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Covering properties in countable products, 11

SAcHIO HicucHI, HIDENORI TANAKA

Abstract. In this paper, we discuss covering properties in countable products of Cech-
scattered spaces and prove the following: (1) If Y is a perfect subparacompact space
and {X, : n € w} is a countable collection of subparacompact Cech-scattered spaces,
then the product Y X [],c, Xn is subparacompact and (2) If {X,, : n € w} is a
countable collection of metacompact Cech-scattered spaces, then the product I, cwXn
is metacompact.
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1. Introduction

A space X is said to be subparacompact (metacompact) if every open cover
of X has a o-locally finite closed (point finite open) refinement. It is well known
that every countably compact, subparacompact (metacompact) space is compact.

Telgarsky [Te] introduced the notion of C-scattered spaces and proved that the
product of a paracompact (Lindel6f) C-scattered space and a paracompact (Lin-
deldf) space is paracompact (Lindel6f). Yajima [Y1], Gruenhage and Yajima [GY]
proved similar results for subparacompact (metacompact) spaces. Furthermore,
the second author ([T1], [T2]) proved the following: (1) if Y is a perfect para-
compact (hereditarily Lindelof, perfect subparacompact) space and {X,, : n € w}
is a countable collection of paracompact (Lindelof, subparacompact) C-scattered
spaces, then the product Y x [[, o, Xn is paracompact (Lindelf, subparacom-
pact) and (2) if { X, : n € w} is a countable collection of metacompact C-scattered
spaces, then the product [, . X» is metacompact.

On the other hand, Hohti and Ziqgiu [HZ] introduced the notion of Cech-
scattered spaces, which is a generalization of C-scattered spaces and studied
paracompactness of countable products. Furthermore Aoki, Mori and the sec-
ond author [AMT] proved that if Y is a perfect paracompact (hereditarily Lin-
delof) space and { X, : n € w} is a countable collection of paracompact (Lindelof)
Cech-scattered spaces, then the product Y x [, Xn is paracompact (Lindelof).

It seems to be natural to consider subparacompactness and metacompactness
of countable products of Cech-scattered spaces. In this paper, the following will
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be shown: (1) If YV is a perfect subparacompact space and {X, : n € w} is a
countable collection of subparacompact Cech-scattered spaces, then the product
Y x]],ew Xn is subparacompact and (2) If { X, : n € w} is a countable collection
of metacompact Cech-scattered spaces, then the product 11 Xy, is metacom-
pact.

All spaces are assumed to be Tychonoff spaces. Let w denote the set of natural
numbers. Let |A| denote the cardinality of a set A. Undefined terminology can
be found in Engelking [E].

new

2. Preliminaries

A space X is said to be scattered if every nonempty (closed) subset A has an
isolated point in A and X is said to be C-scattered if for every nonempty closed
subset A of X, there is a point z € A which has a compact neighborhood in A.
Then scattered spaces and locally compact spaces are C-scattered. A space X is
said to be Cech-scattered if for every nonempty closed subset A of X, there is a
point z € A which has a Cech-complete neighborhood in A. Thus locally Cech-
complete spaces and C-scattered spaces are Cech-scattered. It is well known that
the space of irrationals P = w* is not C-scattered. However, it is Cech-complete
and hence, Cech-scattered.

Let X be a space. For a closed subset A of X, let

A* ={x € A:x has no Cech-complete neighborhood in A}.

Let A0 = A, Alet]) — (A(a))* and A(®) = Np<a AW) for a limit ordinal .
Note that every A@) s a closed subset of X and X is Cech-scattered if and only
if X(@ = ¢ for some ordinal .

