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A semifilter approach to selection principles II: τ
∗-covers

Lyubomyr Zdomskyy

Abstract. Developing the idea of assigning to a large cover of a topological space a
corresponding semifilter, we show that every Menger topological space has the propertyS
fin
(O,T∗) provided (u < g), and every space with the property

S
fin
(O,T∗) is Hurewicz

provided (Depth+([ω]ℵ0 ) ≤ b). Combining this with the results proven in cited litera-
ture, we settle all questions whether (it is consistent that) the properties P and Q [do
not] coincide, where P and Q run over

S
fin
(O,Γ),

S
fin
(O,T),

S
fin
(O,T∗),

S
fin
(O,Ω),

and
S
fin
(O,O).
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Introduction

Following [15] we say that a topological space X has the property
⋃
fin(A,B),

where A and B are collections of covers of X , if for every sequence (un)n∈ω ∈ Aω

there exists a sequence (vn)n∈ω , where each vn is a finite subset of un, such that
{
⋃

vn : n ∈ ω} ∈ B. Throughout this paper “cover” means “open cover” and A is
equal to the family O of all open covers ofX . Concerning B, we shall also consider
the collections Γ, T, T⋆, T∗, and Ω of all open γ-, τ -, τ⋆, τ∗-, and ω-covers of X .
For technical reasons we shall use the collection Λ of countable large covers. The
most natural way to define these types of covers uses the Marczewski “dictionary”
map introduced in [13]. Given an indexed family u = {Un : n ∈ ω} of subsets of a
set X and element x ∈ X , we define the Marczewski map µu : X → P(ω) letting
µu(x) = {n ∈ ω : x ∈ Un} (µu(x) is nothing else but Is(x, u) in notations of [23]).
Recall that A ⊂∗ B means that |A \B| < ℵ0. A family A ⊂ P(X) of subsets of a
set X is a refinement of a family B ⊂ P(X), if for every B ∈ B there exists A ∈ A
such that A ⊂ B. Depending on the properties of µu(X) = {µu(x) : x ∈ X} a
family u = {Un : n ∈ ω} is defined to be

• a large cover of X ([15]), if for every x ∈ X the set µu(x) is infinite;
• a γ-cover of X ([9]), if for every x ∈ X the set µu(x) is cofinite in ω, i.e.

ω \ µu(x) is finite;
• a τ-cover of X ([19]), if it is a large cover and the family µu(X) is linearly
preordered by the almost inclusion relation⊂∗ in sense that for all x1, x2 ∈
X either µu(x1) ⊂

∗ µu(x2) or µu(x2) ⊂
∗ µu(x1);
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• a τ∗-cover of X ([19]), if there exists a linearly preordered by ⊂∗ refine-
ment J of µu(X) consisting of infinite subsets of ω;

• an ω-cover ([9]), if the family µu(X) is centered, i.e. for every finite subset
K of X the intersection

⋂
x∈K µu(x) is infinite.

We also introduce a new type of covers situated between τ - and τ∗-covers. A fa-
mily u = {Un : n ∈ ω} is

• a τ⋆-cover of X , if there exists a linearly preordered by ⊂∗ refinement
J ⊂ µu(X) of µu(X) consisting of infinite subsets of ω.

Recall that
⋃
fin(O,Γ) and

⋃
fin(O,O) are nothing else but the well-known Hure-

wicz and Menger covering properties introduced in [10] and [14], respectively, at
the beginning of 20-th century.
Since every γ-cover is a τ -cover, every τ -cover is a τ⋆-cover, every τ⋆-cover is

a τ∗-cover, and every τ∗-cover is an ω-cover, the above properties are related as
follows:

⋃
fin(O,T)
(2)

+3
⋃
fin(O,T⋆)
(3)

+3
⋃
fin(O,T∗)
(4)

+3
⋃
fin(O,Ω)
(5)

��⋃
fin(O,Γ)
(1)

KS

⋃
fin(O,O)
(6)

By a tower we understand a ⊂∗-decreasing transfinite sequence of infinite sub-
sets of ω, i.e. a sequence (Tα)α<λ such that Tα ⊂∗ Tβ for all α ≥ β. The
cardinality λ is called the length of this tower. The subsequent theorem, which
is the main result of this paper, describes when some of the above properties
coincide.

