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Medial modes and rectangular algebras

Anna Zamojska-Dzienio

Abstract. Medial modes, a natural generalization of normal bands, were investigated by
P lonka. Rectangular algebras, a generalization of rectangular bands (diagonal modes)
were investigated by Pöschel and Reichel. In this paper we show that each medial
mode embeds as a subreduct into a semimodule over a certain ring, and that a similar
theorem holds for each Lallement sum of cancellative modes over a medial mode. Similar
results are obtained for rectangular algebras. The paper generalizes earlier results of
A. Romanowska, J.D.H. Smith and A. Zamojska-Dzienio.
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1. Introduction

Algebras called modes are investigated in the two monographs [9] and [11],
where also further references can be found. They originated as a common ge-
neralization of affine spaces, convex sets and semilattices. In this paper, we are
interested in the problem of embedding modes as subreducts into semimodules.
One of the most efficient ways of describing the structure of an algebra is to em-
bed it into another one, usually with a better known and richer structure. Such
method appears to be quite successful in investigating the structure of modes.
It is known that modes in many classes may be characterized as subreducts of
semimodules over commutative semirings. By results of Ježek and Kepka proved
in [1] one can deduce that each binary mode has this property. A similar result
for so-called semilattice modes was obtained by Kearnes in [2]. In [12] A. Ro-
manowska raised a question whether all modes are subreducts of semimodules
over commutative semirings. Quite recently M. Stronkowski and D. Stanovský
constructed negative examples but a general characterization of classes of modes
embeddable into semimodules is still unclear. The paper continues earlier inves-
tigations on the subject conducted among others in the papers [10], [14] and [15],
and in the doctoral dissertation [16].

The paper was written within the framework of INTAS project no. 03 51 4110, “Universal
algebra and lattice theory”.
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In [14], one introduced a certain special method of embedding semilattice sums
of cancellative modes as subreducts into P lonka sums of affine spaces. As a corol-
lary, one obtains an embedding of such semilattice sums into semimodules. A tech-
nique of embedding developed there is based on two facts: cancellative modes
embed into appropriate modules (see Romanowska and Smith [10]), and then:
a P lonka sum of modules over a certain ring is a semimodule over the same ring.
It was shown that each so-called semilattice Lallement sum of cancellative modes
embeds as a subreduct into a P lonka sum of certain affine spaces, and hence into
a P lonka sum of the corresponding modules. Consequently, it embeds into a semi-
module. We still do not know how far the assumptions of this method can be
relaxed.

In [15], the above result was extended to the case of Lallement sums of can-
cellative modes over semigroup modes (i.e. normal bands). They also embed as
subreducts into semimodules over certain rings. The proof involved certain new
properties of functorial sums of algebras, and was done also by showing that the
above mentioned Lallement sums are subalgebras of reducts of P lonka sums of
modules.

In this paper we consider so-called medial modes, a certain generalization of
normal bands, investigated by P lonka [6], and rectangular algebras, a generali-
zation of rectangular bands (diagonal modes), investigated by Pöschel and Rei-
chel [8], and also Lallement sums of cancellative modes over such algebras. We
show that all such modes also embed into semimodules over some rings.

The paper is organized as follows. In Section 2, we recall basic definitions
and results concerning modes, medial modes and rectangular algebras. Section 3
provides a brief survey of what we need about algebraic quasi-orders and sums
of algebras. The main results concerning rectangular algebras and medial modes
are proved in Sections 4 and 5. The last section provides results for Lallement
sums of cancellative modes over medial modes and rectangular algebras.

The terminology and the notation of the paper is basically as in the books
[9] and [11]. We refer the reader to those books for any otherwise undefined
notions and further results. In particular, we use reverse Polish notation, i.e.
terms (words) and operations are denoted by x1 . . . xnf instead of f(x1, . . . , xn)
with the exception of traditional binary operations. It allows us to avoid writing
too many brackets and makes formulas easier to read. The set of Ω-terms over X
is denoted by XΩ, the symbol x1 . . . xnw means that x1, . . . , xn are exactly the
variables of w.