Let X be a Cech-scattered space and Y C X. If Y is open or closed in X,
then Y is also Cech-scattered. Furthermore, if Y is an open subset of X, then
Y@ =y N X for each ordinal a. However, if Y is a closed subset of X, then
Y@ ¢ Y N X for each ordinal . So we consider a-th derivatives with respect
to X. A subset A of X is said to be topped if there is an ordinal a(A) such
that A N X (@A) ig nonempty Cech-complete subset and A N X (@(A)+1) — g,
Let Top(4) = AN X (@A), For each z € X, there is a unique ordinal o such
that z € X(@ — xX(@+1) which is denoted by rank(z) = «. Then there is a
neighborhood base B; of = in X, consisting of open subsets of X, such that for
each B € By, B is topped in X and a(B) = rank(x).

It is clear that if X and Y are Cech-scattered spaces, then the product X x Y
is Cech-scattered.

Lemma 1 (Engelking [E]). A space X is Cech-complete if and only if there is a
sequence (Ay) of open covers of X satisfying that if F is a collection of closed
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subsets of X, with the finite intersection property, such that for eachn € w, there
are F,, € F and Ay, € A, with F,, C Ay, then the intersection (| F is nonempty.

In Lemma 1, the intersection [ F is countably compact. So, if X is subpara-
compact (metacompact), then (| F is compact. The proof of the following lemma
is routine and hence, we omit it.

Lemma 2. (1) If X is a subparacompact Cech-scattered space and Y is a closed
subset of X, then every open cover of Y has a o-locally finite topped, closed
refinement.

(2) If X is a metacompact Cech-scattered space and Y is a closed subset of X,
then for every open cover U of Y, there is a point finite open cover V of Y such
that for each V € V, V is topped and is contained in some member of U.

Reduction. In considering covering properties of countable products of Cech-
scattered spaces, we may consider Y x X“ or X“. Furthermore, we may assume
that X has a single top point a, that is, Top(X) = {a}. For, let {X,, : n € w} be

a countable collection of Cech-scattered spaces. Take an a ¢ Unew Xn and let

Ym:@Xn for each m € w and

new

X =P Ymu{a}.
mew

The topology of X is as follows: every X, is open and closed in X and the
neighborhood base at a is {Upn U {a} : m € w}, where Uy, = @y, Yi for
each m € w. Then X is Cech-scattered and if every X,, is subparacompact
(metacompact), then X is also subparacompact (metacompact) (cf. Alster [A,
Theorem)]). Let Y be a space. Then YV x Hnew n (ITpew Xn) is a closed subset
of Y x Xv (X“) and hence, if Y x X% (X%) is subparacompact (metacompact),
then Y x [] n (IThew Xn) is also subparacompact (metacompact).

Let X be a Cech-scattered space and Y be a space. A subset A of Y x X" is said
to be rectangle if A = A x [L;<,, Ai such that A CY and for each i < n, 4; C X.
A subset A = A x [lico, Ai of Y x X“ is said to be basic open (basic closed) if
A is an open (closed) subset of Y, and there is an n € w such that A; is an open
(closed) subset of X for each i < n and A; = X for each i > n. Let

n(A) =inf{i: A; = X for each j > i}.

Let n € w. If A =[], Ai (I[;e, Ai) is a subset of X™ (X“) such that for
each i <n (i € w), A; is topped, then we denote

Top H TOp H TOp

i<n 1Ew

nEw
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3. Subparacompactness

An open cover U of a space X is said to be well-monotone if U is well-ordered
by inclusion. In order to prove subparacompactness of spaces, the following is
useful: A space X is subparacompact if and only if every well-monotone open
cover has a o-locally finite closed refinement (cf. Yajima [Y2, Lemma 2.4]).

Firstly, we shall consider subparacompactness of countable products. By the
Reduction, it suffices to prove the following.

Theorem 1. If' Y is a perfect subparacompact space and X is a subparacompact
Cech-scattered space with Top(X) = {a}, then the product Y x X% is subpara-
compact.

PROOF: Let U be a well-monotone open cover of Y x X“. Define (R, (A(R);m)) €
Cif R=Rx [1;c. Ri is a basic closed subset of Y x X“ such that for each i € w,
R; is topped and (A(R); ) is a sequence of open (in Top(R;)) covers of Top(R;),
satisfying Lemma 1.

