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Homomorphic images of R-factorizable groups

M. Tkachenko

Abstract. It is well known that every R-factorizable group is ω-narrow, but not vice
versa. One of the main problems regarding R-factorizable groups is whether this class of
groups is closed under taking continuous homomorphic images or, alternatively, whether
every ω-narrow group is a continuous homomorphic image of an R-factorizable group.
Here we show that the second hypothesis is definitely false. This result follows from the
theorem stating that if a continuous homomorphic image of an R-factorizable group is
a P -group, then the image is also R-factorizable.
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1. Introduction

A topological group G is said to be ω-narrow if it can be covered by countably
many translates of an arbitrary neighbourhood of the identity in G. It is worth
mentioning that ω-narrow groups were introduced by I. Guran in [4] who called
them ω-bounded . Since the latter term has several different meanings in topology,
we change the terminology. The class of ω-narrow groups is stable with respect to
all basic operations — it is closed under taking direct products, subgroups, and
continuous homomorphic images ([4]).

R-factorizable groups constitute a proper subclass of ω-narrow groups. A topo-
logical group G is called R-factorizable ([8], [9]) if for every continuous function
f :G → R, one can find a continuous homomorphism p:G → H onto a second-
countable topological group H and a continuous function h:H → R such that
f = h ◦ p. The class of R-factorizable groups includes all totally bounded groups,
all Lindelöf groups, arbitrary subgroups of σ-compact groups ([9]), and many
others.
Unlike the case of ω-narrow groups, it is not known whether the class of R-

factorizable groups is closed with respect to topological products or taking contin-
uous homomorphic images (but quotients of R-factorizable groups are R-factoriz-
able, by [9, Theorem 3.10]). Our aim here is to consider continuous homomorphic
images of R-factorizable groups that are clearly ω-narrow. If, hypothetically, the
class of R-factorizable groups were not closed with respect to taking continuous
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homomorphic images, it could happen that every ω-narrow group would be a con-
tinuous image of an R-factorizable group. Here we show that it is not the case
by describing ω-narrow groups of weight ℵ1 that cannot be represented in such a
form. This solves in the negative the second part of Problem 3.9 in [9].

Our approach to the problem of finding such counterexamples is based on
the fact that every topological group G naturally acts on the space Cp(G) of
continuous real-valued functions on G endowed with the topology of pointwise
convergence, and this action is separately continuous. We show in Proposition 2.1
that if the group G is R-factorizable, then the orbit Gf of every function f ∈
Cp(G) has a countable network. Then we prove in Theorem 2.2 that a non-
complete P -group of weight ℵ1 cannot be a continuous homomorphic image of an
R-factorizable group by finding a continuous real-valued function on the group
with the orbit of uncountable network weight. A simple construction of an ω-
narrow non-complete P -group of weight ℵ1 is presented in Example 2.3.

Applying more subtle methods, we improve Theorem 2.2 in Section 3 as fol-
lows: If a P -group G is a continuous homomorphic image of an R-factorizable
group, then G is also R-factorizable. A new ingredient there is generating the
topology of a given P -group by two clopen complementary subsets of the group
(see Lemma 3.4).

As a matter of fact, our results rise more questions than resolve them. We
finish the article with a brief discussion of open problems.

1.1 Notation and terminology. Given a subset A of a group G, the minimal
subgroup of G containing A is denoted by 〈A〉, while 〈x〉, for x ∈ G, is the cyclic
subgroup of G generated by x. If the set A does not contain the identity of G
and the intersection 〈x〉 ∩ 〈Ax〉 is trivial for each x ∈ A, where Ax = A \ {x}, the
set A is called independent .

A topological group H is complete if it is complete in the two-sided group
uniformity, i.e., if H is Răıkov complete. We say that H is a P -group if every
Gδ-set in H is open.

The network weight of a space X is the minimal infinite cardinal number κ
such that X has a network of cardinality less than or equal to κ. Given a com-
pletely regular space X , we denote by Cp(X) the family of continuous real-valued
functions on X endowed with the pointwise convergence topology ([1]).

