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On direct sums of B(1)-groups — II

Clorinda De Vivo, Claudia Metelli

Abstract. B(1)-groups are a class of torsionfree Abelian groups of finite rank, part of the

main class of Butler groups. In the paper C. Metelli, On direct sums of B(1)-groups,
Comment. Math. Univ. Carolinae 34 (1993), 587–591, the problem of direct sums of

B(1)-groups was discussed, and a necessary and sufficient condition was given for the

direct sum of two B(1)-groups to be a B(1)-group. While sufficiency holds, necessity was
wrongly claimed; we solve here the problem, and in the process study a curious hierarchy

among indecomposable direct summands of B(1)-groups.
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Introduction

In the paper [M] the author claimed that a certain condition (called here

hooking) was necessary and sufficient for the direct sum of two B(1)-groups —

which is, in general, a B(2)-group — to be itself a B(1)-group. In fact, necessity
was not true (the example is in Section 4); fortunately, no later result depended
on that claim. In this paper we correct that old mistake.
We start by studying the hooking condition, that ties two complementary di-

rect summands of G: there are situations in which the condition is also necessary

for G to be B(1), in particular when the two summands are strongly indecom-
posable. The Krull-Schmidt property then yields an interesting hierarchy among

indecomposable direct summands of a B(1)-group (Sections 1, 2): we show that

a B(1)-group always has a hooking decomposition, and decomposing again via
hooking summands we can reach every indecomposable summand of G in a finite
number of steps, giving it a hooking index. In Section 3 we solve the open prob-
lem, by giving a necessary and sufficient condition (called generalized hooking) for

the general case. The proof consists in identifying a particular B(1)-group inside

the direct sums of our two B(1)-groups, and showing that generalized hooking
forces it to coincide with the whole group. Necessity is derived from a result in a
previous paper [CDVM]. Section 4 is dedicated to some significant examples.

In our ongoing investigation of B(1)-groups, we always made a point in devel-
oping algorithms that would be manageable by hand in the small digit ranks: this
made our work much more enjoyable, allowing us to meet so to say “in person”
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various interesting objects of our studies. Unfortunately, already for the hook-
ing condition examples become quickly intractable (see [DVM8]); for generalized
hooking summands one of which is indecomposable, Clorinda De Vivo made up
a yard-long scheme that allows (only) her to assess concrete situations with some
ease. The general case is hopeless.

All groups in the following are torsionfree Abelian of finite rank ([FII]). A B(i)-

group is a group of rankm−i which is the sum ofm rank 1 subgroups; B(1)-groups
have been vastly studied, for references see [A], [AV]. Throughout we deal with

B(1)-groups up to quasi isomorphism ([FII]: G is quasi isomorphic to H if it is
isomorphic to a finite index subgroup of H), and will write isomorphic for quasi-
isomorphic, indecomposable instead of strongly indecomposable, direct summand
instead of quasi-direct summand, etc.

0. Notation and definitions

Besides [M], most of the results we rely upon come from [DVM4]; we summarize
them here.

A B(1)-group of rank m − 1 is a torsionfree Abelian group that is the sum of
m rank one subgroups

G = 〈g1〉∗ + · · ·+ 〈gm〉∗

(where 〈g〉∗ denotes the pure subgroup generated by g ∈ G), subject to the only
relation

g1 + · · ·+ gm = 0.

This last condition used to characterize “regular” B(1)-groups, but we choose to

consider non-regular B(1)-groups directly as B(2)-groups (see the introduction of
[DVM8] for a discussion on the matter).

The m-tuple (g1, . . . , gm) is called a base of G. For g ∈ G, let tG(g) denote
the type in G of g, and let ti = tG(gi) for i ∈ I = {1, . . . , m}. Then the m-tuple

(t1, . . . , tm) is called a type base of G. A B(1)-group may have more than one
base (type-base); in this case we say it has base changes (permutations of the
indices yield trivial base changes).