Take an (R, (A(R);m)) € C and R = R x [l;co Ri- Let i < n(R). For
each A € A(R);1, take an open subset A" of R; such that A’ N Top(R;) = A.
Then {A’ : A € A(R); 1} U{R; — Top(R;)} is an open (in R;) cover of R;. By
Lemma 2(1), there is a o-locally finite cover F(R); of R;, consisting of topped,
closed subsets such that F(R); refines {4’ : A € A(R); 1} U{R; — Top(R;)}. In
order to lengthen n(R), take a o-locally finite topped, closed cover F(R),(g) of
X such that there is a proper element I’ € ]—'(R)n(R) with @ € F' and for each
F' e f(R)n(R) - {F}, a ¢ F.

Then F(R) = Hign(R) F(R); is a o-locally finite cover of Hign(R) R;, consist-
ing of closed rectangles such that for I = [];<,(g) £3 € F(R) and i < n(R), F;
is topped. Take an F' = [[;<,,(g) F7 € F(R) with Top(F) N Top(][;<,,(r) Ri) # 0
and hence, for each i < n(R), Top(F;) N Top(R;) # 0. For each i < n(R), since
Top(F;) N Top(R;) = F; N Top(R;) = Top(F;), there is a subset A € A(R); 1
such that Top(F;) C A. Let F = Fx X x --- = [Lico F;. Then F is a basic

closed subset of X% with Top(F) = Top(F) x {a} x ---. For each y € R, let

Fy = {y} x Top(F'). Define the condition (*) as follows: Fj satisfies (*) if there
are basic open set B in Y x X% and U € U such that I}, C B C BCU. Let

n(Fy) = min{n(B) : B is a basic open subset of ¥ x X%
such that Fy C BC BCU for some U € U}.

We say that F satisfies (*) if there is a y € R such that F, satisfies (*).
Let y € R and assume that Fj satisfies (*). Take a basic open set B(F,) =

—_~

B(Fy) x [l;c., B(Fy); in Y x X“ and U(Fy) € U such that
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(1) (a) Fy C B(Fy) C B(Fy) C U(Fy),
(b) n(Fy) = n(B(Fy)).
Define
r(Fy) = max {n(R) + 1,n(F,)} .

Let m € w and W(F), = {y € R : n(Fy) = m}. Since Uicmn W) =

U{B(F,) N R : n(F,) < m}, every W(F)y, is an F,-set in Y. Since Y is a perfect
subparacompact space, there is a collection G(F')y, of closed subsets of Y such
that: for each m € w,

@ @ WE)n = UGE)m,
(b) G(F ), refines {B(Fy) N R : n(Fy) = m},
(¢) G(F)m is o-locally finite in Y.
For each G € G(F)m, take a y(G) € W(F);, such that G C B(/};;(/G)) N R.
Then n(Fy(qg)) = m. Define E(G) as follows:

E@=ax ] (F,-ﬂB(Fy(G))i) x X x - =G x [ B(@)

i<T(Fy(G)) IS

Then E(G) is a basic closed subset of Y x X“ such that for each i € w, E(G);
is topped and G x Top(F) C E(G). By a similar manner as in the proof of
Aoki, Mori and Tanaka [AMT, Theorem 3.1] or Tanaka [T2, Theorem 4.1], we
can obtain the following collection R(G) of basic closed subsets such that:

(3) (a) R(G) is o-locally finite in ¥ x X%,
(b) Gx F—E(G) cUR(G) c Gx F,

for each R’ = G x [[;c,, R} € R(G),

(c) n(R') = r(Fyq)) > n(R),
(d) for each i € w,(R]) < a(R;),
(e) (R, (A(R)im)) € C such that for each i < n(R), if a(R}) = «(R;),
then Top(R}) C Top(F;) and for each m € w, A(R'); , = {ANR,:
A€ A(R)im41}
(£) if n(Fy(g)) < n(R), then there is an i < n(F,(g)) such that
a(R) < a(Ry).
Let £(F) ={E(G) : G € Upmey, G(F)m}; RIF)=U{R(G) : G € Upep G(F)m }-
If F' does not satisfy (*) or Top(F') N Top([[;<,g) Bi) = 0, let E(F) = {0},
R(F) = {R'}, where R’ = R x F' x X x ---. Take a sequence (A(R');,,) such
that (R, (A(R');m)) € C as (3)(e). Let