2. Medial modes and rectangular algebras

An algebra (A,Ω) of type τ : Ω −→ Z
+ is called a mode if it is idempotent

and entropic, i.e. each singleton in A is a subalgebra and each operation ω ∈ Ω
is actually a homomorphism from an appropriate power of the algebra. Both
properties can also be expressed by the following identities:
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(I) ∀ω ∈ Ω, x . . . xω = x
(E) ∀ω, ϕ ∈ Ω, with m-ary ω and n-ary ϕ,

(x11 . . . x1mω) . . . (xn1 . . . xnmω)ϕ = (x11 . . . xn1ϕ) . . . (x1m . . . xnmϕ)ω,

satisfied in the algebra (A,Ω). A mode (A,Ω) is cancellative if for each
(n-ary) ω in Ω, the algebra (A,Ω) satisfies the cancellation law

(a1 . . . ai−1 xi ai+1 . . . anω = a1 . . . ai−1 yi ai+1 . . . anω) −→ (xi = yi)

for each i = 1, . . . , n.
Let Mτ be the variety of all modes of a given type τ : Ω → (N−{0, 1}). Then

the quotient ring

R(Mτ) = Z[{Xωi | ω ∈ Ω, 1 ≤ i ≤ ωτ}]/〈1 −

ωτ∑

i=1

Xωi | ω ∈ Ω〉

is called the affinization ring for the variety Mτ . For ω ∈ τ−1(n), the corre-

sponding operation on an affine space over R(Mτ) is

x1 . . . xnω =
n∑

i=1

xiXωi

for the indeterminates Xω1, . . . , Xωn pertaining to ω. The Ω-reducts of the affine
R(Mτ)-spaces are in the variety Mτ . Note that the ring R(Mτ) is independent
of the particular mode being embedded. It is the most general ring which can be
used to embed all embeddable modes of the variety Mτ into corresponding affine
spaces.

For cancellative modes the affine spaces over the ring R(Mτ) play an essential
role, since we have the following

Theorem 2.1 ([10], [11, Section 7.7]). Each cancellative mode (C,Ω) of a fixed

type τ : Ω → Z
+ embeds as an Ω-subreduct into an affine space (G,P,R(Mτ))

over the ring R(Mτ).

In this paper we also consider Lallement sums of cancellative modes over medial
modes and over rectangular algebras. (See Section 3.)

Definition 2.2 ([6]). An algebra (A, f) with one n-ary basic operation is called
medial , if it satisfies the following identities:

x11 . . . x1nf . . . xn1 . . . xnnff = xi1j1 . . . xi1jnf . . . xinj1 . . . xinjnff
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for every permutation {(i1, j1), (i1, j2), . . . , (in, jn−1), (in, jn)} of the set
{(1, 1), (1, 2), . . . , (n, n−1), (n, n)} such that (ir, jr) = (r, r) for r = 1, . . . , n, and

(y1x2 . . . xnf)y2 . . . ynf = y1(x2y2x3 . . . xnf)y3 . . . ynf

= . . . = y1 . . . yn−1(x2x3 . . . xnynf)f.

Note that in the case n = 2, the first identity coincides with the entropicity and
the latter one reduces to the associativity. Note also that idempotent medial
algebras are modes. They are sometimes called medial modes ([7]). For n = 2
medial modes are just normal bands. If we consider a reduct of normal band (A, ·)
with one n-ary operation f (for n ≥ 2) defined as follows:

x1x2 . . . xnf = x1 · x2 · . . . · xn,

then the mode (A, f) (called normal {f}-band) is also a medial mode.
Medial modes are characterized by means of two other types of algebras.

Definition 2.3 ([4]). An idempotent algebra (A, d) with an n-ary operation d is
called an n-dimensional diagonal algebra if it satisfies the diagonal identity

x11 . . . x1nd . . . xn1 . . . xnndd = x11 . . . xnnd.

For n = 2, diagonal algebras are precisely rectangular bands. Evidently diagonal
algebras are modes.

Definition 2.4 ([5]). An algebra (A, r) with an n-ary operation r is called an rn-
algebra if (A, r) is the reduct of an abelian group (A,+,−, 0) satisfying (n−1)x = 0
under the operation x1 . . . xnr = x1 + · · · + xn.

Note that each rn-algebra (A, r) is a cancellative mode.

Theorem 2.5 ([6]). An algebra (A, f) with one n-ary basic operation is a medial

mode if and only if it is a P lonka sum of algebras, each of them being the direct

product of one n-dimensional diagonal algebra and one rn-algebra.

Diagonal algebras are characterized by the following proposition.