Theorem 1. (1) Under (u < g) the selection principles
⋃
fin(O,T⋆) and⋃

fin(O,O) coincide.
(2) Under Filter Dichotomy the selection principles

⋃
fin(O,T⋆) and⋃

fin(O,Ω) coincide.
(3) The selection principles

⋃
fin(O,Γ) and

⋃
fin(O,T∗) coincide iff each semi-

filter generated by a tower is meager.

The following statement describes some partial cases of Theorem 1(3).

Corollary 1. (1) The selection principles
⋃
fin(O,Γ) and

⋃
fin(O,T∗) coincide

if the inequality Depth+([ω]ℵ0) ≤ b holds.
(2) Under (b < d) (resp. (t = d)) there exists a set of reals with the property⋃

fin(O,T∗) which fails to satisfy
⋃
fin(O,Γ) (resp.

⋃
fin(O,T)).
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Theorem 1 gives a partial answer to Problem 5.2 from [3]. Namely, it implies
the subsequent

Corollary 2. It is consistent that the property
⋃
fin(O,T) is closed under unions

of families of subspaces of the Baire space of size < b.

Proof: Follows immediately from Theorem 1(3) and the fact that the property⋃
fin(O,Γ) is preserved by unions of less than b subspaces of the Baire space,
see [11]. �

We refer the reader to [22] for definitions of all small cardinals and related
notions we use. All notions concerning semifilters may be found in [1] and will be
defined in the next section. The condition (u < g) is known to be consistent: u =
b = s < g = d in Miller’s model and the inequality (u < g) implies u = b < g = d,
see [4] and [22]. Moreover, (u < g) is equivalent to the assertion that all upward-
closed neither meager nor comeager families of infinite subsets of ω are “similar”,
see [12], [4, 9.22], [1, 7.6.4, 12.2.4], or Theorem 3. This assertion together with the
Talagrand’s [18] characterization of meager and comeager upward-closed families
is the so-called trichotomy for upward-closed families or Semifilter Trichotomy in
terms of [1]. The Filter Dichotomy follows from the Semifilter Trichotomy and is
formally stronger than the NCF principle introduced by A. Blass, see [4, § 9] and
the references there in.

Depth+([ω]ℵ0) denotes the smallest cardinality κ such that there is no tower

of length κ. Thus t < Depth+([ω]ℵ0). A model with b ≥ Depth+([ω]ℵ0) was con-
structed in [6]. Some other applications of Depth+([ω]ℵ0) in Selection Principles
may be found in [16].

Theorem 1 with results proven in [11], [19], [21], and [23], enable us to set-
tle almost all questions whether (it is consistent that) the properties P and Q
[do not] coincide, where P and Q run over

⋃
fin(O,O),

⋃
fin(O,Ω),

⋃
fin(O,T∗),⋃

fin(O,T⋆),
⋃
fin(O,T), and

⋃
fin(O,Γ). (In fact, we settle all of the questions

omitting
⋃
fin(O,T⋆).) Some sufficient conditions for P = Q and P 6= Q are

summarized in Table 1. Each entry ((i), (j)), i 6= j, contains:

• A condition which implies (i) = (j) (resp. (i) 6= (j)) provided i < j (resp.
i > j) or “?” if no such condition is known;

• ZFC, if (i) 6= (j) in ZFC and i > j;
• −, if (i) 6= (j) in ZFC and i < j;

and a reference to where this is proven. For example, “[x]+[y], [z]” means that the
sufficiency of the corresponding condition was proven in [z], and it can be simply
derived by combining results of [x] and [y]. Throughout the table, λ stands for

Depth+([ω]ℵ0).
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Table 1

(1) (2) (3) (4) (5) (6)

(1) (λ ≤ b) (λ ≤ b) (λ ≤ b) – –

Cor. 1 Cor. 1 Cor. 1 [2], [5], [21] [2],[5],[21]

(2) (b < s) (λ ≤ b) (λ ≤ b) – –

[19]+[16] Cor. 1 Cor. 1 [21] [21]

(3) (b < s) ∨ (u < g) (u < g) (λ ≤ b) Filter Dich. (u < g)