=|J{e(F): F e F(R)} and R(R) =|J{R(F): F € F(R)}.
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(4) (a) E(R) is a o-locally finite collection of basic closed subsets of ¥ x X*
such that every element of £(R) is contained in some member of U,
(b) R(R) is a o-locally finite collection of basic closed subsets of Y x X“,

(c) R—UE&(R) CUR(R) C R,
for R = R’ x [[;e,, B} € R(F), F = [Lic(r) Fi € F(R),

(d) n(R') > n(R),

(e) for each i € w, a(R}) < a(Ry),

(f) (R (A(R')Z,m)) € C such that for each i < n(R), if a(R}) = «(R;),
then Top(R}) C Top(F;) and for each m € w, A(R'); m = {ANR,:
A€ A(R)im41}

(g) if R = G x [[;¢, R} for some G € G(F)m, m € w and n(Fyq)) <
n(R), then there is an i < n(Fy(q)) such that o(R}) < a(R;).

Let & = {0}, Ro =Y x X* and Rg = {Ro}. Put A;,,, = {{a}} fori,m e w
and Y (0) = (). By the above construction, for each n > 1, we obtain collections
En and Ry, of basic closed subsets of Y x X“ and a subset Y'(n) of Y, satisfying
the following:

(5) & = U{E(R) : R € Rp—1} is o-locally finite in Y x X such that every
element of &, is contained in some member of I/,
(6) Rn = U{R(R): R€ Rp_1} is o-locally finite in ¥ x [, . X

for R = R x [Licw Ri € Rn—1, R = R x [licw B € R(F), F = HiSN(R) Fi e

(7) (R, (A(R)im)) €C,

(8) R—UE(R) CUR(R) CR,

(9) n(R) < n(R),

(10) for ¢ € w,a(R/) < a(Ry),

(11) (R, (A(R')im)) € C such that for each i < n(R), if «(R}) = a(R;), then
Top(R;) C Top(F;) and for each m € w, A(R)im = {ANR, : A€
A(R)im+1}s

(
(12) Y(R, F)={y € R : Fy satisfies (*)} for F € F(R) and Y (n) = J{Y(R, F) :
ReRy_1 and F € F(R)},
(13) if y e Y(R, F),F € F(R) and n(Fy) < n(R), then there is an ¢ < n(Fy)
such that a(R}) < a(R;).

Let &€ = U,e., En- We shall show that £ is a o-locally finite basic closed
refinement of U. By (5), it suffices to show that £ is a cover of Y x X“. Assume
that £ does not cover Y x X%. Take a (y, (z¢)) € Y x X% —J&. Then there are
sequences {Rp : n € w}, {Fy : n > 1}, {yn : n > 1} (if possible) such that: for
eachn > 1,

(14) (a‘) (yv( )) € Ry = Rn x Hzgw n,i € R(Fn) and
Fn = HzSn(Rnfl) FTL,Z € '7:( 1)7
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(b) n(Rn—1) < n(Rn),

(c) for each i € w,a(Ry ;) < a(Rp—1),

(d) for each i < n(Ry,;), if a(Ry41,i) = a(Ry,;), then Top(Ry,41,;) C
Top(F},,;) and for each m € w, A(Rp41)im ={ANRy41,: A€
A(Rn)i,m+1}7

(e) if [y, satisfies (*), then n(Fy,) = n(Fp,, ) and furthermore, if
n(Fny) < n(Rp—1), then there is an i < n(F},) such that
a(Rp ;) < a(Rp—1,)-