Proposition 2.6 ([11, Section 5.2]). Each n-ary diagonal mode (A, d) is a direct

product of n projection subalgebras (Ai, d) satisfying the identity

x1 . . . xi . . . xnd = xi.

For n = 2 Proposition 2.6 reduces to well known fact that each rectangular band
is a direct product of a left-zero semigroup and a right-zero semigroup.

A further generalization of diagonal modes was considered by Pöschel and
Reichel in [8] under the name of rectangular algebras. A mode (A,Ω) of any
finite type τ : Ω → Z

+ is called a rectangular algebra if each operation ω in Ω
satisfies the diagonal identity. A projection algebra is an algebra (B,Ω) for which
every operation ω ∈ Ω is a projection.
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Theorem 2.7 ([8, Decomposition Theorem]). Each rectangular algebra (A,Ω)
is isomorphic to a finite direct product of projection algebras.

Denote by Re the variety of rectangular algebras of a finite type, where Ω =

{f1, . . . , fn} for n ≥ 1, and let N = f1τ · f2τ · . . . · fnτ .

Theorem 2.8 ([8, Corollary 2.9]). Up to isomorphism there are exactly N subdi-

rectly irreducible algebras in the varietyRe. ConsequentlyRe has 2N subvarieties.

3. Algebraic quasi-orders and sums of algebras

In [13] it was shown that each algebra (A,Ω) having a homomorphism h onto
an idempotent, naturally quasi-ordered algebra (I,Ω) can be reconstructed as
so-called (generalized coherent) Lallement sum of the corresponding fibres h−1(i)
for i ∈ I over (I,Ω). This construction generalizes the functorial (Agassiz) sum
of algebras. We refer the reader to [11, Chapter 4] and [13], as well as to the
paper [15], for definitions of various types of sums of algebras and their properties.

Let (I,Ω) be an algebra of type τ : Ω → N. The algebraic quasi-order of the
algebra (I,Ω) is the quasi-order � defined on the set I as follows:

� := {(i, j) | ∃ x1 . . . xnt ∈ XΩ and ∃ i1, . . . , ik−1, ik+1, . . . , in ∈ I

such that j = i1 . . . ik−1iik+1 . . . int}.

(See e.g. [13] and [11, Chapter 4].) If additionally the algebra (I,Ω) satisfies the
condition:

if ai � bi, then a1 . . . aωτω � b1 . . . bωτ ω

for all ω in Ω and a1, . . . , aωτ , b1, . . . , bωτ in I, then we say that it is naturally
quasi-ordered . If � = I × I, then the algebra (I,Ω) has a full algebraic quasi-
order. All idempotent (strongly) irregular algebras have full algebraic quasi-order
and are naturally quasi-ordered. Note also that if (I,Ω) is an Ω-semilattice i.e.
an Ω-reduct of a semilattice, then the algebraic quasi-order � of (I,Ω) coincides
with the semilattice order ≤ defined by x ≤ y iff xy = x.

In the case of idempotent algebras, one can recognize whether they are natu-
rally quasi-ordered also in a different way. On a quasi-ordered set (I,�) define a
relation α as follows

(x, y) ∈ α :⇔ x � y and y � x.

It is well known that α is an equivalence relation, and that the relation xα ≤ yα

iff x � y is an ordering relation. Moreover the following holds.

Proposition 3.1 ([13], [11, Proposition 4.1.7.]). An idempotent algebra (I,Ω) is

naturally quasi-ordered iff the relation α is a congruence on (I,Ω) and (Iα,Ω) is

an Ω-semilattice.
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Corollary 3.2 ([13, Examples 2.4, 2.5]). The P lonka sum of algebras with full

algebraic quasi-orders is naturally quasi-ordered.

We are especially interested in Lallement sums embeddable into functorial
sums. We will denote a Lallement sum of algebras (Bi,Ω) over an idempotent
naturally quasi-ordered algebra (I,Ω) by Li∈I(Bi,Ω) and a functorial sum (B,Ω)
of (Bi,Ω) over (I,Ω) by (B,Ω) =

∑
i∈I (Bi,Ω), similarly as in [15].

