FRANCISCO JAVIER GONZÁLEZ VIELI

Abstract. We show that the Fourier-Laplace series of a distribution on the real, complex or quarternionic projective space is uniformly Cesàro-summable to zero on a neighbourhood of a point if and only if this point does not belong to the support of the distribution.

Keywords: distribution, projective space, Fourier-Laplace series, Cesàro summability *Classification:* Primary 46F12; Secondary 42C10

1. Introduction

In [5] Kahane and Salem characterized the closed sets of uniqueness in the unit circle \mathbb{S}^1 by using the support of distributions. In particular they proved that, given a distribution T on \mathbb{S}^1 whose Fourier transform $\mathcal{F}T$ vanishes at infinity and E a closed set in \mathbb{S}^1 , the support of T is in E if and only if for all $x \in \mathbb{S}^1 \setminus E$

$$\lim_{N \to +\infty} \sum_{k=-N}^{N} \mathcal{F}T(k) \exp(2\pi i x k) = 0.$$

Later Walter showed that the Fourier series

$$\sum_{k=-\infty}^{\infty} \mathcal{F}T(k) \exp(2\pi i x k)$$

of any distribution T on \mathbb{S}^1 is Cesàro-summable to zero for all x out of the support of T ([7]). However, this is not sufficient to characterize the support of T, since, as Walter himself remarked, the Fourier series of the first derivative of the Dirac measure at a point $s \in \mathbb{S}^1$, δ'_s , is summable in Cesàro means of order 2 to zero everywhere.

In fact, a point x is out of the support of T if and only if the Fourier series of T is uniformly Cesàro-summable to zero on a neighbourhood of x. In [2] we established this result for the general case of a distribution T on \mathbb{S}^{n-1} $(n \ge 2)$ and its Fourier-Laplace series (see Section 2 below). Here we will show in Section 4 that from the result on the sphere we can obtain the similar result about the Fourier-Laplace expansion of distributions on real, complex and quaternionic projective spaces. In Section 3 we introduce the necessary tools on projective spaces.

2. Fourier inversion on the sphere

We write $\sum_{m=0}^{+\infty} b_m = B$ (*C*, *k*) to say that the series of complex numbers $\sum_{m>0} b_m$ is summable in Cesàro means of order *k* to $B \in \mathbb{C}$ (see [3]).

The restriction to \mathbb{S}^{n-1} , the unit sphere in \mathbb{R}^n , of the non-radial part of the Laplace operator Δ on \mathbb{R}^n is the Laplace-Beltrami operator on \mathbb{S}^{n-1} , $\Delta_{\mathbb{S}}$. It is self-adjoint with respect to the scalar product of $L^2(\mathbb{S}^{n-1}, d\sigma_{n-1})$ and commutes with rotations (we choose $d\sigma_{n-1}$ normalized).

A spherical harmonic of degree l on \mathbb{S}^{n-1} $(l \in \mathbb{N}_0)$ is the restriction to \mathbb{S}^{n-1} of a polynomial on \mathbb{R}^n which is harmonic and homogeneous of degree l. We write $SH_l(\mathbb{S}^{n-1})$ the set of spherical harmonics of degree l. Every non zero element of $SH_l(\mathbb{S}^{n-1})$ is an eigenfunction of $\Delta_{\mathbb{S}}$ with eigenvalue -l(n+l-2). Let $(E_1^l, \ldots, E_{d_l}^l)$ be an orthonormal basis of $SH_l(\mathbb{S}^{n-1})$. The function $Z_l(\zeta, \eta) :=$ $\sum_{j=1}^{d_l} E_j^l(\zeta) \overline{E_j^l(\eta)}$ is called zonal of degree l. For all ζ , $\eta \in \mathbb{S}^{n-1}$, $Z_l(\zeta, \eta) =$ $Z_l(\eta, \zeta) \in \mathbb{R}$ and

(1)
$$Z_l(\rho\zeta,\eta) = Z_l(\zeta,\rho^{-1}\eta)$$

if $\rho \in O(n)$ ([6, Lemma 2.8, p. 143]).