Let i € w. For each n > 1, by (14)(c), a(Ry;) < a(Rp—14). So, by (14)(b),
there is an n; € w such that i < n(Ry,) and (R, ;) = a(Ry,, ;) for n > n,.
Then by (14)(d), Top(R,+1,;) C Top(F;,;). Then there is a sequence {Ay, : n >
n;} of closed subsets of X such that for each n > n;, A, € A(Rp,)

i,n—n;+1
and Top(F, ;) C Ap. It follows from Lemma 1 that C; = ﬂnzni Top(Ry;) =
(Vi>n; Top(F3,,;) is nonempty and compact. Let C' = {y} x [[;¢,, Ci. Then C is

compact. Since U is a well-monotone open cover of Y x X, there is a U € U
such that C'C U. Then there is a basic open subset B = B x [];c, B; such that

C C B C B C U and n(B) is minimal for this property. Take an m € w such that

(15)  (a) n(B) < n(Bm),

(b) for each i < n(B),n; <m and Top(R,,;) C B;.

Then Fy41, C B and hence, Fiyq1, satisfies (*). Then by (14) and (15),
n(Fmt1y) = n(Fmt1y,, ) < n(B) < n(Rm). 1t follows from (14)(e) that there
is an i < n(Fm41,) such that a(Rpy1,) < (), which is a contradiction.

O

4. Metacompactness

Theorem 2. If X is a metacompact Cech-scattered space with Top(X) = {a},
then the product X% is metacompact.

PROOF: Let U be an open cover of X“, which is closed under finite unions. Define
(B, (A(B);im)) € Cif B =[], Bi is a basic open subset of X* such that for

each i € w, B; is topped and (A(B); ;) is a sequence of open (in Top(B;)) covers
of Top(B;), satisfying Lemma 1.

Take a (B, (A(B)i,m)) € C and let B = [[;c, B;- Let i < n(B). For each
A € A(B);1, take an open subset A’ of B; such that A’ N Top(B;) = A. By
Lemma 2 (2), there is a point finite collection H(B); of open subsets of B; such
that:

(1) (a) H(B); covers B;,
(b) for each element H of H(B);, H is topped,
(c) HLB)Z- = {F_ H € H(B);} refines {A": A € A(B); 1}V
{Bi — Top(B)}.

497



498 S. Higuchi, H. Tanaka

Take a point finite open cover H(B),,(py of X such that:
(2) (a) for each H € H(B)n(B),F is topped,
(b) there is a proper element H € H(B),,(p) with a € H and for each
H' € H(B)ypy —{H}, a ¢ H'.
Then H(B) = [lj<n(p) H(B); is a point finite cover of [[;<,,p) Bi, consisting
of open rectangles, such that for H = Hl<n H; € H(B) and i € w, H; is
topped. Take an H = [[,<,(p) H; € H(B) Wlth Top(H) N Top(m) =

Top(H) N Top([Li<n(m) Bj)#Oandlet H =HxX x- = [[;c, H;. Then
H is a basic open subset of X“ with n(H) = n(B) + 1 such that Top(ﬁ) =
Top(H) x {a} x ---. As before, define the condition (**) as follows: H satisfies

(**) if there are basic open sets By, By in X% with n(B1) = n(Bg) and U € U
such that Top(ﬁ) C By CB] CBy CBy CU. Let

k(H) = min{n(Bj) : By, B are basic open subsets of X“ with n(Bj) = n(Bs)
such that Top(ﬁ) C By C By C By C By C U for some U € U}.

Assume that H satisfies (**). Take basic open sets B1(H) = [[;c., B1(H);,
By(H) = [];e,, B2(H); in X¥ with n(B1(H)) = n(B2(H)) and U(H) € U such
that

(3) (a) Top(H) C By(H) c By(H) C By(H) € B(H) € U(H),

(b) k(H) = n(B1(H)).