Theorem 3.3 ([13], [11, Theorem 7.4.2]). Let a mode (B,Ω) be a Lallement sum

of cancellative modes (Bi,Ω) over a naturally quasi-ordered mode (I,Ω). Then

(B,Ω) is a subalgebra of a functorial sum (E,Ω) of cancellative envelopes (Ei,Ω)
of (Bi,Ω) over (I,Ω)

(B,Ω) = Li∈I(Bi,Ω) ≤
∑

i∈I

(Ei,Ω).

The cancellative envelopes (Ei,Ω) are extensions of cancellative modes (Bi,Ω)
built in a certain canonical way. (See [11, Section 7.4].)

In [14] the above result was used together with Theorem 2.1 to prove the
following

Theorem 3.4 ([14]). Let a mode (B,Ω) be a semilattice sum of cancellative

modes (Bi,Ω) over a semilattice (I,Ω). Then (B,Ω) is a subreduct of a P lonka

sum of affine R(Mτ)-spaces.

Corollary 3.5 ([14]). Let a mode (B,Ω) be a semilattice sum of cancellative

modes. Then (B,Ω) embeds as a subreduct into a semimodule over a ring.

Note that a direct product of an algebra (A,Ω) and an idempotent algebra
(I,Ω) can always be considered as a functorial sum of isomorphic Ω-algebras
Ai = A × {i}, for i ∈ I, over the algebra I. On the other hand, assume that
in a functorial sum

∑
i∈I (Ai,Ω) the indexing algebra (I,Ω) has a full algebraic

quasi-order. Then for any two i, j in I, the summands (Ai,Ω) and (Aj ,Ω) are
isomorphic, and the functorial sum is isomorphic to the direct product of (Ai,Ω)
and (I,Ω), i.e.

(3.5.1) (A,Ω) =
∑

i∈I

(Ai,Ω) ∼= (Ai,Ω) × (I,Ω).

(See [3].)
The functorial sums has a special property which resembles “associativity”.

Theorem 3.6 ([15]). Let (E,Ω) be a functorial sum of algebras (En,Ω) over an

algebra (N,Ω). Let (N,Ω) be a functorial sum of algebras (Ns,Ω) over an algebra
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(S,Ω). Then (E,Ω) is a functorial sum of algebras (Bs,Ω) over the algebra (S,Ω),
where (Bs,Ω) is a functorial sum of (En,Ω) over (Ns,Ω). Briefly:

(3.6.1)
∑

(En | n ∈
∑

s∈S

Ns) =
∑

s∈S

(
∑

(En | n ∈ Ns)).

4. Embedding rectangular algebras into modules

Let Re be a variety of rectangular algebras of a given (finite) type, where

Ω = {f1, . . . , fn} with n ≥ 1, and N = f1τ · f2τ · · · · · fnτ . By Corollary 2.8,
Re has N subvarieties of projection algebras. In fact, the sets of operations of
algebras in each of these subvarieties differ only by the combination of projections,
i.e. Ω = {fik | i = 1, . . . , n, k = 1, . . . , fiτ} with each operation defined as follows

fik : Afiτ −→ A;
(
a1, . . . , afiτ

)
7−→ ak.

Obviously, for each k, we have fikτ = fiτ . We denote by Pj1j2...jn , where ji ∈

{1, . . . , fiτ}, the variety of projection algebras with the set of operations {fiji |
i = 1, . . . n}, i.e. i-th operation is the projection on the ji coordinate.

We start with constructing the affinization rings (see Section 2) for the variety
of rectangular algebras and for its subvarieties of projection algebras.

Lemma 4.1. The following rings are the affinization rings for the varieties

Pj1j2...jn and Re:

R(Pj1j2...jn) = Z
[
X11, . . . , X1f1τ , . . . , Xn1, . . . , Xnfnτ

]
/

〈Xi1, . . . , 1 −Xiji , . . . , Xifiτ , 1 −

fiτ∑

j=1

Xij | i = 1, . . . , n〉,

R(Re) = Z
[
X11, . . . , X1f1τ , . . . , Xn1, . . . , Xnfnτ

]
/

〈XijXik, Xij(1 −Xij), 1 −

fiτ∑

j=1

Xij | i = 1, . . . , n, j, k = 1, . . . , fiτ, j 6= k〉.