We write $\mathcal{D}(\mathbb{S}^{n-1})$ for the set of test functions and $\mathcal{D}'(\mathbb{S}^{n-1})$ for the set of distributions on \mathbb{S}^{n-1} . The support of $T \in \mathcal{D}'(\mathbb{S}^{n-1})$ is denoted by supp T. The Fourier-Laplace series of a distribution T on \mathbb{S}^{n-1} is $\sum_{l=0}^{+\infty} \Pi_l(T)$, where $\Pi_l(T)(\zeta) := T[\eta \mapsto Z_l(\zeta, \eta)]$ for $\zeta \in \mathbb{S}^{n-1}$; this series converges to T in the sense of distributions. In [2, Theorem 1 and Remark 2] we obtained:

Proposition 1. Let $T \in \mathcal{D}'(\mathbb{S}^{n-1})$ be of order $m \in \mathbb{N}_0$.

(i) If there exist $k \ge 0$ and U an open subset of \mathbb{S}^{n-1} on which

(2)
$$\sum_{l=0}^{+\infty} \Pi_l(T)(\zeta) = 0 \quad (C,k)$$

holds uniformly (in ζ), then T is zero on U.

- (ii) Conversely, if k > n − 2 + 2m, then (2) holds uniformly on every closed subset of S^{n−1} \ supp T.
- (iii) Moreover, if supp T has at least two points, then (2) holds uniformly on every closed subset of $\mathbb{S}^{n-1} \setminus \text{supp } T$ as soon as k > n/2 1 + m.

3. Projective spaces

Here we will write \mathbb{K} for either \mathbb{R} , or \mathbb{C} , or \mathbb{H} (the algebra of quaternions) and let $d := \dim_{\mathbb{R}} \mathbb{K}$. We also define $U(\mathbb{K}) := \{k \in \mathbb{K} : ||k|| = 1\}$ and note dk the normalized Haar measure of $U(\mathbb{K})$. For $x, y \in \mathbb{K}^{n+1} \setminus \{0\}$, write $x \sim y$ if there exists $k \in \mathbb{K}^*$ such that x = ky, and let [x] be the equivalence class of x. The projective space of dimension n on \mathbb{K} is $P^n(\mathbb{K}) := \mathbb{K}^{n+1} \setminus \{0\}/\sim$; it is a compact symmetric space of rank one (see [4]). Identifying \mathbb{K}^{n+1} with \mathbb{R}^{dn+d} , we see that $P^n(\mathbb{K}) = \mathbb{S}^{dn+d-1}/\sim$. The connected component of the identity in the group of isometries of $P^n(\mathbb{K})$ is a group we write $S\mathbb{K}(n+1)$; in fact $S\mathbb{K}(n+1) = SO(n+1)$, SU(n+1) or Sp(n+1) for $\mathbb{K} = \mathbb{R}$, \mathbb{C} or \mathbb{H} respectively (see [1]). Moreover, the action of $S\mathbb{K}(n+1)$ on $P^n(\mathbb{K})$ is the one induced by the action on \mathbb{S}^{dn+d-1} of $S\mathbb{K}(n+1)$ as a subgroup of SO(dn+d). We also have, from the action of $U(\mathbb{K})$ on \mathbb{K}^{n+1} ,

(3)
$$U(\mathbb{K}) < O(dn+d).$$

If g is a $U(\mathbb{K})$ -invariant function on \mathbb{S}^{dn+d-1} , we can define a function $g \downarrow$ on $P^n(\mathbb{K})$ by $g \downarrow ([\eta]) := g(\eta)$. Conversely, if f is a function on $P^n(\mathbb{K})$, we get, by putting $f \uparrow (\eta) := f([\eta])$, a $U(\mathbb{K})$ -invariant function $f \uparrow$ on \mathbb{S}^{dn+d-1} with $(f\uparrow)\downarrow = f$. Now, given an arbitrary function g on \mathbb{S}^{dn+d-1} , we define a $U(\mathbb{K})$ invariant function g^{\sharp} on \mathbb{S}^{dn+d-1} by $g^{\sharp}(\eta) := \int_{U(\mathbb{K})} g(k\eta) \, dk$ (when g is $U(\mathbb{K})$ invariant, $g^{\sharp} = g$). We then put $g^{\flat} := (g^{\sharp})\downarrow$. If T is a distribution on $P^n(\mathbb{K})$, we let, for $\varphi \in \mathcal{D}(\mathbb{S}^{dn+d-1}), T\uparrow(\varphi) := T(\varphi^{\flat})$. Then $T\uparrow$ is a distribution on \mathbb{S}^{dn+d-1} of the same order as T and $\operatorname{supp} T\uparrow = \{\eta \in \mathbb{S}^{dn+d-1} : [\eta] \in \operatorname{supp} T\}$.