An element of a B(1)-group G is called a base element if it belongs to some
base of G; a type is called a base type if it is the type of a base element of G. As
has been proved in [DVM4], when dealing up to quasi-isomorphism there is no
loss of generality in supposing that the types of the elements of G consist only of
zeros and a finite number of infinities: thus a type base is described by an m× n

table of zeros and infinities for a suitable n (Section 4).
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To proceed, we need to recall some notation. If E ⊆ I, set

gE =
∑

{gi | i ∈ E} , then gE = −gI\E ;

τ(E) = ∧{ti | i ∈ E} ,

tE = tI\E = τ(E) ∨ τ(I \ E), thus tE = tG(gE) (see [DVM4]);

GE = 〈gi | i ∈ E〉∗ =
∑

{〈gi〉∗ | i ∈ E}+ 〈gI\E〉
∗
:

thus GE is a B
(1)-group with index set J = E ∪ {I \ E}. For A = {A1, . . . , Ak}

a partition of I, define

G(A) =
∑

{

〈gAj
〉
∗
| j = 1, . . . , k

}

;

then G(A) is a B(1)-group with base

(

gAj
| j = 1, . . . , k

)

and type base
(

tAj
| j = 1, . . . , k

)

.

For E ⊆ I define

pE = {{i} | i ∈ E} ∪ {E \ I}

the pointed partition pointed on E; then G(pE) = GE . Define further t(A), the
type of A, by

t(A) = tA1 ∧ · · · ∧ tAh
= τ(I \ A1) ∨ · · · ∨ τ(I \ Ak);

in view of the following Observation, we have in particular t(pE) = τ(E).

Observation 0.1 ([DVM4, 0.b)]). The type of A remains unchanged if the in-
fimum is taken over all but one of the terms. (This is not true for the sup). �

The thus defined application t : A 7→ t(A), from the lattice of partitions of I
(ordered by “greater = coarser”) into the lattice T of all types (with a maximum
∞ added for the type of 0), is a morphism of ∧-semilattices, and is called tent .
Since, given a base of G, every element g of G determines a partition A of I

into “equal coefficient blocks” such that tG(g) = t(A) (see the next example and
[DVM4]), Im(t) is the typeset of G, the set of all types of elements of G.
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Example 0.2. Let G = 〈g1〉∗ + · · ·+ 〈g5〉∗ have type base

t1 = ∞ 0 0 ∞
t2 = 0 ∞ 0 0
t3 = 0 0 ∞ 0
t4 = ∞ 0 0 ∞
t5 = 0 ∞ 0 ∞

and set g = 2g1 + g2 + g3 + 2g4.
Then g = 2g{1,4} + g{2,3}, its partition is A = {{1, 4}, {2, 3}, {5}}, its type is

tG(g) = t(A) = τ({2, 3, 5}) ∨ τ({1, 4, 5}) ∨ τ({1, 2, 3, 4}) = 0 0 0 ∞. �

In the next two sections we investigate a condition which is necessary and

sufficient for the direct sum of two indecomposable B(1)-groups to be a B(1)-
group.

1. The hooking condition

While a direct summand of a B(1)-group is always a B(1)-group, this is not

true for direct sums of B(1)-groups. Below, we will state from [M] a sufficient
condition (∗), called here hooking condition, for a direct sum H = G′ ⊕ G′′ of

two B(1)-groups to be a B(1)-group. The condition is necessary if G′ and G′′ are
indecomposable, but not in general (see Example a) in Section 4, Theorem 2.1
and Section 3). Note that the condition is independent from the representation
(the base) of the groups.

In order to state condition (∗), recall that the types of the elements of a B(1)-

group form a finite lattice; in particular this implies that every B(1)-group has a

minimum type. Let then G′, G′′ be B(1)-groups, with minimum types ρ′ resp. ρ′′.

Definition 1.1. For the B(1)-groups G′ and G′′ we say G′ hooks up to G′′ if
there is a base type t′ of G′ such that t′ ≤ ρ′ ∨ ρ′′; G′ and G′′ hook up, or satisfy
the hooking condition, if each hooks up to the other, that is if

(∗) there is a base type t′ of G′ and a base type t′′ of G′′ such that t′∨t′′ = ρ′∨ρ′′

