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Non-singular precovers over polynomial rings

Ladislav Bican

Abstract. One of the results in my previous paper On torsionfree classes which are
not precover classes, preprint, Corollary 3, states that for every hereditary torsion
theory τ for the category R-mod with τ ≥ σ, σ being Goldie’s torsion theory, the
class of all τ -torsionfree modules forms a (pre)cover class if and only if τ is of finite
type. The purpose of this note is to show that all members of the countable set
M = {R, R/σ(R), R[x1, . . . , xn], R[x1, . . . , xn]/σ(R[x1, . . . , xn]), n < ω} of rings have
the property that the class of all non-singular left modules forms a (pre)cover class if
and only if this holds for an arbitrary member of this set.

Keywords: hereditary torsion theory, torsion theory of finite type, Goldie’s torsion the-
ory, non-singular module, non-singular ring, precover class, cover class

Classification: 16S90, 18E40, 16D80

In what follows, R stands for an associative ring with the identity element and
R-mod denotes the category of all unitary left R-modules. The basic properties
of rings and modules can be found in [1].
A class G of modules is called abstract , if it is closed under isomorphic copies. If

G is an abstract class of modules, then a homomorphism ϕ : G → M with G ∈ G is
called a G-precover of the module M , if for each homomorphism f : F → M with
F ∈ G there exists a homomorphism g : F → G such that ϕg = f . A G-precover
ϕ of M is said to be a G-cover , if every endomorphism f of G with ϕf = ϕ
is an automorphism of the module G. An abstract class G of modules is called
a precover (cover) class , if every module has a G-precover (G-cover). A more
detailed study of precovers and covers can be found in [13].
Recall that a hereditary torsion theory τR = (Tτ ,Fτ ), or simply τ = (T ,F),

for the category R-mod consists of two abstract classes T and F , the τ-torsion
class and the τ-torsionfree class, respectively, such that Hom(T, F ) = 0 whenever
T ∈ T and F ∈ F , the class T is closed under submodules, factor-modules,
extensions and arbitrary direct sums, the class F is closed under submodules,
extensions and arbitrary direct products and for each module M there exists an
exact sequence 0 → T → M → F → 0 such that T ∈ T and F ∈ F . It is
easy to see that every module M contains the unique largest τ -torsion submodule
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(isomorphic to T ), which is called the τ-torsion part of the module M and it
is usually denoted by τ(M). For two hereditary torsion theories τ and τ ′ the
symbol τ ≤ τ ′ means that Tτ ⊆ Tτ ′ and consequently Fτ ′ ⊆ Fτ . Associated to
each hereditary torsion theory τ is the Gabriel filter Lτ (or simply L) of left ideals
of R consisting of all the left ideals I ≤ R such that R/I ∈ T . Recall that τ is
said to be of finite type, if L contains a cofinal subset of finitely generated left
ideals. A module Q is called τ-injective, if it is injective with respect to all short
exact sequences 0→ A → B → C → 0, where C ∈ T . Following [10] we say, that
a τ -torsionfree module is τ-exact , if any its τ -torsionfree homomorphic image is
τ -injective.
For a module M , a submodule K is called essential in M if K ∩ L 6= 0 for

each non-zero submodule L of M and the singular submodule Z(M) consists of
all elements a ∈ M , the annihilator left ideal (0 : a)R = {r ∈ R | ra = 0},
or simply (0 : a), of which is essential in R. Goldie’s torsion theory for the
category R-mod is the hereditary torsion theory σ = (T ,F), where T = {M ∈
R-mod | Z(M/Z(M)) = M/Z(M)} and F = {M ∈ R-mod | Z(M) = 0}. Note,
that throughout this paper the letter σ will always denote Goldie’s torsion theory
and that the modules from the class Fσ are usually called non-singular modules.
A ring R is said to be non-singular if it is non-singular as a left R-module. For
more details on torsion theories we refer to [9] or [8].
Recently, in [4, Corollary 3], it has been proved that for each hereditary torsion