2. Actions of groups. An example

It turns out that the R-factorizable groups as well as their continuous homo-
morphic images have a common property which can be formulated in terms of
a natural action of a topological group G on the space Cp(G). Here are some
preliminary definitions and simple facts.

Let G be a topological group. Then the natural left action of G on the space
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Cp(G) is defined by the formula

(y ∗ f)(x) = f(y−1x),

where x, y ∈ G and f ∈ Cp(G). The function y ∗ f ∈ Cp(G) is usually denoted by
fy and is called the y-shift of f . This action is separately continuous in the sense
that the mapping

α:G× Cp(G)→ Cp(G), α(y, f) = fy,

is separately continuous. Given f ∈ Cp(G), the set

Gf = {y ∗ f : y ∈ G}

is called the orbit of f and is considered as a subspace of Cp(G).

Proposition 2.1. Let π:G → H be a continuous onto homomorphism of topo-
logical groups, where the group G is R-factorizable. Then the orbit Hf of any
element f ∈ Cp(H) under the natural left action of H on Cp(H) has a countable
network.

Proof: Take any f ∈ Cp(H) and let g = f ◦ π. Clearly, g ∈ Cp(G). Since the
groupG is R-factorizable, we can find a continuous homomorphism p:G→ K onto
a second-countable topological group K and a continuous real-valued function h
on K such that g = h ◦ p.

G
π

//

p

��

g

  
A

A

A

A

A

A

A

A

H

f

��

K
h

//
R

Consider the continuous mapping p∗:Cp(K)→ Cp(G) defined by the rule p
∗(ϕ) =

ϕ ◦ p, for each ϕ ∈ Cp(K). We claim that

(1) p∗(Kh) = Gg,

where Kh and Gg are the orbits of h and g in Cp(K) and Cp(G), respectively.
Indeed, it is clear that p∗(h) = g, since g = h ◦ p. Take any element x0 ∈ G

and let gx0 be the x0-shift of g. Put y0 = p(x0) and let hy0 be the y0-shift of h.
For every x ∈ G, we have:

p∗(hy0)(x) = (hy0 ◦ p)(x) = hy0(p(x)) = h(y
−1
0 p(x))

= h(p(x0)
−1p(x)) = h(p(x−10 x)) = g(x−10 x) = gx0(x).

This proves that p∗(hy0) = gx0 and, since hy0 ∈ Kh, equality (1) follows.
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Since the group K is second-countable, it follows that the space Cp(K) has a
countable network [1, Theorem I.1.3] and, by the continuity of p∗,

(2) nw(Gg) ≤ nw(Kh) ≤ nw(Cp(K)) ≤ ω.

Similarly to (1), we also have the equality

(3) π∗(Hf) = Gg,

where π∗:Cp(H) → Cp(G) is defined by π
∗(ψ) = ψ ◦ π, for each ψ ∈ Cp(H).

Since π is continuous, π∗ is a homeomorphic embedding of Cp(H) to Cp(G) (this
follows from [1, Proposition 0.4.6]). Therefore, (2) and (3) together imply that
nw(Hf) = nw(Gg) ≤ ω. This finishes the proof. �

We now prove the following result that will be generalized in Section 3:

Theorem 2.2. LetG be a Boolean P -group of character ℵ1. If G is not complete,
then it cannot be represented as a continuous homomorphic image of an R-factor-
izable topological group.

Proof: According to [8, Proposition 5.3], every R-factorizable group is ω-narrow,
and the class of ω-narrow groups is evidently closed under taking continuous
homomorphic images. Hence, we can assume without loss of generality that G is
ω-narrow. Since the weight and character of ω-narrow topological groups coincide
[11, Proposition 4.1], we have that w(G) = ℵ1. We also note that all non-empty
open sets in G are uncountable — otherwise the ω-narrow P -group G would be
countable and discrete, contradicting the assumption that the character of G is
equal to ℵ1.
Denote by H the Răıkov completion of the group G. Since G is not complete,

the complement H \G is not empty. Let e be the neutral element of H . By virtue
of [11, Lemma 2.1], H is also a P -group of character ℵ1, and H has a decreasing
local base of length ω1 at e consisting of open invariant subgroups. Clearly, each
open subgroup of H is closed. Hence, H has a base of clopen subsets.
Choose an element h∗ ∈ H \G. By recursion of length ω1 one can easily define

a sequence {xα : α < ω1} of points satisfying the following conditions for all
α, β < ω1:

(a) xα ∈ G;
(b) the set {xα : α < ω1} is independent;
(c) the elements x−1α xα+1 converge to h

∗ when α→ ω1;
(d) e and h∗ are the only accumulation points of the set {x−1α xβ : α < β < ω1}
in H .