(≥ always holds). �

We will say a direct summand G′ of a group L is a hooking summand if it

and its complement in L are B(1)-groups, and hook up (thus making L itself a

B(1)-group). We will show (Lemma 1.1) that every decomposable B(1)-group G

has at least one hooking decomposition. If G = G′ ⊕ K ′ is such, the B(1)-group
G′ (if decomposable) has a hooking decomposition: G′ = G′′ ⊕ K ′′ . . . Thus for

certain direct summands S of a B(1)-group G there will be for some n ≤ rkG a
chain

S = Gn < Gn−1 < · · · < G0 = G
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such that each Gi is a hooking summand of Gi−1. If n is the least natural number
for which this occurs, S will be called an n-th-level-hooking summand of G (first
level = hooking). Note that, if a group H has an n-th-level-hooking summand S

(for some n ≤ rkH), then every step of the chain is a B(1)-group; therefore a

necessary and sufficient condition for a group H to be a B(1)-group is for it to
have an n-th-level-hooking summand for some n ≤ rkH .
The hooking condition, as was proved in the sufficiency part of Theorem 1

in [M], is sufficient for G = G′ ⊕ G′′ to be a B(1)-group: it yields a base for G by
uniting the two bases of G′ resp. G′′ containing base element g′ of type t′, resp.
g′′ of type t′′, and replacing g′ and g′′ with g′ + g′′ of type t′ ∧ t′′. This would

always work if we dealt with vector spaces; but with B(1)-groups not satisfying
the hooking condition such an operation will in general only produce a proper
subgroup of the direct sum.
Given the type base (t1, . . . , tm), a type σ of G always comes equipped with

partG(σ), the finest partition of I of type σ; partG is a morphism of ∨-semilattices
between the typeset of G and the lattice of partitions of I. (It would be more
precise to call it partt, as in [DVM4], but when the type base of G is fixed we
prefer this notation). In particular for a base type ti we have

partG(ti) = {{i}, Ai1, Ai2, . . . , Aiki
}

(see [DVM4] for the construction); thus we have the partition base

(partG(t1), . . . ,partG(tm))

of G attached to the type base (t1, . . . , tm).
We complete Theorem 1 from [DVM4] by

Lemma 1.2. If ki > 1, a splitting occurs: whenever {{i}, E, F} is coarser than
partG(ti) we get

G = GE ⊕ GF ,

and this is always a hooking decomposition of G.

Proof: Let w.l.o.g. i = 1, E = {2, . . . , r}, F = {r + 1, . . . , m}. The sum is
direct, otherwise there would be a relation between the gi’s excluding g1. To
show that H = GE ⊕ GF equals G we only need to show that g1 = −(gE + gF )
obtains its full type t1 in H . In fact, we have t1 = tG(g1) ≥ tH(g1) = tE ∧ tF , but
this, by Observation 1.1, equals t({{1}, E, F}) ≥ t(partG(t1)) = t1. To show that
(∗) holds, observe that the minimum type of GE is τ(E), the minimum of GF is
τ(F ); and one checks that in this setting tE ∧ tF = τ(E) ∨ τ(F ), as required. �

Since G is indecomposable if and only if ki = 1 for each i ∈ I (see [DVM4]),
we have
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Corollary 1.3. Each decomposable B(1)-group has a proper hooking decompo-

sition. Every indecomposable direct summand of a B(1)-group has a hooking
level.

Proof: In the above notation, set F =
⋃

{Air | r 6= j}, and note that the partition
{{i}, Aij, F} is coarser than partG(ti); hence GAij

= G(pAij
) is always a hooking

summand of G = GAij
⊕GF . Let nowK be an indecomposable summand of G; K

lies either in GAij
or in GF ; finite induction will then prove the second statement.

�

Indecomposable summands do not necessarily cover all levels, as can be seen
in Example 3 a). In the next section we will prove that among the G(pAij

) there
is an indecomposable summand.

2. Indecomposable hooking summands

Consider the partition base of G

partG(t1) = {{1}, A11, A12, . . . , A1k1}

partG(t2) = {{2}, A21, A22, . . . , A2k2}

. . . . . . . . . . . . . . .

partG(tm) = {{m}, Am1, Am2, . . . , Amkm
}.

Theorem 2.1. If Aij is a block with minimum cardinality then the hooking
summand G(pAij

) is indecomposable.