Proof: The rings are calculated as follows. First consider the variety Pj1j2...jn of

projection algebras with ji-th projections as the basic operations fiji . Note that
we can equate coefficients in each projection identity separately, so to simplify
calculations assume that we consider i-th operation which is a projection on j-th
coordinate. Let Xik, for k = 1, . . . , fiτ be the indeterminates pertaining to the
operations fij . Equating coefficients in

x1Xi1 + x2Xi2 + · · · + xfiτXifiτ = x1x2 . . . xfiτfij = xj
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shows that xjXij = xj and xkXik = 0 for k 6= j and k = 1, . . . , fiτ . By

idempotency
∑fiτ
k=1Xik = 1. Whence the ring R(Pj1j2...jn) is a quotient of

Z
[
X11, . . . , X1f1τ , . . . , Xn1, . . . , Xnfnτ

]
/

〈Xi1, . . . , 1 −Xiji , . . . , Xifiτ , 1 −

fiτ∑

j=1

Xij | i = 1, . . . , n〉.

Conversely, taking an affine space over the ring R(Pj1j2...jn) for ji ∈
{1, . . . , fiτ}, we obtain a projection algebra in Pj1j2...jn under the operations

x1 . . . xωijτωij := x1Xi1 + · · · + xωijτXi(ωijτ) = xj .

It follows that R(Pj1j2...jn) = Z
[
X11, . . . , X1f1τ , . . . , Xn1, . . . , Xnfnτ

]
/

〈Xi1, . . . , 1 −Xiji , . . . , Xifiτ , 1 −
∑fiτ
j=1Xij | i = 1, . . . , n〉.

Now consider the variety Re of rectangular algebras. The indeterminates are
defined as before. Again, we can equate coefficients in diagonal identity for each
operation separately. We obtain that xjjX

2
ij = xjjXij and xjkXijXik = 0 for

k 6= j. Then the ring R(Re) is a quotient of

Z
[
X11, . . . , X1f1τ , . . . , Xn1, . . . , Xnfnτ

]
/

〈XijXik, Xij(1 −Xij), 1 −

fiτ∑

j=1

Xij | i = 1, . . . , n, j, k = 1, . . . , fiτ, j 6= k〉.

Similarly as in the case of projection algebras one shows that each affine space
over the ring R(Re) is a rectangular algebra. As the corresponding operation ωi
one takes the same operation as for projection algebras. �

Lemma 4.2. Each rectangular algebra (R,Ω) embeds as a subreduct into a mo-

dule over the ring R(Re).

Proof: By Theorem 2.7, (R,Ω) =
∏N
s=1(Ps,Ω) where each (Pj ,Ω) is a projection

algebra. Since the structure of projection algebras is very simple we can consider
each Ps as the set of free generators of a free module M(Ps) over the appropriate
affinization ring R(Pj1j2...jn) (as well as over the ring R(Re)). In this way one
obtains embedding of the rectangular algebra R into the R(Re)-module M(R) :=∏N
s=1M(Ps). �

Proposition 4.3. The P lonka sum of rectangular algebras (Ri,Ω) over an Ω-

semilattice (I,Ω) embeds as a subreduct into a semimodule over the ring R(Re).

Proof: Let (Ri,Ω) =
∏N
s=1(Ps,i,Ω) for i ∈ I. Each sum homomorphism fi,j :

Ri → Rj is uniquely determined by an N -tuple of functions fsi,j : Ps,i → Ps,j
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for s = 1, . . . , N . By universality property for free modules each mapping fsi,j
extends to a (uniquely defined) module homomorphism f

s
i,j : M(Ps,i) →M(Ps,j)

such that f
s
i,j |Ps,i

= fsi,j .

Note that each free module obtained in the proof of the previous lemma, under
the operations

x1 · · ·xfiτfi =

fiτ∑

j=1

xjXij ,

for i = 1, · · · , n, is a rectangular algebra, so Ri embeds into the rectangular
algebra M(Ri).

There exists a unique module homomorphism f i,j : M(Ri) →M(Rj), for i ≤ j,

determined by the N -tuple f
s
i,j , uniquely extending the sum homomorphism fi,j .

The homomorphisms f i,j are functorial (i.e. f i,jfj,k = f i,k for all i ≤ j ≤ k in
(I,Ω)) and determine a P lonka sum structure on the disjoint union of the modules
M(Ri), each of them over the same ring R(Re). Now the P lonka sum of these
modules is a semimodule over the ring R(Re). �

Lemma 4.4. The affinization rings for the varieties of projection algebras are

isomorphic to the ring Z. The affinization ringR(Re) is isomorphic to the ring Z
N .

