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Fourier inversion of distributions on projective spaces

FraNcisco JAVIER GONZALEZ VIELI

Abstract. We show that the Fourier-Laplace series of a distribution on the real, complex
or quarternionic projective space is uniformly Cesaro-summable to zero on a neighbour-
hood of a point if and only if this point does not belong to the support of the distribution.
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1. Introduction

In [5] Kahane and Salem characterized the closed sets of uniqueness in the unit
circle S! by using the support of distributions. In particular they proved that,
given a distribution T on S' whose Fourier transform 7T vanishes at infinity and
F a closed set in S!, the support of T is in E if and only if for all z € st \ E

N
li FT(k 2mixk) = 0.
wlim, 3 FT) explamiad

Later Walter showed that the Fourier series
o0
Z FT(k)exp(2mizk)
k=—o00

of any distribution 7" on S! is Cesaro-summable to zero for all z out of the support
of T ([7]). However, this is not sufficient to characterize the support of T', since,
as Walter himself remarked, the Fourier series of the first derivative of the Dirac
measure at a point s € S!, 4%, is summable in Cesaro means of order 2 to zero
everywhere.

In fact, a point x is out of the support of T if and only if the Fourier series
of T is uniformly Cesaro-summable to zero on a neighbourhood of z. In [2] we
established this result for the general case of a distribution 7 on S*~1 (n > 2) and
its Fourier-Laplace series (see Section 2 below). Here we will show in Section 4 that
from the result on the sphere we can obtain the similar result about the Fourier-
Laplace expansion of distributions on real, complex and quaternionic projective
spaces. In Section 3 we introduce the necessary tools on projective spaces.
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2. Fourier inversion on the sphere

We write 7';0:00 bm = B (C,k) to say that the series of complex numbers
> m>0 bm is summable in Cesaro means of order k to B € C (see [3]).

The restriction to S*~1, the unit sphere in R", of the non-radial part of the
Laplace operator A on R™ is the Laplace-Beltrami operator on S*~ 1, Ag. It is
self-adjoint with respect to the scalar product of L2 (S"_l, dopn—1) and commutes
with rotations (we choose do,,—1 normalized).

A spherical harmonic of degree | on S?~1 (I € Np) is the restriction to sn—1
of a polynomial on R"™ which is harmonic and homogeneous of degree I. We
write SH;(S?1) the set of spherical harmonics of degree I. Every non zero
element of SH;(S"~1) is an eigenfunction of Ag with eigenvalue —I(n+1—2). Let
(EL,. .. ’Eill) be an orthonormal basis of SH;(S"~1). The function Z;(¢,7) :=

E?’zl Eé(()Eé(n) is called zonal of degree I. For all ¢, n € S*1, Z;(¢,n) =

Z1(n,¢) € R and

(1) Zi(p¢,n) = Z1(C,p~ M)

if p € O(n) ([6, Lemma 2.8, p. 143]).

We write D(S?1) for the set of test functions and D/(S"~1) for the set of
distributions on S"~!. The support of T € D'(S* 1) is denoted by suppT.
The Fourier-Laplace series of a distribution 7' on S"~! is Z?:S’ IT;(T), where
I;(T)(C) := T[n — Z;(¢,n)] for ¢ € S*~L; this series converges to T in the sense
of distributions. In [2, Theorem 1 and Remark 2] we obtained:

Proposition 1. Let T € D'(S*1) be of order m € Ny.
(i) If there exist k > 0 and U an open subset of S"~! on which

+00
(2) S IM(T)(C) =0 (C.k)
=0

holds uniformly (in ¢), then T is zero on U.

(ii) Conversely, if k > n — 2 4 2m, then (2) holds uniformly on every closed
subset of "1\ suppT.

(iii) Moreover, if suppT has at least two points, then (2) holds uniformly on
every closed subset of S"~1 \suppT as soon as k >n/2—1+ m.

3. Projective spaces

Here we will write K for either R, or C, or H (the algebra of quaternions) and
let d := dimg K. We also define U(K) := {k € K : ||k| = 1} and note dk the
normalized Haar measure of U (K).
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For 2,y € K"t1\ {0}, write & ~ y if there exists k € K* such that = = ky, and
let [z] be the equivalence class of x. The projective space of dimension n on K is
P*(K) := K"\ {0}/ ~; it is a compact symmetric space of rank one (see [4]).
Identifying K™ 1 with R4 we see that P*(K) = S™+9=1/ < The connected
component of the identity in the group of isometries of P™(K) is a group we write
SK(n + 1); in fact SK(n+1) = SO(n + 1), SU(n + 1) or Sp(n + 1) for K = R,
C or H respectively (see [1]). Moreover, the action of SK(n + 1) on P™*(K) is the
one induced by the action on S™+4=1 of SK(n+ 1) as a subgroup of SO(dn + d).
We also have, from the action of U(K) on K1,

(3) U(K) < O(dn + d).