Proof: Let w.l.o.g. i = j = 1, A11 = {2, 3, . . . , r}, C =
⋃

{A1j | j 6= 1} =
I \ (A11 ∪ {1}), thus G = G(pA11) ⊕ GC . Set G′ = G(pA11); its type base
is (t2, t3, . . . , tr, tI\A11). Then by the decomposition algorithm in [DVM4] the

partition base of G′ is

partG′(t2) = {{2}, B21, B22, . . . , B2h2}

partG′(t3) = {{3}, B31, B32, . . . , B3h3}

. . . . . . . . . . . . . . .

partG′(tr) = {{r}, Br1, Br2, . . . , Brhr
}

partG′(tI\A11) = {A11, {I \ A11}} (a bipartition of J = A11 ∪ {I \ A11}).

If these are all bipartitions, G(pA11) is indecomposable, as wanted. Say then
e.g. h2 > 1. From the decomposition algorithm we know that all but one of the
blocks of partG′(t2) are contained in A11. But A11 contains {2}, and is of mini-
mal cardinality, thus no other such block exists, and partG′(t2) is a bipartition,
a contradiction. �

When both G′ and G′′ are indecomposable, the (∗) condition is necessary and

sufficient for G′ ⊕ G′′ to be a B(1)-group:
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Theorem 2.2. Let G′, G′′ be indecomposable B(1)-groups. Then G = G′ ⊕ G′′

is a B(1)-group if and only if G′, G′′ are hooking summands of G.

Proof: We only need to prove necessity. By the Krull-Schmidt property (enjoyed

by B(1)-groups up to quasi-isomorphism) only one partition in the partition base
of G is not a bipartition, and it is of the form {{i}, Ai1, Ai2}; then G = G(pAi1

)⊕
G(pAi2

) is a hooking decomposition, and the two summands are isomorphic to G′

resp. G′′. �

Theorem 2.1 implies that a necessary condition for any direct sum of indecom-

posable B(1)-groups to be a B(1)-group is that at least one of them must hook
up with the direct sum of all the others. This seems promising enough, until we

realize that, in order to check this hooking, the last sum must be a B(1)-group
itself: the hooking condition requires the existence of base elements. Thus all we
can say directly is

Corollary 2.3. Let G′ = G′
1 ⊕ · · · ⊕ G′

k, G′′ = G′′
1 ⊕ · · · ⊕ G′′

h be B
(1)-groups,

decomposed into indecomposable summands. Then G = G′ ⊕ G′′ is a B(1)-group

if and only if h+ k − 1 summands sum up to a B(1)-group, and this hooks up to
the remaining summand. �

This yields no reasonable algorithm; we will thus have to investigate a more
general setting, which will bring us to the solution of the direct sum problem.

3. Generalized hooking

In this section we generalize the hooking condition, to one that is necessary and

sufficient for the direct sum of two B(1)-groups, one of which is indecomposable,

to be a B(1)-group. This takes us to the final solution.

We start by giving necessary and sufficient conditions for a direct sum of B(1)-

groups G′ ⊕ G′′ to equal a particular subgroup G, which is a B(1)-group.
Integrate the previous notation for G, G′, G′′ with the following:

G = 〈g1〉∗ + · · ·+ 〈gr〉∗ + 〈gr+1〉∗ + · · ·+ 〈gr+k〉∗ + 〈gr+k+1〉∗ + · · ·+ 〈gm〉∗;

E = {1, . . . , r}, F = {r + 1, . . . , m}, thus I = E ∪ F ;

G′ = 〈g′0〉∗ + 〈g′1〉∗ + · · ·+ 〈g′r〉∗;

(t′0, t
′
1, . . . , t′r) its type base;

ρ′ = min(typeset G′);

for J ⊆ {0} ∪ E (the index set of G′), τ ′(J) = ∧{t′i | i ∈ J};

in particular, due to Observation 0.1, τ ′(E) = ρ′;

t′J = τ ′(J) ∨ τ ′(({0} ∪ E) \ J), is the type in G′ of g′J , for J ⊆ E;

X = {{0}, X1, . . . , Xk} is a partition of {0} ∪ E,
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t′(X ) = t′0 ∧ t′X1 ∧ · · · ∧ t′Xk
(= t′X1 ∧ · · · ∧ t′Xk

, by Observation 0.1), hence

t′(X ) ≤ t′({{0}, E}) = t′0.