Let
r(H) =max{n(B)+1, k(H)}.

Define a basic open subset G(H) as follows:

GH)= [] (HinBy(H);)x X x---=[] G(H)
i<r(H) i€w

For each i € w, G(H); is topped and G(H) is contained in U(H). By (3)(a),
using Bj(H), we can also obtain the following collection B(H) of basic open
subsets of X“ such that:

(4) (a) B(H) is point finite in X,
(b) H-G(H)CUB(H)C H,
for each B' =[], B} € B(H),
(@) n(B) = r(H) > n(B),
(d) for each i € w,(B]) < a(By),
(e) (B',(A(B)im)) € C such that for each i < n(B), if a(B}) = a(B;),
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then Top(?zl-) C Top(H;) and for each m € w, A(B');,m = {AN EZ’ :
Ae A(B)i,m—i-l}v .
(f) if k(H) < n(B), then there is an ¢ < k(H) such that o(B]) < a(B;).
If H does not satisfy (**) or Top(H) NTop(IL;<n(m) B;) =0, let B(H) = {H}.
By Lemma 1 and (4)(a), take a sequence (A(B’); ;) such that (B', (A(B');m)) €
C. Let

G(B) ={G(H) : H € H(B) and H satisfies (**)} and
B(B) = | J{B(H): H € H(B)}.

(5) (a) G(B) is a point finite collection of basic open subsets of X“ such
that for each G € G(B), G is contained in some member of U,
(b) B(B) is a point finite collection of basic open subsets in X%,

(¢) B—-UG(B)cCcUB(B)CB
for B’ = [[;c,, Bl € B(H), H = Hign(B) H; € H(B),

(d) n(B') >n(B), __

(e) for each i € w,a(B]) < a(B;),

(f) (B',(A(B")i,m)) € C such that for each i < n(B), if a(B]) = a(B;),
then Top(B ) C Top(H;) and for each m € w, A(B');m = {AN E;
Ae -A( )Z,WH—l}a

(g) if H satisfies (**) and k(H) < n(B), then there is an i < k(H) such
that a(B!) < a(B;).

Let Go = {0}, Bo = X*, Bgp = {Bo} and A;,, = {{a}} for i,m € w. By the
above construction, for each n > 1, we obtain collections G,, and B,, of basic open
subsets of X“, satisfying the following:

(6) Gn, = U{G(B) : B € By,_1} is point finite in X¥ and for G € Gy, G is
contained in some member of U,

(7) B, =U{B(B): B € B,_1} is point finite in ]

nEw L)

forB:HiEWB'EBN—LB_HiewBZ{EB( ) H= Hz<n H EH( )

(8) (B, (A(B)im)) €C,

(9 B—UG(B) c UB(B) B,

(10) n(B) < n(B),

(11) for i € w,a(B]) < a(By),

(12) (B',(A(B")im)) € C such that for each i < n(B), if a(B’) = (F) then
Top(B]) C Top(H;) and for each m € w, A(B')im = {ANB,: A €
A(B)im+1},

(13) if H satisfies (**) and k(H) < n(B), then there is an i < k(H) such that
a(B!) < a(By).



500

S. Higuchi, H. Tanaka

Let G = UnEw Gn. We shall show that G is a point finite basic open refinement
of U. By (6), every G, is point finite and for each G € G, G is contained in
some member of U. Let (x¢) € X“. Since (x¢) € By = X%, by (6), (7) and
(9), there are finite subcollections G’y C Gy and B’y C Bj such that () €
(UG'1)uUB' ) and (z¢) ¢ (U(G1 —G'1)) U(U(B1 — B'1)). If ord((a¢), B'1) =0
then (x¢) € UG'1 and (2¢) ¢ Us<,,(UGn). Assume that 1 < ord((x),B’1). By
(6), (7) and (9) again, there are finite subcollections G'9 C Go and B’y C Bo
such that (z1) € (UG') U (UB'5) and (z1) ¢ (U(G2 — 0'2)) U (U(Bz — B'2)).
If ord((z¢),B'2) = 0, then (z;) € [JG'2 and (z¢) ¢ Us<,,(UGn). Assume that
this method can be continued infinitely. That is, for each n > 1, there is a
finite subcollection B',, C B, such that (z¢) € |JB's,. Then, by (7) and Kénig’s
lemma [K], there are sequences {By, : n € w}, {Hp, : n > 1} such that: for n > 1,