[19]+[16],[21]+Th. 1 [21]+Th. 1 Cor. 1 Th. 1 Th. 1

(4) (t = d) ∨ (b < d) (t = d) ∨ (u < g) ? Filter Dich. (u < g)

Cor. 1 Cor. 1, [21]+Th. 1 Th. 1 Th. 1

(5) ZFC ZFC (λ ≤ b) (λ ≤ b) (u < g)

[21],[5],[2] [21] [21]+Cor. 1 [21]+Cor. 1 Th. 1,[23]

(6) ZFC ZFC (λ ≤ b) ∨ CH (λ ≤ b) ∨ CH CH

[21],[5],[2] [21] [21]+Cor. 1, [11] [21]+Cor. 1, [11] [11]

Semifilters

Our main tool is the notion of a semifilter. Following [1], a family F of
nonempty subsets of ω is called a semifilter , if for every F ∈ F and A ∗ ⊃ F the
set A belongs to F . For example, each family A of infinite subsets of ω generates
the minimal semifilter ↑ A = {B ⊂ ω : ∃A ∈ A(A ⊂∗ B)} containing A. The
family SF of all semifilters contains the smallest element Fr consisting of all cofi-
nite subsets of ω, and the largest one, [ω]ℵ0 , i.e. the family of all infinite subsets
of ω. Throughout this paper by a filter we understand a semifilter which is closed
under finite intersections of its elements.
Since every semifilter F on ω is a subset of the powerset P(ω), which can be

identified with the Cantor space {0, 1}ω, we can speak about topological properties
of semifilters. Recall that a subset of a topological space ismeager if it is a union of
countably many nowhere dense subsets. The complements of meager subsets are
called comeager . We shall often use the subsequent characterization of meagerness
of semifilters due to Talagrand, see [18] and [1, 5.3.1].

Theorem 2. A semifilter F on ω is meager if and only if there exists an increasing
number sequence (kn)n∈ω such that every F ∈ F meets all but finitely many half-
intervals [kn, kn+1).

A crucial role in the proof of Theorem 1 belongs to the following fundamental
result of C. Laflamme [12]. Following [1], a semifilter F on ω is said to be bi-Baire,
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if it is neither meager nor comeager. Note that there is no comeager filter on ω,
see [1, 5.3.2].

Theorem 3. The following conditions are equivalent:

(1) (u < g);
(2) for any bi-Baire semifilters F and U there exists an increasing number
sequence (kn)n∈ω such that the sets {{n ∈ ω : F ∩ [kn, kn+1) 6= ∅} : F ∈
F} and {{n ∈ ω : U ∩ [kn, kn+1) 6= ∅} : U ∈ U} coincide.

Thus the inequality (u < g) implies the Filter Dichotomy [4, 9.16], which is
the abbreviation of the assertion of Theorem 3(2) for bi-Baire filters:

For arbitrary bi-Baire filters F and U there exists an increasing number se-
quence (kn)n∈ω such that the sets {{n ∈ ω : F ∩ [kn, kn+1) 6= ∅} : F ∈ F} and
{{n ∈ ω : U ∩ [kn, kn+1) 6= ∅} : U ∈ U} coincide.

The main idea of the semifilter approach to selection principles is to assign to
a topological space X the family {↑ µu(X) : u ∈ Λ(X)}. As it was shown in [23],
the property

⋃
fin(O,O) of a space X may be characterized in terms of topological

properties of elements of the above family.

Theorem 4 ([23, Theorem 3]). Let X be a Lindelöf topological space. Then
X has the property

⋃
fin(O,O) if and only if for every u ∈ Λ(X) so does the

semifilter ↑ µu(X).

And finally, we define some properties of semifilters closely related to⋃
fin(O,T∗) and

⋃
fin(O,T⋆). We say that a family B ⊂ F is a base of a semifil-

ter F if F =↑ B. The character χ(F) of a semifilter F equals, by definition, the
smallest size of a base of F .

Definition 6. A filter F on ω is defined to be a simple P -filter , if there exists a
linearly preordered with respect to ⊂∗ base of F .

The subsequent observation explains the importance of simple P -filters in
studying the properties

⋃
fin(O,T∗) and

⋃
fin(O,T⋆).