theory τ with τ ≥ σ the class of all τ -torsionfree modules is a precover class if and
only if it is a cover class and these conditions are satisfied exactly when the torsion
theory τ is of finite type. In this note we are going to show that these conditions
are equivalent for Goldie’s torsion theory for all members of the countable set
M = {R, R/σ(R), R[x1, . . . , xn], R[x1, . . . , xn]/ σ(R[x1, . . . , xn]), n < ω} of rings
whenever they are equivalent for an arbitrary member of this set. Moreover, for
each element S ∈ M and each hereditary torsion theory τS for the category S-
mod such that τS ≥ σS the class of all τS-torsionfree modules is a precover class
whenever Goldie’s torsion theory σR for the category R-mod is of finite type.
We start our investigations with some relations between the left ideals of the

ring R belonging to the Gabriel filter Lσ corresponding to Goldie’s torsion theory
and the essential left ideals of the non-singular factor-ring R̄ = R/σ(R) (it should
be mentioned that for the non-singular ring R the Gabriel filter Lσ of Goldie’s
torsion theory σ consists of essential left ideals of R, only). Our main aim is to
show that Goldie’s torsion theory is of finite type in the category R-mod if and
only if the same is true in the category R̄-mod, where R̄ = R/σ(R).

Lemma 1. If every essential left ideal of the ring R essentially contains a finitely
generated left ideal, then every left ideal of R essentially contains a finitely gen-
erated left ideal.

Proof: Let 0 6= I ≤ R be an arbitrary non-essential left ideal of the ring R and
let J be a left ideal of R maximal with respect to I∩J = 0. Then I⊕J is essential
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in R and consequently the hypothesis yields the existence of a finitely generated
left ideal K =

∑n
i=1Rai ⊆ I ⊕J which is essential in I ⊕J and hence in R. Now

ai = bi+ci, bi ∈ I, ci ∈ J , i = 1, . . . , n, and for an arbitrary element 0 6= u ∈ I we
have 0 6= ru =

∑n
i=1 ribi +

∑n
i=1 rici ∈ K for suitable elements r, r1, . . . , rn ∈ R

and consequently 0 6= ru =
∑n

i=1 ribi, showing that the left ideal
∑n

i=1Rbi is
essential in I. �

Lemma 2. If J is a left ideal of the ring R lying in the Gabriel filter Lσ, then

J̄ =
J+σ(R)

σ(R)
is essential in the factor-ring R̄ = R/σ(R).

Proof: By the hypothesis there is a left ideal K of R containing J such that
Z(R/J) = K/J and Z(R/K) = R/K. Now let r̄ ∈ R̄ \ J̄ , r̄ = r + σ(R), be
an arbitrary element. Then (K : r) is essential in R and r /∈ σ(R) yields that
(σ(R) : r) /∈ Lσ. Thus (K : r) * (σ(R) : r) and this gives the existence of an
element s ∈ (K : r) \ (σ(R) : r). So, 0 6= s̄r̄ ∈ K̄ and sr = k ∈ K \ σ(R). Further,
(J : k) is essential in R and (σ(R) : k) /∈ Lσ , hence (J : k) * (σ(R) : k) and this
yields the existence of an element t ∈ R for which tsr = tk ∈ J \ σ(R). Thus
0 6= t̄s̄r̄ ∈ J̄ , as we wished to show. �

Lemma 3. If J̄ = J/σ(R) is an essential left ideal of the factor-ring R̄ = R/σ(R),
then J is essential in R.

Proof: For an arbitrary element r ∈ R \ J we have r̄ 6= 0, hence 0 6= s̄r̄ ∈ J̄ for
some s̄ ∈ R̄ by the hypothesis, and consequently 0 6= sr ∈ J , as desired. �

Lemma 4. If every essential left ideal of the factor-ring R̄ = R/σ(R) contains an
essential finitely generated left ideal, then the same holds for essential left ideals

of the ring R.

Proof: Let J be an essential left ideal of the ring R. By Lemma 2 the left ideal

J̄ =
J+σ(R)

σ(R)
is essential in R̄ and so it contains an essential finitely generated left

ideal K̄ =
∑m

i=1 R̄āi by the hypothesis. We need now to show that the left ideal
K =

∑m
i=1Rai of the ring R is essential in J , assuming without loss of generality

that the elements a1, . . . am lie in J . From Lemma 3 we know that the left ideal
K + σ(R) of R is essential in J + σ(R). So, for each u ∈ J \ (K + σ(R)) we have
0 6= r̄ū ∈ K̄ for some r̄ ∈ R̄, hence ru = k + v, 0 6= k ∈ K, v ∈ σ(R). Now
(0 : v) ∈ Lσ, (0 : k) /∈ Lσ since r̄ū 6= 0, so (0 : v) * (0 : k) and we can take
s ∈ (0 : v) \ (0 : k) giving that 0 6= sru = sk + sv = sk ∈ K, as we wished to
show. �

Theorem 5. Goldie’s torsion theory σ for the category R-mod is of finite type if
and only if Goldie’s torsion theory σ̄ for the category R̄-mod, where R̄ = R/σ(R),
is of finite type.