G′′ = 〈g′′r+1〉∗ + · · ·+ 〈g′′r+k〉∗ + 〈g′′r+k+1〉∗ + · · ·+ 〈g′′m〉∗;

(t′′r+1, . . . , t′′r+k, t′′r+k+1, . . . , t′′m) its type base;

ρ′′ = min(typeset G′′);

for J ⊆ F (F the index set of G′′), τ ′′(J) = ∧{t′′i | i ∈ J};

in particular, τ ′′(F ) = ρ′′

Start now considering, in the group L = G′⊕G′′, the subgroup G defined, with
the above notation (types are computed in L), by setting

gi = g′i for i = 1, . . . , r, with type ti = t′i

gr+j = g′′r+j − g′Xj
for j = 1, . . . , k, with type tr+j = t′′r+j ∧ t′Xj

gr+s = g′′r+s for s = k + 1, . . . , m − r, with type tr+s = t′′r+s.

The subgroup G of G′ ⊕ G′′ is a B(1)-group containing all the generators g′i, g
′′
j

of G′ resp. G′′. For the sake of clarity, when we consider them as elements of
G we redenominate them h′i resp. h

′′
j , so that – say – 〈h

′
i〉∗ will denote the pure

subgroup of G generated by h′i = g′i. Their types in G: u′i resp. u
′′
j , will in general

be smaller than or equal to their original types t′i resp. t
′′
j . In fact we have

− for i ∈ E, h′i = gi and u′i = ti = t′i;

h′0 = −(g′1 + · · ·+ g′r) = −g′E = −gE , thus u′0 = tE ;

− for j = 1, . . . , k, h′Xj
= gXj

, thus h′′r+j = gr+j + gXj
= g{r+j}∪Xj

and u′′r+j = t{r+j}∪Xj
;

− for s = k + 1, . . . , m − r, h′′r+s = g′′r+s,

and u′′r+s = tr+s = t′′r+s.

For the following, it is useful to compute in G′ ⊕ G′′ the types τ(E), τ(F ):

τ(E) = τ ′(E) = ρ′;

τ(F ) = ∧{t′′r+j ∧ t′Xj
| j = 1, . . . , r} ∧ (∧{t′′r+s | s = k + 1, . . . , m − r}

= τ ′′(F ) ∧ (∧{t′Xj
| j = 1, . . . , k}) = ρ′′ ∧ t′(X ).
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Proposition 3.1. In the above notation, the conditions

a) t′0 ≤ ρ′ ∨ ρ′′,
b) t′0 = t′(X ) (that is, partG′(t′0) ≤ X ≤ {{0}, E}),
c) t′′r+j ≤ τ ′(Xj) ∨ ρ′′ for all j = 1, . . . , k,

d) t′′r+j ≤ τ ′(Xj) ∨ τ ′(E \ Xj) for all j = 1, . . . , k

are necessary and sufficient for G′ ⊕ G′′ to be equal to G.

Proof: Consider in G the subgroup H ′⊕H ′′ = (〈h′0〉∗+ · · ·+〈h′r〉∗)⊕(〈h
′′
r+1〉∗+

· · ·+ 〈h′′r+k〉∗ + 〈hr+k+1〉∗ + · · ·+ 〈h′′m〉∗); we have H ′ ≤ G′, H ′′ ≤ G′′.

Observe first that G = G′ ⊕ G′′ if and only if H ′ ⊕ H ′′ = G′ ⊕ G′′: one way
is obvious, the other is due to the fact that if G = G′ ⊕ G′′ then the type u′i
of h′i in G is equal to its type t′i in G′, thus H ′ = G′ (we are dealing up to
quasi-isomorphism!); and the same for H ′′.
Clearly, to have H ′ ⊕ H ′′ = G′ ⊕ G′′ it is necessary and sufficient that u′i = t′i

for all i = 0, 1, . . . , r, and u′′j = t′′j for all j = r + 1, . . . , m.