Since the group G is Boolean, each element x ∈ G satisfies x−1 = x. However,
we keep writing x−1 just to follow notation in the case of an arbitrary group (in
fact, the argument below can easily be adapted to this more general situation).
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It suffices to choose independent elements xα ∈ G, with α < ω1 in such a way
that the transfinite sequence {xα : α is even, α < ω1} converges to e, while
{xα : α is odd, α < ω1} converges to h

∗. To make the set {xα : α < ω1}
independent, one chooses xβ ∈ G \ 〈Xβ〉 at the stage β < ω1 of the construction,
where Xβ = {xα : α < β}. This is possible, since the set 〈Xβ〉 is countable, while
each non-empty open set in G is uncountable.
Once we have defined the set {xα : α < ω1}, it is clear that there exists a

family {Uα : α < ω1} of clopen sets in H satisfying the following conditions for
all α, β < ω1:

(i) 〈h∗〉 ∩ Uα = ∅, for each α < ω1;
(ii) Uα ∩ Uβ = ∅ if α 6= β;
(iii) the sets Uα converge to h

∗ when α→ ω1;
(iv) if α < β and ν < ω1, then x

−1
α xβ ∈ Uν iff β = α+ 1 and ν = α;

(v) the family {G ∩ Uα : α < ω1} is discrete in G.

To choose the sets Uα, notice that by (b) and (c), the set {x−1α xα+1 : α < ω1}
is closed and discrete in G. Since, by (d), all accumulation points of the set
{x−1α xβ : α < β < ω1} in the P -group H lie in 〈h

∗〉, we can separate the elements

x−1α xα+1 by open neighbourhoods Uα in H satisfying (i)–(iv). Notice that the
space G is paracompact, as every regular P -space of weight ℵ1 ([12]). Hence,
one can take smaller neighbourhoods of the elements x−1α xα+1, if necessary, to
fulfill (v).

Let f be a function on G such that f(x) = 1 if x ∈ G ∩ Uα for some α < ω1,
and f(x) = 0 otherwise. By (v), the function f is continuous. It remains to show
that the orbit Gf of f in Cp(G) has uncountable network weight. To this end, it
suffices to verify that the subspace {xνf : ν < ω1} of Gf is not separable. In fact,
we claim that for each α < ω1, the element xαf ∈ Cp(G) in not in the closure of
the set {xνf : ν < α}. In other words, we claim that the subspace {xαf : α < ω1}
of Cp(G) is naturally left-separated .
Indeed, given α < ω1, we put

Oα = {ϕ ∈ Cp(G) : ϕ(xα) < ϕ(xα+1)}.

It follows from (i) that e /∈ Uα, so (xαf)(xα) = f(x−1α xα) = f(e) = 0 and, by
(iv), (xαf)(xα+1) = f(x−1α xα+1) = 1. Hence, Oα is an open neighbourhood of
xαf in Cp(G), for each α < ω1. Similarly, if ν < α, then the definition of f and
(iv) imply that

(xνf)(xα) = f(x
−1
ν xα) ≥ 0 and (xνf)(xα+1) = f(x

−1
ν xα+1) = 0.

Hence, (xνf)(xα+1) ≤ (xνf)(xα), and we conclude that xνf /∈ Oα, for each
ν < α. This proves our claim and implies that G cannot be the image of an
R-factorizable topological group under a continuous homomorphism. �
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Here is a simple example of an ω-narrow P -group G of weight ℵ1 which is
not complete and, therefore, cannot be represented as a continuous homomorphic
image of any R-factorizable group. The weaker fact that the group G is not
R-factorizable can be deduced from [6, Theorem 3.1].