Proof: Without loss of generality we can suppose that σ(R) 6= R, the case
σ(R) = R being trivial.
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Assume first, that σ is of finite type. Since Z(R̄) = 0, the Gabriel filter Lσ̄

consists of essential left ideals, only. So, if J/σ(R) = J̄ ≤′ R̄ is arbitrary, then
J ≤′ R by Lemma 3 and consequently there is K ≤ R such thatK ⊆ J , J/K ∈ Tσ

and K =
∑m

i=1Rai is a finitely generated left ideal of R. If ai ∈ σ(R) for each

i = 1, . . . , m, then K ≤ σ(R) ∩ J ≤ J , which yields J
J∩σ(R)

∼=
J+σ(R)

σ(R)
∈ Tσ ∩ Fσ,

hence J ⊆ σ(R) and this contradicts the facts that J ≤′ R and σ(R) 6= R. Thus

K̄ =
K+σ(R)

σ(R)
is non-zero, it is finitely generated and it remains to verify that J̄/K̄

is σ̄-torsion. However, J̄/K̄ = J/σ(R)/(K + σ(R))/σ(R) ∼= J/(K + σ(R)) ∈ Tσ

and J̄/K̄ ∈ Tσ̄ by Lemma 2 as a homomorphic image of J/K. The converse
follows immediately from Lemma 4 and Lemma 1. �

We proceed now to some relations between essential left ideals of the ring R
and that of the ring R[x] of polynomials over R. First of all we are going to show
that R is non-singular if and only if R[x] is so.

Lemma 6. Let 0 6= a ∈ R be an arbitrary element. Then (0 : a)R[x] = R[x](0 :

a)R = (0 : a)R[x].

Proof: For the sake of simplicity we shall denote by I the left annihilator ideal
(0 : a)R of R and by J the left annihilator ideal (0 : a)R[x] of R[x]. For any

g ∈ R[x] and any r ∈ I we have ra = 0, hence gra = 0 and so gr ∈ J , proving
the inclusion R[x]I ⊆ J . Conversely, let g =

∑m
j=0 bjx

j ∈ J be an arbitrary

element. Then 0 = ga =
∑m

j=0 bjaxj yields bja = 0 and consequently bj ∈ I for

each j = 0, 1, . . . , m. But this means that g ∈ R[x]I and we are through, the rest
being obvious. �

Lemma 7. If I is an essential left ideal of the ring R, then J = I[x] = R[x]I is an
essential left ideal of the polynomial ring R[x]. Especially, if the left annihilator
ideal (0 : a)R of an element 0 6= a ∈ R is essential in R, then the left annihilator
ideal (0 : a)R[x] of a is essential in R[x].

Proof: Let g =
∑m

j=0 bjx
j be an arbitrary polynomial which does not belong

to J . If b0 ∈ I then we put r0 = 1, while in the opposite case there is an element
r0 ∈ R such that 0 6= r0b0 ∈ I. Continuing by the induction let us assume that
the elements r0, r1, . . . , rs ∈ R, 0 ≤ s < m, such that rs . . . r1r0bi ∈ I for all
i = 0, 1, . . . , s, and that at least one of these elements is non-zero, have been
already constructed. If rs . . . r1r0bs+1 ∈ I, then we put rs+1 = 1 and we shall
find rs+1 ∈ R such that 0 6= rs+1rs . . . r1r0bs+1 ∈ I in the opposite case. It is
clear now that after m+ 1 steps we obtain a non-zero multiple rg of g which lies
in J . The special statement now immediately follows from Lemma 6. �

Lemma 8. If I is a left ideal of the ring R such that the left ideal J = R[x]I is
essential in R[x], then I is essential in R.
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Proof: Let 0 6= r ∈ R be an arbitrary element. Then r ∈ R[x] yields the
existence of a polynomial g =

∑m
j=0 bjx

j ∈ R[x] such that 0 6= gr ∈ J . Thus

there is a non-zero coefficient bir of gr which obviously lies in I and the proof is
complete. �

Lemma 9. Let f =
∑n

i=0 aix
i be a non-zero polynomial of the degree n. If K

is a left ideal of the ring R such that the left annihilator ideal J = (K[x] : f) is
essential in R[x], then the left annihilator ideal I = (K : an) is essential in R.