For i = 1, . . . , r and for j = r + k + 1, . . . , m this is already true.
For i = 0, we have u′0 = tE = τ(E) ∨ τ(F ) = ρ′ ∨ (ρ′′ ∧ t′(X )). The condition

u′0 = t′0, i.e. u′0 ≥ t′0, i.e. t′0 = t′0 ∧ u′0, becomes

t′0 = t′0 ∧ (ρ
′ ∨ (ρ′′ ∧ t′(X ))) = (t′0 ∧ ρ′) ∨ (t′0 ∧ ρ′ ∧ t′(X ))

= ρ′ ∨ (ρ′′ ∧ t′(X )) = (ρ′ ∨ ρ′′) ∧ t′(X ),

hence a) follows; since we already have t′0 ≤ t′(X ) we get b).
For i = r + j, j = 1, . . . , k, we have

u′′r+j = t{r+j}∪Xj
= (tr+j ∧ τ(Xj)) ∨ (τ(F \ {r + j}) ∧ τ(E \ Xj))

= (t′′r+j ∧ t′(Xj) ∧ τ ′(Xj)) ∨ ((∧{t
′′
r+i | i = 1, . . . , m − r; i 6= j})

∧ t′({{0} ∪ Xj , Xi | i = 1, . . . , k; i 6= j}) ∧ τ ′(E \ Xj)).

We have t′(Xj) ≥ τ ′(Xj); ∧{t
′′
r+i | i = 1, . . . , m − r; i 6= j} = ρ′′; and since

E\Xj =
⋃

{Xi | i = 1, . . . , k; i 6= j} is a coblock of the partition {{0}∪Xj , Xi | i =

1, . . . , k; i 6= j}, we have τ ′(E \ Xj) ≤ t′({{0} ∪ Xj , Xi | i = 1, . . . , k, i 6= j}),
therefore we may continue with

u′′r+j = (tr+j ∧ τ ′(Xj)) ∨ (ρ
′′ ∧ τ ′(E \ Xj))

= t′′r+j ∧ (t
′′
r+j ∧ τ ′(E \ Xj)) ∧ (τ

′(Xj) ∨ ρ′′) ∧ (τ ′(Xj) ∨ τ ′(E \ Xj))

= t′′r+j ∧ (τ
′(Xj) ∨ ρ′′) ∧ (τ ′(Xj) ∨ τ ′(E \ Xj)) ≤ t′′r+j .

Finally, imposing u′′r+j = t′′r+j is equivalent to conditions c): t′′r+j ≤ τ ′(Xj) ∨ ρ′′

and d): t′′r+j ≤ τ ′(Xj) ∨ τ ′(E \ Xj), as wanted. �
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Definition 3.2. Let G′, G′′ be B(1)-groups. If there is a type base (t′0, t
′
1, . . . , t′r)

of G′, a partition X of {0, 1, . . . , r} and a type base (t′′r+1, . . . , t′′m) of G
′′ such that

conditions a), b), c), d) hold, we say G′ and G′′ satisfy the generalized hooking
condition.

As an aside, observe that the condition starts with: “if there is a base . . . ”.
This is an indication that checking by hand is out of the question, except in trivial
cases. Another difficulty comes from “if there is a partition X . . . ”. We saw that
the condition on X is that partG′(t′0) ≤ X ≤ {{0}, E}. This condition cannot be
made stricter in general, hence one would have to check all such partitions; the
finer partG′(t′0), the longer the check.
The reason for the above definition is the following

Theorem 3.3. Let G′, G′′ be B(1)-groups, with G′′ indecomposable. Then G′ ⊕

G′′ is a B(1)-group if and only if G′ and G′′ satisfy the generalized hooking
condition.

Proof: If G′, G′′ are B(1)-groups and a), . . . , d) hold for suitable bases, then

Proposition 3.1 shows that G′⊕G′′ equals G, hence is a B(1)-group: the condition
is sufficient.
Let then G′,G′′ and H = G′ ⊕ G′′ be B(1)-groups with G′′ indecomposable.

From [CDVM, Theorem 2.2, Proposition 4.4] we have that there are partitions D,
C of the index set of H such that H = H(D)⊕H(C) with H(D) ∼= G′ and H(C) ∼=
G′′; moreover, if H(C) is indecomposable, then D = pD, a pointed partition.
In [CDVM, Proposition 4.7] it is shown that the type bases (tD, t1, . . . , tr) of
H(pD) and (tC1 , . . . , tCk

) of H(C) satisfy conditions called there a), b), c), d).