Example 2.3. There exists an ω-narrow topological Abelian group G satisfying
w(G) = |G| = ℵ1 which is not a continuous homomorphic image of any R-factor-
izable topological group.

According to Theorem 2.2, it suffices to find a non-complete ω-narrow P -group
G satisfying the required cardinal restrictions. Let F = Dω1 , where D = {0, 1} is
the discrete group with addition modulo 2. For every x ∈ F , put supp(x) = {α ∈
ω1 : x(α) = 1} and consider the subgroup

H = {x ∈ F : | supp(x)| < ω}

of the group F . The group H is known as the σ-product of ω1 copies of the
group D. For every α < ω1, let

Nα = {x ∈ H : supp(x) ∩ α = ∅}.

Each Nα is a subgroup of H , and a direct verification shows that the decreasing
transfinite sequence {Nα : α < ω1} is a base for a Hausdorff topological group
topology at the neutral element of H (known also as the ω-box topology). It
follows from the definition of the topology on H that the intersection of every
countable family open sets in H is open, i.e., H is a P -group. It is easy to see
that w(H) = |H | = ℵ1. In addition, the group H with this topology is Lindelöf
([3]).
We now define a subspace G of H by the formula

G = {x ∈ H : | supp(x)| is even}.

Since the groups D and H are Boolean, G is a subgroup of H . We claim that G
is as required.
It is clear that G is Abelian and satisfies w(G) = |G| = ℵ1. It is also clear that

each Nα has countable index in H , so that the group H is ω-narrow. Therefore,
the subgroup G of H is also ω-narrow. Clearly, G is a P -group. Notice that
G is a proper dense subgroup of H , so that G is not complete. Finally, by
Theorem 2.2, G cannot be the image of an R-factorizable group under a continuous
homomorphism. �

3. General case

Let us now generalize Theorem 2.2 by eliminating the condition of non-comple-
teness of the group G. All we need is to establish the next result that implies the
preservation of R-factorizability under taking continuous homomorphic images
provided the images are P -groups:



Homomorphic images of R-factorizable groups 531

Theorem 3.1. If a P -group G is a continuous homomorphic image of an R-
factorizable topological group, then G itself is R-factorizable.

The proof of Theorem 3.1 requires several auxiliary results. The first of them
is an easy combination of some well-known facts from the Cp-theory.
Given a space Y and a family F of continuous real-valued functions on Y , we

say that F generates the topology of Y if

{f−1(U) : f ∈ F, U is open in R}

is a subbase for the topology of Y .

Lemma 3.2. Let X be a space, F ⊆ Cp(X), and ϕ the diagonal product of the

family F . Then the image Y = ϕ(X) ⊆ R
F satisfies nw(Y ) = nw(F ).

Proof: For every f ∈ F , there exists a continuous real-valued function f̃ on Y
such that f = f̃ ◦ ϕ (in fact, f̃ is the restriction to Y of the projection of R

F

onto the fth factor). Consider the dual mapping ϕ∗:Cp(Y )→ Cp(X) defined by
the rule ϕ∗(h) = h ◦ ϕ, for each h ∈ Cp(Y ). It follows from [1, Proposition 0.4.6]
that ϕ∗ is a homeomorphic embedding of Cp(Y ) into Cp(X). It is also clear that

F = ϕ∗(FY ), where FY = {f̃ : f ∈ F}.
It follows from the definition of FY that this family generates the topology

of Y . Therefore, according to [1, Proposition 0.5.4], the evaluation mapping
ψ:Y → Cp(FY ), where (ψ(y))(h) = h(y) for h ∈ Cp(FY ), is a homeomorphic
embedding of Y into Cp(FY ). Then we apply [1, Theorem I.1.3] to conclude that
nw(Cp(FY )) = nw(FY ), whence it follows that nw(Y ) ≤ nw(Cp(FY )) = nw(FY ).
In addition, since nw(Y ) = nw(Cp(Y )), we have that nw(FY ) ≤ nw(Cp(Y )) =
nw(Y ). It follows that nw(Y ) = nw(FY ) = nw(F ). �

Lemma 3.3. For a P -group G, the following are equivalent:

(a) G is R-factorizable;
(b) G is ω-narrow and every continuous homomorphic imageH of G satisfying

ψ(H) ≤ ℵ1 is Lindelöf;
(c) G is ω-narrow and every continuous homomorphic imageH of G satisfying

w(H) ≤ ℵ1 is Lindelöf;
(d) G is ω-narrow and every continuous homomorphic imageH of G satisfying

w(H) ≤ ℵ1 is Lindelöf provided that H is a P -group.