Observation 1. A family u = {Un : n ∈ ω} of subsets of X is a τ∗- (resp. τ⋆-)
cover of X if and only if µu(X) can be enlarged to (resp. generates) a simple
P -filter.

We shall also use the subsequent characterization of simple P -filters.

Theorem 5 ([1, 3.2.3]). A filter F is a simple P -filter if and only if F has a
base B = (Bα)α<χ(F) such that Bα ⊂∗ Bβ for all β ≤ α < χ(F).

Next, we shall search for conditions when there are nonmeager simple P -filters,
or conditions which imply that all of them are meager.
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Proposition 1. If Depth+([ω]ℵ0) ≤ b, then each simple P -filter is meager.

Proof: Follows easily from Theorem 5, the definition of the cardinal
Depth+([ω]ℵ0), and the fact that each semifilter with character < b is meager,
see [1, 8.3.1] or [17]. �

Proposition 2. There exists a nonmeager simple P -filter provided b < d or
t = b.

Proof: Follows immediately from [1, 8.3.2, 11.2.3]. �

The following simple characterization of the property
⋃
fin(O,Γ) is of crucial

importance for the proof of Theorem 1(3). Let u be a cover of a set X . A subset
B of X is u-bounded , if B ⊂ ∪v for some finite v ⊂ u.

Proposition 3. A topological space X has the property
⋃
fin(O,Γ) if and only

if for every sequence (un)n∈ω of open covers of X there exists a sequence (vn)n∈ω

such that each vn is a finite subset of un and the semifilter ↑ µ{∪vn:n∈ω}(X) is
meager.

Proof: Only the “if” part needs a proof. Let (un)n∈ω be a sequence of open
covers of X . Without loss of generality, un+1 is a refinement of un for all n ∈ ω.
Let w = {Bn : n ∈ ω} be such that each Bn is un-bounded and ↑ µw(X) is
meager. Then there is an increasing number sequence (kn)n∈ω such that each
element of ↑ µw(X) meets all but finitely many half-intervals [kn, kn+1). Since
un+1 is a refinement of un for all n ∈ ω, the union Cn =

⋃
k∈[kn,kn+1)

Bk is

un-bounded. We claim that {Cn : n ∈ ω} is a γ-cover of X . Indeed, given any
x ∈ X find n0 ∈ ω such that µw(x) ∩ [kn, kn+1) 6= ∅ for all n ≥ n0. The above
means that for every n ≥ n0 we can find kx(n) ∈ [kn, kn+1) with the property
x ∈ Bkx(n), and hence x ∈ Bkx(n) ⊂

⋃
k∈[kn,kn+1)

Bk = Cn for all n ≥ n0. �

In the proof of Theorem 1 we shall use some properties of the eventual dom-
inance relation ≤∗ on ωω defined as follows: x ≤∗ y whenever the set {n ∈ ω :
xn > yn} is finite. A subset A of ωω is said to be

• bounded , if there exists x ∈ ωω such that a ≤∗ x for every a ∈ A;
• dominating, if for every x ∈ ωω there exists a ∈ A such that x ≤∗ a;
• a scale, if there exists an ordinal α and a bijection ϕ : α → A such that

ϕ(β) ≤∗ ϕ(η) for all β < η. In case α = b the set A is said to be a b-scale.

Proof of Theorem 1: Let X be a topological space and (un)n∈ω be a sequence
of open covers of X such that un+1 is a refinement of un for all n ∈ ω.

1. As it was mentioned in the introduction, (u < g) implies (b < d), and
therefore there exists a nonmeager simple P -filter F by Proposition 2. By the
definition of the property

⋃
fin(O,O) there exists a large cover w1 = {Bn : n ∈ ω}

of X such that each Bn is un-bounded, see [15]. Applying Theorem 4 we conclude
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that the semifilter U =↑ µw1(X) has the property
⋃
fin(O,O), and consequently

it is not comeager by [23, Proposition 2]. Two cases are possible.
(a) U Is bi-Baire. Then Theorem 3 supplies us with an increasing sequence

(kn)n∈ω such that G := φ(U) = φ(F), where φ : ω → ω is such that φ−1(n) =
[kn, kn+1) for all n ∈ ω, and φ(A) = {φ(A) : A ∈ A} for any family A of subsets
of ω. Note that G is a simple P -filter being an image of F under φ.
Let Cn =

⋃
k∈[kn,kn+1)

Bk. By our choice of (un)n∈ω , each Cn is un-bounded.

