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On absolutely submetrizable spaces

Raushan Z. Buzyakova

Abstract. We introduce a notion of absolute submetrizability (= “every Tychonoff subto-
pology is submetrizable”) and investigate its behavior under basic topological operations.
The main result is an example of an absolutely submetrizable space that contains an
uncountable set of isolated points (hence the space is neither separable nor hereditarily
Lindelöf). This example is used to show that absolute submetrizability is not preserved
by some topological operations, in particular, by free sums.
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1. Introduction

In the theory of generalized metric spaces, submetrizability is one of the cen-
tral and well-investigated properties. Recall that a topological space is called
submetrizable if it admits a continuous bijection onto a metric space. It is known
that submetrizability can be destroyed by continuous maps belonging to very nice
classes. Motivated by this unfortunate fact we propose to study the following
property.

We say that a Tychonoff space X is absolutely submetrizable if any Tychonoff
subtopology of the topology ofX is submetrizable. In other words,X is absolutely
submetrizable if any one-to-one continuous Tychonoff image ofX is submetrizable.

It is incorporated in the definition now that the property cannot be destroyed by
continuous bijections, yet we do not know much about how sensitive this property
is to other nice mappings. The main result of our study is an example of an
absolutely submetrizable space that contains an uncountable set of isolated points
(hence the space is neither separable nor hereditarily Lindelöf). This example is
used to show that absolute submetrizability is not preserved by some topological
operations, in particular, by free sums. In addition to our main result, we make
a number of observations and pose motivated questions regarding the behavior of
this property in continuous images, products, free sums, unions, subspaces, etc.

We will consider only Tychonoff spaces. In notation and terminology we will
follow [ENG].
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2. Study

Clearly, any (absolutely) submetrizable space has countable pseudocharacter.
We will use this fact quite often throughout the paper. Let us start our study
with two simple observations that will motivate our main result.

Theorem 1. Any absolutely submetrizable space is Lindelöf.

Proof: Suppose X is not Lindelöf. Then there exists a compactum C ⊂ βX \X
such that any Gδ-set in βX containing C meets X . Fix any x∗ ∈ X . Let Y be the
quotient space defined by the partition on C ∪ X whose only non-trivial element
is {x∗} ∪ C. Clearly, Y is a one-to-one continuous Tychonoff image of X . Since
C is not a Gδ-set in C ∪ X , the image of x∗ has uncountable pseudocharacter.
Therefore Y is not submetrizable. �

Of course, a submetrizable Lindelöf (even hereditarily Lindelöf) space need
not be absolutely submetrizable. For example, Sorgenfrey Line is hereditarily
Lindelöf and submetrizable, but it admits a continuous bijection onto the two
arrows of Alexandroff (without one end-point). Since the latter is a non-metrizable
compactum, the former is not absolutely submetrizable.

As was pointed out to the author, one class of absolutely submetrizable spaces
is given by the following known corollary to the Sneider’s theorem [SNE].

Fact 2. Let X2 be hereditarily Lindelöf. Then any continuous image of X is
submetrizable. In particular, any space with countable network is absolutely

submetrizable.

Proof: If Y is a continuous image of X then Y 2 is hereditarily Lindelöf as well.
Therefore, the diagonal ∆Y is a Gδ-set in Y 2. Since Y is Tychonoff and Lindelöf,
Y is submetrizable.
If Z has countable network, then Z2 is hereditarily Lindelöf. Therefore, Z is

absolutely submetrizable. �

By Theorem 1, if every subspace of X is absolutely submetrizable then X
is hereditarily Lindelöf. Moreover, every continuous Tychonoff image of X is
submetrizable. Indeed, let f be a continuous map of X onto a Tychonoff Y .
Choose Z ⊂ X such that f(Z) = Y and the restriction of f on Z is one-to-one.
Since Z is absolutely submetrizable, Y is submetrizable as a continuous one-to-
one Tychonoff image of Z. This observation and Fact 2 motivate the following
question.

Question 3. Let every subspace of X be absolutely submetrizable. Is X2 here-
ditarily Lindelöf?

In connection with Theorem 1 and Fact 2, it is interesting to have an example
of an absolutely submetrizable space that is neither separable nor hereditarily
Lindelöf. The next example serves this goal. In what follows, by R we denote the



On absolutely submetrizable spaces 485

space of real numbers endowed with the Euclidean topology. Given a function
f : X → Y , by Mf we denote the set of all points of non-one-to-one-ness, that is,

Mf = {x ∈ X : |f−1f(x)| > 1}.