Proof: The equivalence of (a) and (b) of the lemma follows from [11, Theo-
rem 4.16]. It is also clear that (b) implies (c) and (c) implies (d). Hence, it
suffices to show that (d) ⇒ (b).

Suppose that G satisfies (d), and let p:G→ H be a continuous homomorphism
onto a group H with ψ(H) ≤ ℵ1. We can assume without loss of generality
that H is a P -group. Indeed, let N be the kernel of the homomorphism p, and
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π:G → G/N the canonical open homomorphism onto the quotient group G/N .
Clearly, there exists a continuous isomorphism i:G/N → H satisfying p = i ◦ π.
Then G/N is a P -group according to [11, Lemma 2.1(c)]. Since i is one-to-one
and continuous, we conclude that ψ(G/N) ≤ ψ(H) ≤ ℵ1. Therefore, the Lindelöf
property of H would follow if we knew that G/N is Lindelöf. In the sequel we
assume that H is a P -group.
Let {Uα : α < ω1} be a family of open sets in H such that {e} =

⋂

α<ω1
Uα,

where e is the neutral element of H . The group H is ω-narrow as a continuous
homomorphic image of the ω-narrow groupG, soH has a local base at e consisting
of open invariant subgroups [11, Lemma 2.1(b)]. Therefore, we can easily define
by recursion a decreasing family ξ = {Vα : α < ω1} of open invariant subgroups of
H such that Vα ⊆ Uα, for each α < ω1. Let τ be the topological group topology on
H whose local base at the neutral element e is the family ξ. Then the topological
group K = (H, τ) is a Hausdorff P -group and, by the definition of the topology
τ , we have that χ(K) ≤ ℵ1. Hence, w(K) ≤ ℵ1 ([10, Proposition 4.1]). It
is also clear that the identity isomorphism i:H → K is continuous. Thus, the
composition i ◦ p is a continuous homomorphism of G onto the P -group K of
weight ℵ1, and our assumption about G implies that K is Lindelöf. We claim
that i is a homeomorphism (hence, a topological isomorphism).
Suppose by the way of contradiction that i is not a homeomorphism. Then

there exists an open invariant subgroup U∗ in H such that the image i(U∗) is not
open in K (otherwise i would be an open mapping, hence, a homeomorphism).
Let τ∗ be the topological group topology on H whose local base at e is the family
ξ∗ = {U∗ ∩ Vα : α < ω1}. Again, K

∗ = (H, τ∗) is a Hausdorff P -group of weight
≤ ℵ1 andK

∗ is a continuous homomorphic image of G. Therefore,K∗ is Lindelöf.
It follows from our definition of the topologies τ and τ∗ on K and K∗ that the
identity mapping ϕ:K∗ → K is a continuous isomorphism. It also follows that
the set U∗ is open in K∗, while ϕ(U∗) = i(U∗) is not open in K. However, it
follows from [11, Lemma 2.4] that a continuous onto homomorphism of Lindelöf
P -groups is open, so ϕ must be open as well. This contradiction proves that i is
a topological isomorphism and, therefore, H is Lindelöf. �

Let H be a topological group and F a family of open subsets of H . We say
that the topology of H is generated by F if the family

{xU : U ∈ F , x ∈ H}

is a subbase for the topology of H . A similar (but different) way of generating
topological group topologies was considered in [2]. In a sense, the next lemma
complements the results of [2].