Proof: We obtain these results by using the First Isomorphism Theorem for
rings. For projection algebras in the subvariety Pj1j2...jn define the ring homo-

morphism hj1j2...jn : Z
[
X11, . . . , X1f1τ , . . . , Xn1, . . . Xnfnτ

]
→ Z by sending a

polynomial w onto its value in Xiji = 1 for i = 1, . . . , n and Xik = 0 for all
k 6= ji. Clearly, kerhj1j2...jn is the ideal from the definition of R(Pj1j2...jn) and
thus R(Pj1j2...jn) is isomorphic to Z.

For rectangular algebras we define the ring homomorphism

h : Z
[
X11, . . . , X1f1τ , . . . , Xn1, . . . Xnfnτ

]
→ Z

N

in such a way that every polynomial w maps to the N -tuple of coefficients
whj1j2...jn for all combinations of ji ∈ {1, . . . , fiτ}. �

Corollary 4.5. Each rectangular algebra (R,Ω) embeds as a subreduct into a

module over the ring Z
N .

Corollary 4.6. The P lonka sum of rectangular algebras (Ri,Ω) over an Ω-

semilattice (I,Ω) embeds as a subreduct into a semimodule over the ring Z
N .

Rectangular algebras with one n-ary operation are known as diagonal modes.
The varieties of n-ary diagonal modes may be described similarly as the varieties
of rectangular semigroup modes (see e.g. [11, Section 5.2]). First note that an
algebra with one n-ary operation of i-th projection is a diagonal algebra. Let Dn
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be the variety of n-ary diagonal algebras, and let Pi be its subvariety of projection

algebras with i-th projection as the basic operation. By Theorem 2.8, the lattice
of subvarieties of Dn is a Boolean lattice with the subvarieties Pi being its atoms.

For this special case we obtain the following

Corollary 4.7. The following rings are the affinization rings for the varieties Pi
and Dn:

R(Pi) = Z [X1, . . . , Xn] /〈X1, . . . , Xi−1, 1 −Xi, Xi+1, . . . , Xn, 1 −

n∑

j=1

Xj〉,

for i = 1, . . . , n,

R(Dn) = Z [X1, . . . , Xn] /

〈XiXj , Xi(1 −Xi), 1 −

n∑

j=1

Xj | i, j = 1, . . . , n, i 6= j〉.

Corollary 4.8. For each i = 1, . . . , n, the affinization ring R(Pi) is isomorphic

to the ring Z. The affinization ring R(Dn) is isomorphic to the ring Z
n.

To prove this result we use the same method as in the proof of Lemma 4.4.
However in the case of one n-ary operation, the whole procedure is easier to
describe and provides a good example. Let h be the ring homomorphism of the
polynomial ring Z [X1, . . . , Xn] onto the ring Z defined as follows

wh := w(0, 0, . . . , 1, 0, . . .0)

(with 1 on the i-th position, for i = 1, . . . , n), where

w = a0 +

n∑

i=1

aiXi +

n∑

i,j=1

aijXiXj +

n∑

i,j,k=1

aijkXiXjXk + . . .

and all coefficients ai are integers. It means that wh = a0 + ai + aii + aiii + . . . .
In the case of diagonal algebras, the ring homomorphism g of the polynomial

ring Z [X1, . . . , Xn] onto the ring Z
n is defined as follows

wg : = (w(1, 0, . . . 0), . . . , w(0, . . . , 0, 1))

= (a0 + a1 + a11 + a111 + . . . , . . . , a0 + an + ann + . . . ).

Corollary 4.9. Each n-ary diagonal mode (D, f) embeds as a subreduct into a

module over the ring Z
n.



Medial modes and rectangular algebras 31

Corollary 4.10. The P lonka sum of n-ary diagonal algebras (Di, f) over the

{f}-semilattice (I, f) embeds as a subreduct into a semimodule over the ring Z
n.

The situation described in Corollary 4.10 refers precisely to medial modes de-
fined by certain additional identity.

Proposition 4.11 ([6]). A medial mode (A, f) with n-ary operation f is the

P lonka sum of diagonal algebras if and only if it satisfies the identity

(x1 . . . xnf)x2 . . . xnf = x1 . . . xnf.