By isomorphism, G′ will have a type base t′0 = tD, t′1 = t1, . . . , t′r = tr, and G′′

will have a type base t′′r+1 = tC1 , . . . , t′′r+k = tCk
, satisfying conditions a), . . . , d)

which are now our conditions, renaming D by E. Therefore necessity holds as
well. �

A help for computation is offered by the following

Corollary 3.4. Let G′, G′′ be B(1)-groups, with G′′ indecomposable. Then

i) a necessary condition for G′ ⊕ G′′ to be a B(1)-group is that G′ hooks on
to G′′;

ii) a necessary condition for (i) is that G′ ⊗R′′ be completely decomposable,
where R′′ is a subgroup of Q of type ρ′′.

Proof: i) is condition (0) a); ii) is in [DVM8]. �

Solution of the main problem. Let H be the direct sum of a finite number of

B(1)-groups. After decomposing the summands, we will have H = G1⊕ · · ·⊕Gn,

a direct sum of indecomposable B(1)-groups. Start with Hn−1 = Gn−1 ⊕ Gn,

checking the hooking condition. If it does not work, H is not B(1). If it does,
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Hn−1 is a B
(1)-group; set G′ = Hn−1, G′′ = Gn−2, and check the generalized

hooking condition. This is the first step in an obvious finite induction, which will

lead to deciding whether H is, or is not, a B(1)-group, thus solving the general
problem. �

4. Examples

a). The next is a decomposable B(1)-group where there are direct summands
of various hooking levels, showing that (∗) is not a necessary condition.

Let G be the B(1)-group of rank 5 with type base

t1 = ∞ 0 0
t2 = 0 ∞ 0
t3 = 0 0 ∞
t4 = ∞ 0 0
t5 = 0 ∞ 0
t6 = 0 0 ∞.

The decomposition algorithm shows that G is the direct sum of the following

four indecomposable B(1)-groups: the rank 1 groups G4, G5, G6 of types respec-
tively t4, t5, t6, and the rank 2 group G′ = G({{1, 4}, {2, 5}, {3, 6}}) with type
base

t{1,4} = ∞ 0 0
t{2,5} = 0 ∞ 0
t{3,6} = 0 0 ∞.

G′ has minimum type

ρ′ = 0 0 0.

The rank 3 complement G′′ = G4 ⊕ G5 ⊕ G6 of G
′ has type base

t4 = ∞ 0 0
t5 = 0 ∞ 0
t6 = 0 0 ∞

t4 ∧ t5 ∧ t6 = 0 0 0

with minimum

ρ′′ = 0 0 0.

Note that G′ and G′′ have no nontrivial base changes; therefore the only base
types available to check the validity of (∗) are the ones shown above. It is then
clear that G = G′ ⊕ G′′ is not a hooking decomposition: there is no type in the
base of G′ that is ≤ ρ′ ∨ ρ′′. Instead, G4, G5 and G6 are all hooking summands
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of G: this can be checked by computing a type base for their complements, or,
directly, from the partition base of G:

partG(t1) = {{1}, {4}, {2, 3, 5, 6}}

partG(t2) = {{2}, {5}, {1, 3, 4, 6}}

partG(t3) = {{3}, {6}, {1, 2, 4, 5}}

partG(t4) = {{4}, {1}, {1, 2, 3, 5, 6}}

partG(t5) = {{5}, {2}, {1, 2, 3, 4, 6}}

partG(t6) = {{6}, {3}, {1, 2, 3, 4, 5}},

where the first three partitions show that {4}, {5}, {6} are blocks of minimum
cardinality.
To compute the hooking level of G′, continue the decomposition via partitions:

from the first we get G = G4 ⊕ G{2,3,5,6}, where the type base of the hooking

summand H = G{2,3,5,6} is (t2, t3, t5, t6, t{1,4}) and its partition base starts with

partH(t2) = {{2}, {5}, {3, 6, {1, 4}}},

partH(t3) = {{3}, {6}, {2, 5, {1, 4}}},

. . . . . . . . . . . . . . .