Lemma 3.4. Let H be an ω-narrow P -group of weight ℵ1. If H is not Lindelöf,
then the topology of H is generated by two complementary clopen sets W0 and
W1 = H \W0.
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Proof: It is clear that H , being a regular P -space, is zero-dimensional. Since H
is a P -group of weight ℵ1, it follows from [12] that H is paracompact and strongly
zero-dimensional, i.e., dimH = 0. Therefore, since H is not Lindelöf, we can find
a disjoint open cover γ of H such that no countable subfamily of γ covers H .
Denote by N the family of open invariant subgroups of H . By [11, Lem-

ma 2.1(b)], N is a local base at the neutral element e of H . Since H is a P -group
and χ(H) = w(H) = ℵ1, we can find a family ξ = {Uα : α < ω1} of elements of
N such that ξ is a local base of H at e.
Take an element g ∈ H , g 6= e. We are going to construct by recursion

sequences {xα : α < ω1} and {yα : α < ω1} of elements of H and a sequence
{Nα : α < ω1} ⊆ N satisfying the following conditions for all α, β < ω1:

(1) Nβ ⊆ Nα if α < β;
(2) Nα ⊆ Uα;
(3) xα ∈ gNα;
(4) xα /∈ gNβ if α < β;
(5) 〈Tα〉 ∩Nα = {e}, where Tα = {g} ∪ {xν : ν < α} ∪ {yν : ν ≤ α};
(6) if z ∈ 〈Tα〉 ∩ V for some V ∈ γ, then zNα ⊆ V ;
(7) the set 〈Zα〉 · Nα is covered by a countable subfamily of γ, where Zα =

Tα ∪ {xα};
(8) if α < β and yβ ∈ V for some V ∈ γ, then V ∩ (〈Zα〉 · Nα) = ∅ and, in
particular, yβ /∈ yαNα.

Notice that by (1)–(3), the sequence {xα : α < ω1} will converge to g.
Take an arbitrary element y0 ∈ H \ 〈g〉. Clearly, H0 = 〈g, y0〉 is a countable

subgroup of the P -group H , so we can choose N0 ∈ N such that N0 ⊆ U0,
N0 ∩H0 = {e}, and if z ∈ H0 ∩ V for some V ∈ γ, then zN0 ⊆ V . In particular,
the set H0 ·N0 is covered by a countable subfamily γ0 of γ. Let x0 ∈ gN0 \H0
be arbitrary. Then conditions (1)–(6) and (8) are evidently satisfied at the initial
stage. Condition (7) follows from our choice of N0 and x0. Indeed, since x0 ∈ gN0
and N0 is an invariant subgroup of H , we have that x0N0 = gN0 and

〈Z0〉 ·N0 = 〈g, y0, x0〉 ·N0 = 〈g, y0〉 ·N0 = H0 ·N0 ⊆
⋃

γ0.

Suppose that for some β < ω1 we have defined sequences {xα : α < β},
{yα : α < β}, and {Nα : α < β} satisfying (1)–(8) at each stage less than β. It
follows from (7) that the set

⋃

α<β〈Zα〉 ·Nα is covered by a countable subfamily

λβ of γ. Take an arbitrary element yβ ∈ H \
⋃

λβ and consider the subgroup
Hβ = 〈Tβ〉 of H , where Tβ = {g} ∪ {xα : α < β} ∪ {yα : α ≤ β}. Since H is a
P -group, we can choose Nβ ∈ N such that Nβ ⊆ Uβ ∩

⋂

α<β Nα, Nβ ∩Hβ = {e},
and if h ∈ Hβ ∩ V for some V ∈ γ, then hNβ ⊆ V . It follows that the set
Hβ ·Nβ is covered by a countable subfamily γβ of γ. It remains to choose a point
xβ ∈ gNβ \Hβ . As at the stage zero, we have that

〈Zβ〉 ·Nβ = 〈Tβ ∪ {xβ}〉 ·Nβ = 〈Tβ〉 ·Nβ = Hβ ·Nβ ⊆
⋃

γβ ,
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that is, (7) holds true at the stage β. Conditions (1)–(3) and (5)–(8) are satisfied
because of our choice of yβ , xβ , and Nβ. Let us verify (4). If α < β, then

g, xα ∈ Tβ, whence g
−1xα ∈ 〈Tβ〉 = Hβ . Since xα 6= g and Nβ ∩Hβ = {e}, the

element g−1xα is not in Nβ and, hence, xα /∈ gNβ . We have thus finished the
recursive construction.