Example 4. There exists an absolutely submetrizable space which is neither

separable nor hereditarily Lindelöf.

Construction. For each A ⊂ R, let FA be the set of all continuous functions
from A to Rω such that |Mf | = 2

ω. Clearly, |FA| ≤ 2
ω. Let F =

⋃
{FA : R \ A

be countable}. Enumerate F as {fα : α < 2ω}. Inductively, we will choose
points aα, bα, cα, and dα. Points dα’s will be used in the definition of our space,
while aα’s, bα’s, and cα’s will be used to prove absolute submetrizability. Let
C = {Cα : α < 2ω} be the set of all uncountable compact subsets of R. Assume
for each β < α < 2ω, points aβ , bβ , cβ , and dβ are defined.

Step α < 2ω: Pick distinct aα, bα ∈ Mfα
such that fα(aα) = fα(bα), cα ∈ Cα,

and dα ∈ R that are distinct from each other and all aβ , bβ , cβ , dβ picked before.
This can be done because Mfα

, Cα, and R are of cardinality 2ω.

Put D = {dα : α < 2ω} and L = R \ D. Let RL = (R, T ) be the space with
underlying set R and the topology T defined using Bing-Hanner construction
(see [ENG, 5.1.22]). Namely, base neighborhoods at points of L are Euclidean,
while points of D are declared isolated. Clearly, D is open in RL. Since D is
uncountable, RL is neither separable nor hereditarily Lindelöf. Construction is
complete. �

To prove absolute submetrizability of RL, we need the following three state-
ments. Each of these statements is a corollary to some classical results and can
be found in some form in literature but we will give them with proofs for com-
pleteness.

Proposition 5. Suppose A has countable network and is a subspace of X . Then
there exists a continuous map f of X to Rω whose restriction on A is one-to-one.

Proof: Let N be a countable network of A. For every N, N ′ ∈ N , fix, if
possible, a continuous map fNN ′ : X → R that maps N into [0, 1/3) and N ′

into (2/3, 1]. Let S consist of all pairs (N, N ′) for which fNN ′ is fixed. Clearly,
F = ∆{fNN ′ : (N, N ′) ∈ S} is a continuous map of X to Rω . Let us show that
F |A is one-to-one. Fix distinct x, y ∈ A. Since X is Tychonoff, there exists a
continuous function f : X → [0, 1] that maps x to 0 and y to 1. Since N is
a network of A, there exist N, N ′ ∈ N such that x ∈ N ⊂ f−1([0, 1/3)) and
y ∈ N ′ ⊂ f−1((2/3, 1]). Therefore, (N, N ′) ∈ S and F (x) 6= F (y). �

Lemma 6. Let f : R → [0, 1]ω be a function which is continuous with respect to
the topology of RL. Let B ⊂ R be the set of all points at which f is discontinuous
with respect to the Euclidean topology on R. Then B is countable.
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Proof: Since the topology at points of L in RL is Euclidean, B ⊂ D. Assume
B is uncountable. For each x ∈ B, fix a sequence {sx(k)}k of elements of R such
that

1. sx(k)→ x in the Euclidean R;

2. f(sx(k))→ px in [0, 1]
ω and px 6= f(x).

There exist an uncountable B′ ⊂ B and ǫ > 0 such that the distance ρ(px, f(x))
in [0, 1]ω is greater than ǫ for every x ∈ B′.

Since all compact subsets ofD are countable (due to cα’s in L) there exist x ∈ L
and a sequence {xn}n of points of B

′ such that xn → x. Since f is continuous at
x, f(xn) → f(x). By 2 and the choice of B′, we may assume that the following
holds:

3. ρ(sxn
(k), f(xn)) > ǫ/2 for all k.

For each n select an element x′n of the sequence sxn
so that x′n → x. By 3,

f(x′n) 6→ f(x) contradicting continuity of f at x. �

Proposition 7. Let X be a subspace of R such that R \ X is countable. Let
f be a continuous function from X to a Hausdorff space. Then |Mf | ≤ ω or
|Mf | = 2

ω.