Proof: Proving indirectly let us suppose that there exists a non-zero left ideal
L of R such that L ∩ I = 0. Now L[x] is a non-zero left ideal of R[x] and we are
going to show that L[x]∩ J = 0. Assume, on the contrary, that g =

∑m
j=0 bjx

j is

a non-zero element of L[x] ∩ J of the degree m. Then gf ∈ K[x] means that the
coefficient bman of the product gf at the power xm+n belongs to K. On the other
hand, 0 6= bm ∈ L means that bm /∈ I, hence bman /∈ K, which is a contradiction
finishing the proof. �

Theorem 10. For any ring R the equality σ(R[x]) = σ(R)[x] holds. Especially,
a ring R is non-singular if and only if the polynomial ring R[x] is so.

Proof: We start with the equality Z(R[x]) = Z(R)[x]. If f =
∑n

i=0 aix
i is an

element of Z(R)[x], then (0 : ai) is essential in R for each i = 0, 1, . . . , n and
consequently the intersection I =

⋂n
i=0(0 : ai) is essential in R. By Lemma 7 the

left ideal I[x] is essential in R[x] and the obvious inclusion I[x] ⊆ (0 : f) yields
that f ∈ Z(R[x]). Thus the inclusion Z(R)[x] ⊆ Z(R[x]) holds. Conversely, let
f =

∑n
i=0 aix

i ∈ Z(R[x]) be an arbitrary non-zero element of the degree n. Then
(0 : f) ≤′ R[x] and so (0 : an) ≤

′ R by Lemma 9. Hence an ∈ Z(R) and so
anxn ∈ Z(R)[x] ⊆ Z(R[x]). Thus f − anxn ∈ Z(R[x]) and continuing by the
induction we finally obtain that f =

∑n
i=0 aix

i ∈ Z(R)[x], as we wished to show.
Now we are going to finish the proof in the similar way as above. So, let f =∑n
i=0 aix

i ∈ σ(R)[x] be arbitrary. Then (Z(R) : ai) ≤
′ R for each i = 0, 1, . . . , n

and consequently I =
⋂n

i=0(Z(R) : ai) is essential in R. By Lemma 7 the left

ideal I[x] is essential in R[x]. For an arbitrary element g =
∑m

j=0 bjx
j ∈ I[x]

we have bj ∈ I and hence bjai ∈ Z(R) for all relevant indices i and j. Thus
gf ∈ Z(R)[x] and so g ∈ (Z(R)[x] : f). This means that I[x] ⊆ (Z(R)[x] : f)
and consequently f ∈ σ(R[x]) and the inclusion σ(R)[x] ⊆ σ(R[x]) is verified. In
order to prove the equality let 0 6= f =

∑n
i=0 aix

i be an arbitrary element of
σ(R[x]) of the degree n. Then (Z(R[x]) : f) is essential in R[x] and so the left
annihilator ideal (Z(R) : an) is essential in R by Lemma 9 in view of the equality
Z(R[x]) = Z(R)[x] proved in the first part of the proof. Thus an ∈ σ(R) gives
that anxn ∈ σ(R)[x] ⊆ σ(R[x]). From this we infer that f − anxn ∈ σ(R[x]) and
we can proceed by the induction similarly as in the first part of the proof. Finally
we obtain that f =

∑n
i=0 aix

i ∈ σ(R)[x], as we wished to show. The rest is easy.
�
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Corollary 11. Let f =
∑n

i=0 aix
i be a non-zero polynomial of the degree n. If

(0 : f) is essential in R[x] then
⋂n

i=0(0 : ai) is essential in R.