Let W =
⋃

ν<ω1
yνNν . Conditions (6) and (8) imply that the set W is clopen

in H . We claim that the following equality holds for each β < ω1:

(∗) xβW ∩ gW =
⋃

ν≤β

gyνNν .

Since gW =
⋃

α<ω1
gyαNα, the above equality will follow if we show that

xβyνNν ∩ gyαNα =

{

gyνNν if ν = α ≤ β;

∅ otherwise.

To this end, we consider the following six cases.

Case 1. β ≤ ν < α. Then xβyνNν ∩ gyαNα 6= ∅ iff yα ∈ g−1xβyνNν (note that
by (1), Nα ⊆ Nν). Since g, xβ , yν ∈ Zν , the latter implies that yα ∈ 〈Zν〉 · Nν ,
thus contradicting (8).

Case 2. ν < α and ν < β. Then xβNν = gNν by (1) and (3), whence it follows

that xβyνNν ∩ gyαNα 6= ∅ iff yα ∈ g−1xβyνNν = g−1(xβNν)yν = g−1gNνyν =
yνNν . This, however, contradicts (8).

Case 3. β < ν = α. Then xβyνNν ∩ gyνNν 6= ∅ iff (xβyν)(gyν)
−1 ∈ Nν iff

xβ ∈ Nνg = gNν . The latter is impossible by (4).

Case 4. ν = α ≤ β. It follows from (1) and (3) that xβ ∈ gNβ ⊆ gNν . Therefore,
xβyνNν = xβNνyν = gNνyν = gyνNν . We conclude that xβyνNν ∩ gyνNν =
gyνNν .

Case 5. β ≤ α < ν. Then xβyνNν ∩ gyαNα 6= ∅ iff yν ∈ x−1
β
gyαNα. However,

by (8), yν /∈ 〈Zα〉 ·Nα ⊇ x−1
β
gyαNα. It follows that the sets xβyνNν and gyαNα

are disjoint.

Case 6. α < ν and α < β. It follows from (1) and (3) that Nαxβ = xβNα = gNα.

Hence, xβyνNν ∩gyαNα 6= ∅ iff yν ∈ x−1
β
gyαNα = x

−1
β
N−1

α gyα = (gNα)
−1gyα =

Nαyα = yαNα iff yν ∈ yαNα. The latter is impossible by (4).

We have thus proved the equality (∗). To finish the proof of the lemma, it
suffices to show that for each α < ω1, the group Nα+1 can be obtained from the
clopen setsW0 =W andW1 = H \W by means of finitely many translations and
intersections. Indeed, it follows from (∗) that

(xα+1W ∩ gW ) \ xαW = (xα+1W ∩ gW ) \ (xαW ∩ gW ) = gyα+1Nα+1
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or, equivalently,

Nα+1 = y
−1
α+1

(

g−1xα+1W0 ∩W0 ∩ g
−1xαW1

)

.

The lemma is proved. �

Corollary 3.5. Suppose that H is a non-discrete P -group, and let W0 and W1
be clopen complementary subsets of H that generate the topology of H . If a
function f :H → {0, 1} is defined by f(x) = i if x ∈ Wi, where i = 0, 1, then the
orbit Hf in Cp(H) has uncountable network weight.

Proof: Evidently, f is continuous. For an element a ∈ H , let fa be the a-shift
of f , that is, the function on H defined by fa(x) = f(a−1x), where x ∈ H . It
is clear that f−1a (0) = aW0 and f

−1
a (1) = aW1. Therefore, the topology on H

generated by the functions from the orbit Hf coincides with the topology on H
generated by the sets W0 and W1 which is in its turn the original topology of
H . In other words, the family Hf ⊆ Cp(H) generates the topology of H and,
by Lemma 3.2, nw(Hf) = nw(H). Obviously, every non-discrete P -group has
uncountable cellularity, so ω < c(H) ≤ nw(H) = nw(Hf), as claimed. �

Proof of Theorem 3.1: Suppose that the group G is a continuous homo-
morphic image of an R-factorizable group. Then G is evidently ω-narrow and,
according to Lemma 3.3, it suffices to verify that every continuous homomorphic
image H of G satisfying w(H) ≤ ℵ1 is Lindelöf provided H is a P -group. Again,
H is ω-narrow. Suppose that H is not Lindelöf. Then, by Lemma 3.4, there exist
complementary clopen sets W0 and W1 in H generating the topology of H . Let
f be a function on H defined by f(x) = i if x ∈ Wi, for i = 0, 1. Then f is
continuous and Corollary 3.5 implies that the orbit Hf ⊆ Cp(H) has uncount-
able network weight. According to Proposition 2.1 this means that H cannot be
a continuous homomorphic image of an R-factorizable group, which contradicts
our choice of H . �

Curiously, Theorem 3.1 implies a corollary that seems to be more general than
the theorem itself. Notice that the group G below need not be a P -group.

Corollary 3.6. Suppose that the direct product G =
∏

i∈I Gi of P -groups is
a continuous homomorphic image of an R-factorizable group. Then G is also
R-factorizable.

Proof: Suppose that p:K → G is a continuous homomorphism of an R-factor-
izable group K onto G. Taking compositions of p with projections of G onto
the factors, we conclude that each Gi is a continuous homomorphic image of the
group K. Since each Gi is a P -group, it follows from Theorem 3.1 that Gi is R-
factorizable. It remains to refer to Theorem 5.5 of [11] according to which direct
products of R-factorizable P -groups are R-factorizable. �
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It is unknown whether the class of R-factorizable groups is productive [9, Prob-
lem 4.1]. If there exists a counterexample, then one of the factors must fail to be
a P -group, by [11, Theorem 5.5].

4. Open problems

According to [9, Theorem 3.10], every quotient group of an R-factorizable group
is R-factorizable as well. Continuous homomorphic images of R-factorizable P -
groups are again R-factorizable [11, Corollary 5.9]. Further, by Theorem 3.1, a
continuous homomorphic image of an R-factorizable group remains R-factorizable
provided that the image is a P -group. The problem arises when the corresponding
homomorphism is not open or the image is not a P -group (see [9, Problem 3.9]):

Problem 4.1. Let p:G→ H be a continuous onto homomorphism of topological
groups, where the group G is R-factorizable. Is the group H R-factorizable?

It is known that a P -group G is R-factorizable iff it is pseudo-ω1-compact , that
is, every locally finite family of open sets in G is countable [11, Theorem 4.16].
We do not know whether a similar results holds in general, for all R-factorizable
groups:

Problem 4.2. Is every R-factorizable group pseudo-ω1-compact?

Continuous homomorphisms do not preserve completeness in topological
groups. In fact, every topological Abelian group is a quotient of a complete
topological Abelian group ([7]). Theorem 2.2 suggests therefore the following
alternative approach to the proof of Theorem 3.1:

Problem 4.3. Let G be an ω-narrow P -group (of weight ℵ1), and suppose that
G is not Lindelöf. Does there exist a continuous homomorphism p:G → H onto
a P -group H that fails to be complete?

The condition in the above problem that G is not Lindelöf is easy to explain.
First, every Lindelöf P -group is complete (see the last part of Section 3 in [5]).
Therefore, every continuous homomorphic image H of a Lindelöf P -group is com-
plete provided H is a P -group. Second, every Lindelöf topological group is R-
factorizable ([11, Theorem 5.5]).
Although it is not important for the problems regarding R-factorizability, one

can try to improve Lemma 3.4 as follows:

Problem 4.4. Let H be an ω-narrow P -group of weight ℵ1. If H is not Lindelöf,
does H contain a single clopen subset that generates the topology of H?

It is easy to see that the topology of a non-discrete Lindelöf P -group cannot
be generated by a countable family of clopen sets.
One possibility to generalize Theorem 3.1 is to consider continuous images of

R-factorizable groups:
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Problem 4.5. Let f :G→ H be a continuous mapping (not necessarily a homo-
morphism) of an R-factorizable group G onto a P -group H . Is H then R-factor-
izable?

Notice that by Lemma 3.3, the affirmative answer to Problem 4.2 would imply
that the answer to Problem 4.5 is also affirmative.
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