We write dp_n for the unique normalized Radon measure on $P^n(\mathbb{K})$ which is $S\mathbb{K}(n+1)$ -invariant. The link between dp_n and $d\sigma_{dn+d-1}$ is:

$$\int_{\mathbb{S}^{dn+d-1}} g(\zeta) \, d\sigma_{dn+d-1}(\zeta) = \int_{P^n(\mathbb{K})} g^{\flat}(z) \, dp_n(z)$$

for every $g \in \mathcal{D}(\mathbb{S}^{dn+d-1})$. Finally, we can define the Laplace-Beltrami operator Δ_P on $P^n(\mathbb{K})$ by $\Delta_P(f) := (\Delta_S(f\uparrow))\downarrow$, using (3) and the facts that $f\uparrow$ is $U(\mathbb{K})$ -invariant and Δ_S commutes with all rotations. Then Δ_P commutes with all elements of $S\mathbb{K}(n+1)$.

4. Fourier inversion on $P^n(\mathbb{K})$

Given $T \in \mathcal{D}'(P^n(\mathbb{K})), \Pi_l(T\uparrow) \in \mathcal{S}H_l(\mathbb{S}^{dn+d-1})$ is $U(\mathbb{K})$ -invariant:

$$\Pi_{l}(T\uparrow)(u\zeta) = T\uparrow(\eta \mapsto Z_{l}(u\zeta,\eta))$$

= $T(Z_{l}(u\zeta,\cdot)^{\flat})$
= $T([\eta] \mapsto \int_{U(\mathbb{K})} Z_{l}(u\zeta,k\eta) \, dk)$
= $T([\eta] \mapsto \int_{U(\mathbb{K})} Z_{l}(\zeta,u^{-1}k\eta) \, dk)$

$$= T([\eta] \mapsto \int_{U(\mathbb{K})} Z_l(\zeta, k\eta) \, dk)$$
$$= T(Z_l(\zeta, \cdot)^{\flat}) = \Pi_l(T\uparrow)(\zeta)$$

(where $u \in U(\mathbb{K}), \zeta \in \mathbb{S}^{dn+d-1}$), using (1) and (3) for the fourth equality. Hence we can define a function $\Xi_l(T)$ on $P^n(\mathbb{K})$ by $\Xi_l(T) := (\Pi_l(T\uparrow)) \downarrow$. Since $\Pi_l(T\uparrow)$ is either 0 or an eigenfunction of $\Delta_S, \Xi_l(T)$ is either 0 or an eigenfunction of Δ_P . Moreover, if $l \neq m, \Xi_l(T)$ and $\Xi_m(T)$ are orthogonal in $L^2(P^n(\mathbb{K}), dp_n)$. This justifies the name Fourier-Laplace series of T we give to $\sum_{l=0}^{+\infty} \Xi_l(T)$; this series converges to T in the sense of distributions:

$$\begin{split} \lim_{N \to +\infty} \sum_{l=0}^{N} \Xi_{l}(T)(\varphi) &= \lim_{N \to +\infty} \sum_{l=0}^{N} \int_{P^{n}(\mathbb{K})} \Xi_{l}(T)(z)\varphi(z) \, dp_{n}(z) \\ &= \lim_{N \to +\infty} \sum_{l=0}^{N} \int_{\mathbb{S}^{dn+d-1}} \Pi_{l}(T\uparrow)(\zeta)\varphi\uparrow(\zeta) \, d\sigma_{dn+d-1}(\zeta) \\ &= \lim_{N \to +\infty} \sum_{l=0}^{N} \Pi_{l}(T\uparrow)(\varphi\uparrow) \\ &= T\uparrow(\varphi\uparrow) \ = \ T((\varphi\uparrow)^{\flat}) \ = \ T(\varphi) \end{split}$$

if $\varphi \in \mathcal{D}(P^n(\mathbb{K}))$. From the preceding section and Proposition 1 we deduce:

Proposition 2. Let $T \in \mathcal{D}'(P^n(\mathbb{K}))$ be of order $m \in \mathbb{N}_0$.

(i) If there exist $k \ge 0$ and U an open subset of $P^n(\mathbb{K})$ on which

(4)
$$\sum_{l=0}^{+\infty} \Xi_l(T)(z) = 0 \quad (C,k)$$

holds uniformly (in z), then T is zero on U.

(ii) Conversely, if k > (dn + d)/2 - 1 + m, then (4) holds uniformly on every closed subset of $P^n(\mathbb{K}) \setminus \operatorname{supp} T$.

Remarks. 1. Naturally (4) can hold for some $k \leq (dn + d)/2 - 1 + m$. For example, take $\mathbb{K} = \mathbb{R}$, $n \geq 2$, pick a point z_0 in $P^n(\mathbb{R})$ and consider the ball B with centre z_0 whose radius is the diameter of $P^n(\mathbb{R})$; its boundary ∂B can be identified with $P^{n-1}(\mathbb{R})$. For all $\varphi \in \mathcal{D}(P^n(\mathbb{R}))$ we let

$$\mu_{n-1}(\varphi) := \int_{\partial B} \varphi(z) \, dp_{n-1}(z);$$

this defines a measure μ_{n-1} on $P^n(\mathbb{R})$. Then the distribution $\Delta_P^q \mu_{n-1}$ $(q \in \mathbb{N}_0)$ has order 2q and support ∂B ; its Fourier-Laplace series is (C, k)-summable to 0 at all points outside $\partial B \cup \{z_0\}$ if and only if k > 2q and at z_0 if and only if k > (n-1)/2 + 2q; this follows from [2, Proposition 1].

2. If (4) holds uniformly on a subset A of $P^n(\mathbb{K})$, it holds uniformly on the closure of A. Hence, when the interior of $\operatorname{supp} T$ is empty, (4) does not hold uniformly on $P^n(\mathbb{K}) \setminus \operatorname{supp} T$; this is the case in the preceding example.

3. Since $P^n(\mathbb{K})$ is a sphere when n = 1, Proposition 2(ii) gives a partial refinement of Proposition 1(ii):

Corollary. Let d = 1, 2 or 4 and $T \in \mathcal{D}'(\mathbb{S}^d)$ be of order $m \in \mathbb{N}_0$. If k > d-1+m, then (2) holds uniformly on every closed subset of $\mathbb{S}^d \setminus \text{supp } T$.

Acknowledgments. Work partially supported by the Swiss National Science Foundation. We would like to thank Professor A. Strasburger for stimulating conversations and the referee for the suggested improvements.

References

- Fomenko A.T., Symplectic Geometry, Gordon and Breach Science Publishers, New York, 1988.
- [2] González Vieli F.J., Fourier inversion of distributions on the sphere, J. Korean Math. Soc. 41 (2004), 755–772.
- [3] Hardy G.H., Divergent Series, Clarendon Press, Oxford, 1949.
- [4] Helgason S., Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.
- [5] Kahane J.-P., Salem R., Ensembles parfaits et séries trigonométriques, Hermann, Paris, 1963.
- [6] Stein E.M., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1971.
- [7] Walter G., Pointwise convergence of distribution expansions, Studia Math. 26 (1966), 143– 154.

F.J. GONZÁLEZ VIELI, MONTOIE 45, 1007 LAUSANNE, SWITZERLAND

E-mail: Francisco-Javier.Gonzalez@gmx.ch

(Received August 31, 2004, revised April 3, 2006)