Proof: In the above proof we have shown that (0 : an) ≤
′ R and that f−anxn ∈

Z(R)[x]. Continuing by the induction we shall obtain that (0 : ai) ≤
′ R for each

i = 0, 1, . . . , n, from which the assertion follows immediately. �

Lemma 12. If I is a left ideal of the ring R such that the left ideal J = I[x] =
R[x]I of R[x] essentially contains a finitely generated left ideal K ≤ R[x], then I
essentially contains a finitely generated left ideal L of the ring R.

Proof: By the hypothesis there is a finitely generated left idealK =
∑m

i=1R[x]fi

of R[x] which is essential in J . Now if L ≤ R is the left ideal of R generated by
all the coefficients of all the polynomials fi, i = 1, . . . , m, then for each element
r ∈ I \ L we have a non-zero multiple 0 6= gr ∈ K and so gr =

∑m
i=1 gifi, where

gi ∈ R[x] are suitable polynomials. It is now clear that any non-zero coefficient of
gr is a non-zero multiple of r which obviously lies in L and the proof is therefore
complete. �

Notation. For a polynomial f ∈ R[x] we denote by f [i] the coefficient of f at
the power xi. Further, if J is a left ideal of R[x] then we denote by J [i] the set
consisting of 0 and of all leading coefficients of all polynomials of degree i which
lie in J . In other words, a ∈ J [i] if and only if either a = 0 or if there is f ∈ J

such that f =
∑i

r=0 arx
r and ai = a.

Lemma 13. Let R be a non-singular ring such that Goldie’s torsion theory σ
is of finite type. If J is an essential left ideal of the polynomial ring R[x], then
there is an index k < ω such that J [l] is essential in R for each l ≥ k.

Proof: It is clear that J [i] is a left ideal ofR and the obvious equality (xf)[i+1] =
f [i] for each f ∈ R[x] yields the inclusion J [i] ⊆ J [i+1] for each i < ω. It remains
now to show that the assumption that all the J [i]’s are not essential in R leads to
a contradiction. First of all we are going to verify that the non-descending union
J̃ =

⋃
i<ω J [i] is essential in R. Clearly, if r ∈ R \ J̃ is an arbitrary element,

then r /∈ J [i] for each i < ω. Especially, r /∈ J and so there is an element
g ∈ R[x] with 0 6= gr ∈ J . Now if m ≥ 0 is the degree of the polynomial gr,

then for g =
∑n

j=0 bjx
j we see that 0 6= bmr ∈ J [m] ⊆ J̃ , as we wished to show.

Further, if all J [i]’s are not essential in R, then there is infinitely many indices
l < ω such that J [l] is not essential in J [l + 1]. Clearly, in the opposite case
we see that there is k < ω such that J [l] is essential in J [l + 1] for each l ≥ k.
Now if 0 6= r ∈ R is an arbitrary element then there is an element s ∈ R with
0 6= sr ∈ J̃ , hence 0 6= sr ∈ J [l] for some l ≥ k and consequently 0 6= tsr ∈ J [k]
for a suitable element t ∈ R, which means that J [k] is essential in R. Thus to
finish the proof let k1 < k2 < . . . be an infinite sequence of integers such that
J [ki] is not essential in J [ki + 1] for each i < ω. Then there is a left ideal Li ≤ R
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such that 0 6= Li ⊆ J [ki + 1] and J [ki] ∩ Li = 0 for each i < ω. Obviously, the
ideals Li are σ-torsionfree left ideals of R and they form the infinite direct sum
⊕i<ωLi in R, which contradicts [12, Theorem 2.1] stating that σ is of finite type
if and only if the ring R contains no infinite direct sum of σ-torsionfree left ideals.

�

Lemma 14. If every essential left ideal of a non-singular ring R essentially con-
tains a finitely generated left ideal, then every essential left ideal ofR[x] essentially
contains a finitely generated left ideal.