If g is a U(K)-invariant function on S™*9~1 we can define a function g |
on P"(K) by gl ([n]) := g(n). Conversely, if f is a function on P"™(K), we
get, by putting f1(n) := f([]), a U(K)-invariant function f1 on S™+d=1 with
(f1)l= f. Now, given an arbitrary function g on S¥+4=1 e define a U(K)-
invariant function gf on Std—1 by ¢i(n) = fU g(kn) dk (when g is U(K)-

invariant, ¢g? = g). We then put ¢’ := ( )l. If T is a distribution on P"™(K), we
let, for ¢ € D(SHI=1) T1(p) := T(¢"). Then TT is a distribution on §@+d—1
of the same order as T and supp T1= {n € S¥+4=1 . 5] € supp T'}.

We write dpy, for the unique normalized Radon measure on P"(K) which is
SK(n + 1)-invariant. The link between dp,, and dogy, g1 is:

/ 9(Q) dognyat () = / () dpn(2)
Sdn+d71 n(K)

for every g € D(Sd"+d_1). Finally, we can define the Laplace-Beltrami operator
Ap on P*"(K) by Ap(f) := (Ag(f1))l, using (3) and the facts that f71 is U(K)-
invariant and Ag commutes with all rotations. Then Ap commutes with all
elements of SK(n + 1).

4. Fourier inversion on P"(K)

Given T € D'(P™(K)), I;(T1) € SH;(S™+=1) is U(K)-invariant:

I0,(T7)(u¢) = T1(n — Zj(u,n))
= T(Z(u,-))
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=T([n] — Zy(C, kn) dk)
U(K)

=T(Z(¢.-)) = (T

(where u € U(K), ¢ € S¥+9=1) "using (1) and (3) for the fourth equality. Hence
we can define a function E(T") on P™(K) by =;(T') := (II;(T1))]. Since II;(T'1) is
either 0 or an eigenfunction of Ag, Z;(T) is either 0 or an eigenfunction of Ap.
Moreover, if I # m, E;(T) and Z,,(T) are orthogonal in L?(P™(K),dpy). This
justifies the name Fourier-Laplace series of T we give to Zl"—:og E;(T); this series
converges to T in the sense of distributions:

N

lim E(T)(p) = lim Z/n )¢(2) dpn(2)

N—>+ool N—+o0

— lim Z /S oy DO danta—1(Q)

N—>+oo

= lim an T7)(1)

N—+
=TI(el) = T((#)) = T()

if ¢ € D(P™(K)). From the preceding section and Proposition 1 we deduce:

Proposition 2. Let T € D'(P"(K)) be of order m € Ny.
(i) If there exist k > 0 and U an open subset of P™(K) on which

“+oo

(4) Y E(D)(=)=0 (Ck)

=0

holds uniformly (in z), then T is zero on U.
(ii) Conversely, if k > (dn +d)/2 — 1+ m, then (4) holds uniformly on every
closed subset of P™(K) \ suppT.

Remarks. 1. Naturally (4) can hold for some k& < (dn + d)/2 — 1+ m. For
example, take K = R, n > 2, pick a point zp in P"(R) and consider the ball B
with centre zg whose radius is the diameter of P"(R); its boundary 9B can be
identified with P"~1(R). For all p € D(P"(R)) we let

tn—1(p) = /a Pl (o)
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this defines a measure f,—1 on P"(R). Then the distribution A%, _1 (¢ € Np)
has order 2¢ and support 0B; its Fourier-Laplace series is (C, k)-summable to 0
at all points outside 9B U {zp} if and only if ¥ > 2¢ and at zg if and only if
k> (n—1)/2 + 2¢; this follows from [2, Proposition 1].

2. If (4) holds uniformly on a subset A of P™(K), it holds uniformly on the
closure of A. Hence, when the interior of supp7 is empty, (4) does not hold
uniformly on P"(K) \ supp T; this is the case in the preceding example.

3. Since P™(K) is a sphere when n = 1, Proposition 2(ii) gives a partial
refinement of Proposition 1(ii):

Corollary. Letd=1,20or4 andT € D’(Sd) be of orderm € Ny. If k > d—1+m,
then (2) holds uniformly on every closed subset of S%\ suppT.
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