Math. J. 44
(1997), 73-91.

[5] Karn A.K., Vasudevan R., Characterization of matricially Riesz normed spaces, Yokohama
Math. J. 47 (2000), 143-153.

[6] Ramani J.V., Karn A.K., Yadav S., Direct limit of matriz ordered spaces, Glasnik Mate-
maticki 40 (2005), no. 2, 303-312.

[7] Ruan Z.J., Subspaces of C*-algebras, J. Funct. Anal. 76 (1988), 217-230.

DEPARTMENT OF MATHEMATICS, AGRA COLLEGE, AGRA, INDIA

E-mail: ramanijiQyahoo.com

DEPARTMENT OF MATHEMATICS, DEEN DAYAL UPADHYAYA COLLEGE, UNIVERSITY OF DELHI,
KArRAM PURA, NEw DELHI 110 015, INDIA

E-mail: anilkarn@rediffmail.com

DEPARTMENT OF MATHEMATICS, AGRA COLLEGE, AGRA, INDIA

E-mail: drsy@rediffmail.com

(Received April 26,2005, revised November 23, 2005)