Proof: Let J be an essential left ideal of the polynomial ring R[x]. By Lemma 13
there is an index k < ω such that J [k] is essential in R. With respect to Lemma 1
each left ideal J [i], i ≤ k, contains an essential finitely generated left ideal Ki =∑si

l=1Rail. Now for each ail there is a polynomial fil ∈ J of the degree i and

with the leading coefficient ail. Now we put K =
∑k

i=0

∑si

l=1R[x]fil and we are

going to show that K is essential in J . So, let f =
∑s

i=0 aix
i be an element of

J of the degree s ≥ 0. If we set Kt = Kk for each t ≥ k, then for a suitable
element rs ∈ (Ks : as) \ (0 : as) there is a polynomial gs ∈ K such that rsf + gs

is of the degree less than s and rsf is non-zero. Continuing by the induction let
us assume that for some 0 < j ≤ s the elements rj ∈ R and gj ∈ K have been
already constructed in such a way that rjas 6= 0 and rjf + gj is of the degree
less than j. If rjf + gj ∈ K then we are through. In the opposite case we take
r̃j−1 ∈ R such that r̃j−1rjas 6= 0 and r̃j−1bj−1 ∈ Kj−1, bj−1 being the coefficient

at the power xj−1 in the polynomial rjf + gj . Setting rj−1 = r̃j−1rj we see that
rj−1f 6= 0 and rj−1f + r̃j−1gj + g̃j is of the degree less than j − 1 for a suitable
polynomial g̃j ∈ K. Now we set gj−1 = r̃j−1gj + g̃j and it is obvious that after
a finite number of steps we shall come to r0f + g0 with r0f 6= 0 and r0f, g0 ∈ K,
as we wished to show. �

Remark 15. In our previous paper [4, Corollary 3] it has been especially proved
that for any hereditary torsion theory τ ≥ σ the following conditions are equiva-
lent: (i) τ is of finite type; (ii) the class of all τ -torsionfree modules is a precover
(cover) class; (iii) the class of all τ -torsionfree τ -injective modules is a precover
(cover) class; (iv) the class of all τ -exact modules is a precover (cover) class. In
the light of this result we shall formulate the following Main Theorem of this note
and its consequences for the precover classes, only.

Theorem 16. The following conditions are equivalent for a ring R:

(i) the class of all non-singular left R-modules is a precover class;
(ii) the class of all non-singular left R/σ(R)-modules is a precover class;
(iii) the class of all non-singular left R[x]-modules is a precover class;
(iv) the class of all non-singular left R[x]/σ(R[x])-modules is a precover class.

Proof: In view of the above Remark it is obvious that the conditions (i) and (ii)
as well as (iii) and (iv) are equivalent by Theorem 5. By Theorem 10 we know
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that σ(R[x]) = σ(R)[x] and consequently it is easy to see that R[x]/σ(R[x]) ∼=
(R/σ(R))[x]. Then (iv) follows from (ii) by Lemma 14, while the converse follows
immediately from Lemma 12. �

Corollary 17. LetR be an arbitrary ring and letM= {R, R/σ(R), R[x1, . . . , xn],
R[x1, . . . , xn]/σ(R[x1, . . . , xn]), n < ω} be a countable set of rings. If for some
S ∈ M the class of all non-singular left S-modules forms a precover class, then
the same holds for each member of the set M.

Proof: It follows immediately from Theorem 16, Remark 15 and the induction
principle. �

Lemma 18. Let R be an arbitrary ring. If Goldie’s torsion theory σR for the

category R-mod is of finite type, then every hereditary torsion theory τR for the

category R-mod such that τR ≥ σR is of finite type, too.

Proof: Goldie’s torsion theory σR̄ for the category R̄-mod of allR/σ(R)-modules
is of finite type by Theorem 5. If I ∈ LτR

is an arbitrary element then Lemma 4
together with Lemma 1 yields the existence of a finitely generated left idealK ≤ R
which is essential in I. Since TσR

⊆ TτR
, the ideal K lies in LτR

and we are
through. �

Corollary 19. LetR be an arbitrary ring and letM= {R, R/σ(R), R[x1, . . . , xn],
R[x1, . . . , xn]/σ(R[x1, . . . , xn]), n < ω} be a countable set of rings. If Goldie’s
torsion theory σR for the category R-mod is of finite type, then for each element
S ∈ M and each hereditary torsion theory τS for the category S-mod such that
τS ≥ σS , the class of all τS -torsionfree modules is a precover class.

Proof: By Theorem 16 and Remark 15 for each element S ∈ M Goldie’s torsion
theory σS is of finite type and the proof is therefore complete, τS being of finite
type by the preceding lemma. �
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