We claim that w2 = {Cn : n ∈ ω} is a τ⋆-cover of X . Indeed, since G = φ(U), U
is generated by µw1(X), and µw2(x) = φ(µw1(x)) for all x ∈ X , we conclude that
G is generated by µw2(X). Now it suffices to apply Observation 1.
(b) ↑ µw1(X) is meager. Then in the same way as in the proof of Proposition 3

we can construct a γ-cover {Cn : n ∈ ω} of X such that each Cn is un-bounded.

2. In this case it suffices to find an ω-cover w1 = {Bn : n ∈ ω} of X such that
each Bn is un-bounded and apply to the filter ↑ µw1(X) the same arguments as
in the proof of the first item.

3. Let us assume that each simple P -filter is meager and X has the property⋃
fin(O,T∗). Then there exists a τ∗-cover w = {Bn : n ∈ ω} of X such that each

Bn is un-bounded. By Observation 1 this implies that the semifilter U =↑ µw(X)
can be enlarged to a simple P -filter F , which is meager by our assumption, and
hence so is U . Applying Proposition 3 we conclude that X has the property⋃
fin(O,Γ).
Next, suppose that there exists a nonmeager simple P -filter F . The rest of the

proof falls naturally into two parts.

(a) (b = d). In this case the assertion follows from [21, 8.10], which supplies us
with a subspace Y of the Baire space with the following properties:

(i) Y does not have the property
⋃
fin(O,T);

(ii) for any sequence (wn)n∈ω of open covers of Y there exists a family w =
{Bn : n ∈ ω} such that each Bn is wn-bounded and ↑ µw(X) ⊂ F .

(b) (b < d). In this case the assertion follows from the subsequent two state-
ments.

(i) There exists a subspace of the Baire space of size b which does not have
the property

⋃
fin(O,Γ).

(ii) (b < d) implies that every subspace Y of the Baire space satisfies⋃
fin(O,T∗) provided |Y | ≤ b.

The first of them may be found in [15]. To prove the second one, find a (probably
not bijective) enumeration {yα : α < b} of Y . Recall from [19] that a subset
Z ⊂ ωω has a weak excluded middle property if there exists x ∈ ωω such that the
family {[z ≤ x] : z ∈ Z} can be enlarged to a simple P -filter, where for a relation
R on ω [z : R : x] = {n ∈ ω : z(n) : R : x(n)}.
Let f : Y → ωω be continuous. By transfinite induction over b construct a

b-scale B = {bα : α < b} such that f(yα), bβ ≤∗ bα for all β ≤ α < b. Since b < d,



546 L. Zdomskyy

B is not dominating, which means that there exists c ∈ ωω such that c ≤∗ bα

for no α < b, and hence [bα < c] is infinite for all α. Observe that for arbitrary
β ≤ α < b the equation bβ ≤∗ bα implies [bα < c] ⊂∗ [bβ < c], and therefore
T = ([bα < c])α<b is a tower. Moreover, [bα < c] ⊂∗ [f(yα) ≤ c], consequently
the family {[f(yα) ≤ c] : α < b} = {[f(y) ≤ c] : y ∈ Y } is a subset of the simple
P -filter generated by T , and hence f(Y ) has a weak excluded middle property.
Applying [19, Theorem 7.8] asserting that a subset Z of the Baire space satisfies⋃
fin(O,T∗) provided for every continuous φ : Z → ωω the image φ(Z) has the
weak excluded middle property, we conclude that Y has the property

⋃
fin(O,T∗).

�

Proof of Corollary 1:

1. Follows immediately from Proposition 1 and Theorem 1(3).

2. Under (b < d) the assertion follows from Proposition 2 and Theorem 1(3).

Under (t = d) it suffices to use the (t = b)–part of Proposition 2 to find a
nonmeager simple P -filter and then apply the same arguments as in the proof of
the (b = d)–part of Theorem 1(3). �
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