Proof: For each k ∈ ω \ {0}, the set Sk = {(x, y) : |x − y| ≥ 1/k, f(x) = f(y)}
is, obviously, closed in X × X . If Mf is uncountable then so is Sk for some
k ∈ ω \ {0}. Since Sk is closed in X × X and R \ X is countable, by Cantor’s
theorem, |Sk| = 2

ω. Since x 6= y and f(x) = f(y) for each (x, y) ∈ Sk, the
projection of Sk to each coordinate axis is a subset of Mf . If the projection of
Sk to the first coordinate axis is of cardinality 2

ω then we are done. Otherwise,
there exists x ∈ Mf such that f−1f(x) is uncountable. Since f−1f(x) is closed
in X , by Cantor’s theorem, it has cardinality 2ω. �

Lemma 8. RL is absolutely submetrizable.

Proof: Let Tt be a Tychonoff subtopology of the topology T of RL. Since T |L
is separable and metrizable, Tt|L has countable network. By Proposition 5, there
exists a continuous map f : (R, Tt)→ [0, 1]ω whose restriction on L is one-to-one.
To show that (R, Tt) is submetrizable it suffices to prove that the set Mf of all
points of non-one-to-one-ness of f is countable.

Assume Mf is uncountable. By Lemma 6, there exists A ⊂ R such that
R \ A is countable and f is continuous at all points of A with respect to the
Euclidean topology. Since Mf is uncountable, Mf |A is uncountable as well. By

Proposition 7, |Mf |A | = 2
ω. Therefore, f |A = fα ∈ F . By our construction,

aα, bα ∈ L and f |A(aα) = f |A(bα), a contradiction with the fact that f is one-to-
one on L. �
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One of properties of the Bing-Hanner construction implies that RL ×D, where
D = R \ L has the Euclidean topology, contains an uncountable closed discrete
subset, namely, {(d, d) : d ∈ D}.

Corollary 9. Absolute submetrizability is not finitely productive. Moreover,

an absolutely submetrizable space times a separable metric space need not be

absolutely submetrizable.

Observe that the quotient space defined by the partition p on RL whose only
non-trivial element is L is not submetrizable. Indeed, the set D is not an Fσ-set
in RL because otherwise RL would have contained an uncountable closed discrete
subset, contradicting the Lindelöf property of RL. Since D is not an Fσ-set, p(L)
is not a Gδ-set in p(RL). Since p(L) is a one-point set, p(RL) has uncountable
pseudocharacter. Hence, p(RL) is not submetrizable. Clearly, this quotient map
is in addition closed. Thus, absolute submetrizability is not preserved by closed
continuous maps.

Question 10. Is absolute submetrizability preserved by continuous open maps,

perfect maps?

Now let us look how addition affects our property.

Example 11. There exist two absolutely submetrizable spaces whose free sum

is not absolutely submetrizable.

Construction. Consider RL ⊕D, where D = R \L has the Euclidean topology.
By Fact 2, D is absolutely submetrizable. Let us show that this free sum is not
absolutely submetrizable.

Let X = R∪R′ be the Alexandroff double of R, where points of R′ = {x′ : x ∈
R} are isolated. Let Y = X \ {x′ : x ∈ L}. Clearly, RL ⊕ D admits a continuous
bijection onto Y . However, Y is not submetrizable because some non-isolated
points of Y have neighborhoods with non-metrizable compact closures. �

Question 12. Let X be absolutely submetrizable. Is X×2 absolutely submetriz-
able?

Next we study the behavior of our property in countable unions with some
additional properties. For our further discussion a family F of subsets of X
is called Hausdorff separating if for every distinct x, y ∈ X there exist disjoint
Fx, Fy ∈ F that contain x and y, respectively. If X admits a continuous bijection
onto a separable metric space M then X has a countable Hausdorff separating
family of closed subsets. To construct such a family take the inverse images of
closures of elements of some countable base in M . It is also clear that if a normal
(in particular, a regular Lindelöf) space X has a countable Hausdorff separating
family of closed sets then X is submetrizable.
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Proposition 13. Let X =
⋃

n Xn, where Xn is submetrizable and Lindelöf and

Xn ⊂ Xn+1. Then X is submetrizable. Moreover, if every Xn is absolutely

submetrizable then so is X .

Proof: For each n, fix a countable Hausdorff separating family Sn of closed
subsets of Xn.
For each n and each pair (P, S) of disjoint elements of Sn fix a countable family

SPS of closed sets in X such that
⋃
SPS contains P and does not meet ClX(S).