5. Embedding medial modes into semimodules

Return to the concept of rn-algebras. By definition, such algebras are reducts
of abelian groups in the variety defined by the identity (n− 1)x = 0. This variety
is equivalent to the variety of modules over the ring Zn−1. Note that modules
over Zn−1 can also be considered as modules over the ring Z or the ring Z

n.

Example 5.1. It is known (see [5]) that each symmetric medial mode (A, f)
is the P lonka sum of rn-algebras. Recall that a medial mode is symmetric if it
satisfies the additional identity

x1 . . . xnf = xi1 . . . xinf,

for each permutation {i1, . . . , in} of the set {1, . . . , n}. As a reduct of a P lonka
sum of modules, (A, f) is a reduct of a semimodule over the ring Zn−1. In this
way we obtain another example of a class of modes embeddable into semimodules
over a ring.

In what follows we will show that each medial mode embeds as a subreduct
into a semimodule over the ring Z

n.

Proposition 5.2. Let (M, f) be a medial mode. Then (M, f) embeds into a

semimodule over the ring Z
n.

Proof: By Theorem 2.5, M =
∑
i∈I(Di × Ri), where Di is a diagonal algebra,

Ri is an rn-algebra and I is an {f}-semilattice. Each summand can be considered
as a functorial sum

∑
r∈Ri

Dr of pairwise isomorphic Dr = Di × {r}. Note that
if in Theorem 3.6 we first assume that the algebra E is equal to the right hand
side of the equality (3.6.1) instead of left one, then one can easily show, that the
equality remains true, and the following holds

M =
∑

i∈I

(Di ×Ri) =
∑

i∈I

(
∑

r∈Ri

Dr) =
∑

(Dr | r ∈
∑

i∈I

Ri).

It follows that there exist sum homomorphisms ψi,j : Ri → Rj for each pair
(i, j) with i � j and ϕr,s : Dr → Ds for each pair (r, s) with r � s. (Note that
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for r, s ∈ Ri ϕr,s is simply isomorphism.) Now the sum homomorphisms hi,j :∑
r∈Ri

Dr →
∑
s∈Rj

Ds can be defined as xhi,j := xϕr,rψi,j
for each r ∈ Ri and

x ∈ Dr. By Corollary 4.9, each diagonal algebraDi embeds as a subreduct into the
module M(Di) over the ring Z

n. Similarly, each rn-algebra Ri is a reduct of the
module Ri over the same ring. It follows that their product embeds as a subreduct
into the Z

n-module M(Di) × Ri. Now we need to extend the homomorphisms

hi,j to functorial module homomorphisms hi,j . Again, we consider each direct
product M(Di) × Ri as a functorial sum

∑
r∈Ri

M(Dr). Similarly, as in the
proof of Proposition 4.3 each homomorphism ϕr,s extends to a unique module
homomorphism ϕr,s : M(Dr) →M(Ds) that satisfies the functoriality condition.
Each homomorphism of rn-algebras is also a module homomorphism. So take
a (module) homomorphism xhi,j := xϕr,rψi,j

for each r ∈ Ri and x ∈ M(Dr).

Since both homomorphisms ϕr,s and ψi,j are functorial, so is hi,j . It follows that∑
i∈I(M(Di) × Ri) is a P lonka sum of modules over the ring Z

n and hence a
semimodule over the same ring. And the medial mode (M, f) embeds into this
semimodule. �

6. Lallement sums of cancellative modes over medial modes and over

rectangular algebras

In this section we consider an embedding of a Lallement sum of cancellative
modes (Am, f) over a medial mode (M, f) as a subreduct into a semimodule over

the ring R(Mτ) = Z
[
X1, . . . , Xfτ

]
/〈1 −

∑fτ
i=1Xi〉 = Z

[
X1, . . . , Xfτ−1

]
. First

we will show that each medial mode (M, f) is naturally quasi-ordered so it satisfies
the assumptions of Theorem 3.3. By Corollary 3.2 it is enough to show that each
summand Mi = Di × Ri has the full algebraic quasi-order. Indeed, it is easy to
check that each diagonal algebra (D, f) satisfies the identities

x = xx . . . xyfx . . . xf = x(xx . . . xyf)x . . . xf = . . . = x . . . x(x . . . yxf)f,

and that each rn-algebra (R, f) satisfies the identity

x = xy . . . yf.