yielding H = G5 ⊕ G({3, 6, {1, 4}}). Here G5 is first level in H but was also first
level in G; while K = G({3, 6, {1, 4}}) is first level in H but second level in G: in
fact its type base is (t3, t6, t{1,4}, t{2,5}), while the type base of its complement

G4 ⊕ G5 is (t4, t5, t4 ∧ t5), and one checks that (∗) does not hold. Finally,

partK(t3) = {{3}, {6}, {{1, 4}, {2, 5}}},

yieldingK = G6⊕G({{1, 4}, {2, 5}, {3, 6}}) = G6⊕G′′, and a similar computation
shows that G′′ is indeed a level 3 summand of G.

b). We give the simplest example of G = G1 ⊕ G2 ⊕ G3 where the Gi hook

up pairwise, but G is not B(1). Clearly, at least one of the Gi must be of rank

≥ 2. Note that B(1)-groups of rank 1 have a base consisting of two equal types;

and that if H is rank 1, H hooks up to any B(1)-group.
G1 is given by

t1 = 0 ∞ 0 0
t1 = 0 ∞ 0 0,

G2 is given by
t2 = 0 0 ∞ 0
t2 = 0 0 ∞ 0,
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G3 is given by
t3 = ∞ ∞ 0 0
t4 = ∞ 0 ∞ 0
t5 = ∞ 0 0 ∞.

To verify (for instance) that G3 hooks up to G1, we only need to note that

ρ3 = ∞ 0 0 0,

hence t3 = t1 ∨ ρ3. But G1 ⊕ G3 has as a fourth base type t1 ∧ t3 = t1, hence its
minimum is

ρ = 0 0 0 0;

thus G1 ⊕ G3 (which has no base changes) does not hook up to G2.

c). Theorem 2.1 states that summands determined by blocks of minimum
cardinality are indecomposable: a very strong algebraic property is determined
by a partition-theoretic property. We give an example where the block is mini-
mum, but the cardinality of the summand is not, showing that this is a nontrivial

characterization. Let G be the rank 11 B(1)-group given by

t1 = ∞ ∞ ∞ ∞ 0 0 0 0 0 0 0 0 0 0 0
t2 = ∞ ∞ ∞ 0 ∞ 0 0 0 0 0 0 0 0 0 0
t3 = ∞ ∞ ∞ 0 0 ∞ 0 0 0 0 0 0 0 0 0
t4 = 0 ∞ ∞ ∞ 0 0 ∞ 0 0 0 0 0 0 0 0
t5 = 0 ∞ ∞ ∞ 0 0 0 ∞ 0 0 0 0 0 0 0
t6 = 0 ∞ ∞ ∞ 0 0 0 0 ∞ 0 0 0 0 0 0
t7 = ∞ 0 ∞ 0 ∞ 0 0 0 0 ∞ 0 0 0 0 0
t8 = ∞ 0 ∞ 0 ∞ 0 0 0 0 0 ∞ 0 0 0 0
t9 = ∞ 0 ∞ 0 ∞ 0 0 0 0 0 0 ∞ 0 0 0

t10 = ∞ ∞ 0 0 0 ∞ 0 0 0 0 0 0 ∞ 0 0
t11 = ∞ ∞ 0 0 0 ∞ 0 0 0 0 0 0 0 ∞ 0
t12 = ∞ ∞ 0 0 0 ∞ 0 0 0 0 0 0 0 0 ∞.

G has no nontrivial base changes. We have

part(t1) = {{1}{4 5 6}{2 3 7 8 9 10 11 12}}

part(t2) = {{2}{7 8 9}{1 3 4 5 6 10 11 12}}

part(t3) = {{3}{10 11 12}{1 2 4 5 6 7 8 9}}

part(ti) = pi, for i = 4, . . . , 12.

Decomposing, we get

G = G({{1, 4, 5, 6}{2, 7, 8, 9}{3, 10, 11, 12}})⊕

⊕ G(p{4, 5, 6})⊕ G(p{7, 8, 9})⊕ G(p{10, 11, 12}).
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The rank of indecomposable summands coming from minimum blocks is 3,
while the rank 2 summand does not come from a minimum block in any repre-
sentation of G (no base changes).
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