Let us show that such a family exists. Since P and S are closed and disjoint in
Xn, the sets P and ClX(S) are disjoint as well. For each x ∈ P , fix Ox ∋ x open
in X whose closure in X does not meet ClX (S). Since P is closed in Xn and the
latter is Lindelöf, P is Lindelöf as well. Choose a countable P ′ ⊂ P such that
SPS = {ClX(Ox) : x ∈ P ′} covers P .
Define F as follows: F ∈ F iff F is in some SPS or is the closure in X of

some element of Sn. Clearly, F is a countable family of closed subsets of X . We
only need to show that it is Hausdorff separating. Fix distinct x, y ∈ X . Then
x, y ∈ Xn for some n. Then there exist disjoint P, S ∈ Sn that contain x and
y, respectively. Then there exists Fx ∈ SPS that contains x and does not meet
Fy = ClX(S) ∋ y. Since both Fx and Fy are in F , we are done.
For “moreover” part observe that every continuous one-to-one image of X

satisfies the hypothesis and, therefore, is submetrizable. �

It is worth mentioning that the union of two Lindelöf submetrizable spaces need
not be submetrizable. Such is the two arrows space. Recall that the two arrows
space is not submetrizable because it is a non-metrizable compactum. Therefore,
the requirement that {Xn}n is a chain is important. Also, the union of a countable
chain of non-Lindelöf submetrizable spaces need not be submetrizable. Such is
the Mrówka space [MRO] constructed from a maximal disjoint family on ω. Since
the Mrówka space is the union of countably many closed discrete subspaces, it can
be represented as a countable chain of even metrizable spaces. Since the Mrówka
space is pseudocompact and non-compact it is not submetrizable.

Proposition 14. Let X = Y ∪ S, where Y is absolutely submetrizable and S is
countable. Then X is absolutely submetrizable.

Proof: Since any continuous one-to-one image of X satisfies the hypothesis of
our proposition it suffices to show that X is submetrizable. By virtue of Proposi-
tion 13, we may assume that S = {p}. By Theorem 1, Y is Lindelöf. Therefore,
p has countable pseudocharacter.
Now fix S a countable Hausdorff separating family of closed subsets of Y . Fix a

countable nested family B of open neighborhoods of p in X such that
⋂
B = {p}.

Define F as follows: F ∈ F iff F = S \B for some S ∈ S and B ∈ B or F = {p}.
Clearly, F is a countable Hausdorff separating family of closed subsets of X . �

Note that Proposition 14 holds if we replace “absolute submetrizable” by “Lin-
delöf and submetrizable”. In general, however, the union of a submetrizable space
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and a countable space need not be submetrizable. This is witnessed for example
by a one-point Lindelöfication of an uncountable discrete space. Of course, in the
above proposition, S can be replaced by a countable union of metrizable com-
pact subspaces. We will show later that removing finitely many compact subsets
from absolutely submetrizable spaces does not destroy absolute submetrizability
either. However, it is not clear to the author what happens if we remove an
infinite countable subset.

Question 15. Let X = Y ∪S be absolutely submetrizable, where S is countably
infinite. Is Y absolutely submetrizable?

Since RL has an open discrete uncountable subspace, we conclude that absolute
submetrizability is not inherited by open subspaces. It is easy to prove that the
property is inherited by closed subspaces and even open Fσ-subspaces.

Theorem 16. Absolute submetrizability is inherited by Fσ-subspaces.

Proof: By virtue of Proposition 13, it suffices to prove the conclusion for closed
subspaces. Let X be absolutely submetrizable and let A be a closed subspace
of X . Let h : A → Y ⊂ [0, 1]τ be a continuous one-to-one map of A onto Y .

Since X is Lindelöf and A is closed, there exists a continuous h̃ : X → [0, 1]τ that
coincides with h on A. Since X is Tychonoff and A is closed in X there exists a
continuous map f from X to some cube [0, 1]κ with the following properties:

1. A is mapped to the point with all coordinates 0;
2. f(A) ∩ f(X \ A) = ∅;
3. f is one-to-one on X \ A.

The map G = f∆h̃ : X → [0, 1]κ × [0, 1]τ is, clearly, a continuous injection.
Hence, G(X) is submetrizable. By 1, G(A) is homeomorphic to Y . Therefore, Y
is submetrizable. �

This theorem implies, in particular, that X \ C is submetrizable if X is sub-
metrizable and C is compact. Indeed, since X is submetrizable, X \ C is an
Fσ-subset of X , and therefore, absolutely submetrizable.

Question 17. Suppose that every open subspace of X is absolutely submetriz-
able. Is every subspace of X absolutely submetrizable?
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