Now for any two elements (x1, y1) and (x2, y2) in Mi we have the following

(x2, y2) = (x2(x2 . . . x2x1f)x2 . . . x2f, y2(y1 . . . y1f)y1 . . . y1f)

= (x2, y2)(x2 . . . x2x1f, y1 . . . y1f)(x2, y1) . . . (x2, y1)f

= (x2, y2)((x2, y1)(x2, y1) . . . (x2, y1)(x1, y1)f) . . . (x2, y1)f.

This shows that (x1, y1) � (x2, y2). Hence � is a full algebraic quasi-order on
the summand Mi. It follows that each medial mode (M, f) is naturally quasi-
ordered. The congruence α defined in Section 3 provides the decomposition of
(M, f) into algebras (Mi, f), and the quotient Mα is an {f}-semilattice. (See
Proposition 3.1.)
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Proposition 6.1. Let (A, f) be a Lallement sum of cancellative modes (Am, f)
over a medial mode (M, f). Then (A, f) embeds as a subreduct into a semimodule

over the ring Z
[
X1, . . . , Xfτ

]
/〈1 −

∑fτ
i=1Xi〉.

Proof: By Theorem 3.3, the algebra A is a subalgebra of a functorial sum E of
cancellative envelopes Em of Am over M with sum homomorphisms gm,n. Let
M =

∑
i∈IMi, where Mi = Di × Ri as defined above, with sum homomor-

phisms hi,j . By Theorem 3.6 and the formula (3.5.1)

∑
(Em | m ∈

∑

i∈I

Mi) =
∑

i∈I

(Em ×Mi).

By Theorem 2.1, each algebra Em embeds as a subreduct into an R(Mτ)-module

Gm. In this case R(Mτ) = Z
[
X1, . . . , Xfτ

]
/〈1 −

∑fτ
i=1 Xi〉. Each mode (Mi, f)

embeds as a subreduct into an Z
fτ -module M(Mi) = M(Di) × Ri which can

be considered as an R(Mτ)-module since Z
fτ is a homomorphic image of R(Mτ)

(see Corollary 4.8). In this way one obtains an embedding of the algebra Em×Mi

as a subreduct of the R(Mτ)-module Gm ×M(Mi). Each homomorphism gm,n :
Em → En extends to a homomorphism gm,n : Gm → Gn and each homomorphism

hi,j : Mi → Mj extends to a homomorphism hi,j : M(Mi) → M(Mj). And all

gm,n and hi,j are functorial module homomorphisms. Now we consider each

direct product Gm ×M(Mi) as a functorial sum
∑
mi∈M(Mi)

Gmi
, and for each

mi ∈M(Mi) and x ∈ Gmi
we define the mapping f i,j as xf i,j = xg

mi,mihi,j
. The

mappings f i,j are module homomorphisms satisfying the functoriality condition

so they define the P lonka sum of R(Mτ)-modules Gm ×M(Mi) over the {f}-
semilattice I. In this way we obtain the semimodule over the ring R(Mτ) and
the algebra A is its subreduct. �

Note that the variety Re is an idempotent irregular variety and hence the class

of P lonka sums of algebras in Re coincides with the regularization R̃e of Re. (See
P lonka’s Theorem in [7] or [11].) It follows also that each rectangular algebra has
a full algebraic quasi-order. As a result we obtain the following

Proposition 6.2. Let (A,Ω) be a Lallement sum of cancellative modes (Ar,Ω)
over a rectangular algebra (R,Ω). Then (A,Ω) embeds as a subreduct into a

module over an appropriate ring R(Mτ).

Proof: By Theorem 3.3 and the formula (3.5.1)

Lr∈R(Ar,Ω) ≤
∑

r∈R

(Er ,Ω) ∼= (Er,Ω) × (R,Ω).

By Corollary 4.5, (R,Ω) embeds as a subreduct into a Z
N -module which can

be considered as an R(Mτ)-module. Together with Theorem 2.1 it gives an
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embedding of the direct product (Er ,Ω)× (R,Ω) into a module over the required
ring. �
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no. 2, 93 pp.

[2] Kearnes K., Semilattice modes I: the associated semiring, Algebra Universalis 34 (1995),
220–272.

[3] Kuras J., Application of Agassiz Systems to Representation of Sums of Equationally De-
fined Classes of Algebras (in Polish), Ph.D. Thesis, M. Kopernik University, Toruń, 1985.
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