(14) (a) (w¢) € Bn = [lie, Bnyi € B(Hy) and Hy = Hz‘gn(Bn,l) H, ;€
H(Bn—l)a

(b) n(Br—1) < n(Bn),

(c) for each i € w, (B ;) < a(Bp—1,),

(d) (Bn, (A(Bn)i,m)) € C such that for each i < n(Bp_1), if a(By,;) =
o(Bp_1,i), then Top(B,, ;) C Top(H,, ;) and for each m € w,
A(Bn)z,m = {A N Bn,z Ae A( n—l)z,m—i—l}a

(e) if Hy, satisfies (**) and k(H;,) < n(Bp—_1), then there is an i < k(Hy)
such that a(By, ;) < a(Bp—1,)-

Let i € w. For each n > 1, by (14)(c), a(By,i) < a(Bp—1,). So, by (14)(b),
there is an n; € w such that i < n(Bp,;) and a(B, ;) = a(By, ;) for n > n;. Then
by (14)(d), Top(Bp41,i) C Top(Hn ;) for each n > n;. As before, {Top(m) :
n > n;} is a decreasing sequence of closed subsets of Top(By,), satisfying the
completeness. By Lemma 1, C; = (5,11 Top(B,i) = Ni>n, Top(Hy, ;) is
nonempty and compact. Let C' = [[;c,, C;. Then C is compact. Since U is an
open cover of X« which is closed under finite unions, there is a U € U such
that C C U. Since C' is compact, there are basic open subsets B = HzEw B; and
B’ = [lie,, B! in X¥ with n(B) = n(B') such that C C BC BC B'C B'CU
and n(B) is minimal for this property. Take an m € w such that:

(15)  (a) n(B) < n(Bm),

(b) for each i < n(B),n; <m and Top(By,;) C B;.

Then Hp,41 satisfies (**). Since k(Hp+1) < n(Bm), by (14)(e), there is an

i < k(Hp,41) such that a(By,11,) < a(B,,;), which is a contradiction.

So, our method is finished after finitely many times, that is , n times for some

n > 1. Then (x¢) € UG'n and (z¢) ¢ By and hence, (z¢) ¢ Us>n+1(UGs)-
Thus G is point finite. (I
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A space X is said to be submetacompact (weakly submetacompact) if for ev-
ery open cover U of X, there is a sequence (V) of open refinements (an open
refinement | J,,c., Vn) of U such that for each 2 € X, there is an n € w with
ord(z,Vn) < w (1 < ord(z,Vn) < w). For a collection A of subsets of X and
z € X, let ord(z,4) = [{A € A: z € A}|. It is well known that every
subparacompact (metacompact) space is submetacompact and every countably
compact, weakly submetacompact space is compact (cf. [S]). The second author
([T3], [T4]) proved that if {X, : n € w} is a countable collection of submetacom-
pact C-scattered spaces, then the product [[,,c,, X is submetacompact and if
Y is a hereditarily weakly submetacompact space and {X,, : n € w} is a count-
able collection of weakly submetacompact C-scattered spaces, then the product
Y x [[,ew Xn is weakly submetacompact. So we raise the following problem.

Problem. (1) If {X, : n € w} is a countable collection of submetacompact

Cech-scattered spaces, then is the product [1,.e, Xn submetacompact?

(2) 'Y is a hereditarily weakly submetacompact space and {X,, : n € w} is
a countable collection of weakly submetacompact Cech-scattered spaces, then is
the product Y x [] X, weakly submetacompact?

new
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