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On the Borel-Cantelli Lemma and moments

S. Amghibech

Abstract. We present some extensions of the Borel-Cantelli Lemma in terms of moments.
Our result can be viewed as a new improvement to the Borel-Cantelli Lemma. Our proofs
are based on the expansion of moments of some partial sums by using Stirling numbers.
We also give a comment concerning the results of Petrov V.V., A generalization of the
Borel-Cantelli Lemma, Statist. Probab. Lett. 67 (2004), no. 3, 233–239.
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1. Introduction

The Borel-Cantelli lemmas play the central role in the proofs of many probabi-
lity laws including the law of large numbers and the law of the iterated logarithm.
Let (Ω,F , P) be a probability space, that is a triple consisting of a space Ω, a
σ-algebra F of subsets of Ω, and a probability measure P on (Ω,F). If X is
a nonnegative random variable, the expectation of X , denoted E(X), is

E(X) =

∫

XdP.

Recall that

Theorem 1.1 (Borel-Cantelli Lemmas). Let A1, A2, . . . be an infinite sequence

of events on a probability space (Ω,F , P). Denote the probability of Ak by pk.

(1) If
∑

pk converges, then with probability one only finitely many of the

events Ak occur.

(2) If the events Ak are mutually independent, and if
∑

pk diverges, then

with probability one, infinitely many of the events Ak occur.

Many attempts were made in order to weaken the independence condition
in the second part of the Borel-Cantelli Lemma. This condition means mutual
independence of events.
In 1959, Erdös and Rényi [2] found that the condition of pairwise independence

of events A1, A2, . . . can be replaced by the weaker condition P(Ak ∩ Aj) ≤
P(Ak)P(Aj) for every k and j such that k 6= j.
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In 1962, Rényi [8, Lemma C, p. 391] showed that, if A1, A2, . . . are arbitrary
events fulfilling the conditions

(1.1)

∞
∑

n=1

P(An) =∞

and

(1.2) lim inf
n→∞

∑

1≤i,j≤n P(Ai ∩ Aj)

(
∑n

i=1 P(Ai))
2 = 1,

then P(lim supAn) = 1.
In 1963, Lamperti [4] formulated the following proposition. If A1, A2, . . . is a

sequence of events such that
∑∞

n=1 P(An) =∞ and P(Ak ∩ Aj) ≤ CP(Ak)P(Aj)
for all k, j > N and some constants C and N , then P(lim supAn) > 0.
In 1964, Kochen and Stone [3], see also Spitzer [9, P3, p. 317], proved the

following result. If condition (1.1) is satisfied and if

lim inf
n→∞

∑

1≤i,j≤n P(Ai ∩ Aj)

(
∑n

i=1 P(Ai))
2

≤ C

then P(lim supAn) ≥
1
C .

In 1983, Ortega and Wschebor [5] proved that if conditions (1.1) and

(1.3) lim inf
n→∞

∑

1≤i<j≤n P(Ai ∩ Aj)− P(Ai)P(Aj)

(
∑n

i=1 P(Ai))
2 ≤ 0

are satisfied, then P(lim supAn) = 1. Note that this result can be obtained from
Rényi’s one.
In 2002, Petrov [6] formulated the following result. If A1, A2, . . . is a sequence

of events such that
∑∞

n=1 P(An) = ∞ and P(Ak ∩ Aj) ≤ CP(Ak)P(Aj) for all
k, j > L such that k 6= j and some constants C ≥ 1 and L, then P(lim supAn)

≥ 1
C .
In 2004, Petrov [7] “improved” these results as follows:

Theorem 1.2. Let A1, A2, . . . be a sequence of events satisfying condition (1.1).
Let H be an arbitrary real constant. Put

αH = lim inf

∑

1≤i<j≤n P(Ai ∩ Aj)− HP(Ai)P(Aj)

(
∑n

k=1 P(Ak))
2 .

Then

P(lim supAn) ≥
1

H + 2αH
.
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We show below that

H + 2αH = lim inf

∑

1≤i,j≤n P(Ai ∩ Aj)

(
∑n

k=1 P(Ak))
2 .

In this paper, we present two extensions in terms of moment of order p as
follows:

2. Main result and comments

Theorem 2.1. If A1, A2, . . . is a sequence of events such that
∑∞

n=1 P(An) di-
verges and

(2.1) P

( p
⋂

j=1

Aij

)

≤ C

p
∏

j=1

P(Aij )

for all ip > ip−1 > · · · > i1 > L and some constants C ≥ 1 and L, then

P(lim supAn) ≥
1

C1/(p−1)
.

Let IAn
be the indicator of the event An. We put Sn :=

∑n
k=1 IAk

.

Theorem 2.2. Let A1, A2, . . . be a sequence of events such that
∑∞

n=1 P(An) =
∞. Let p ≥ 2 be an arbitrary integer. Put

α := lim inf
n→∞

∑

1≤i1<i2<···<ip≤n P(
⋂p

j=1Aij )

(E(Sn))p
.

Then we have

P(lim supAn) ≥
1

(p!α)1/(p−1)
.

Theorem 2.3. Let A1, A2, . . . be a sequence of events such that
∑∞

n=1 P(An) =
∞. Let p ≥ 2 be an arbitrary integer. Then we have

lim
n→∞

1

(E(Sn))p

∑

1≤i1<i2<···<ip≤n

p
∏

j=1

P(Aij ) =
1

p!

and

lim
n→∞

1

E(S
p
n)

∑

1≤i1<i2<···<ip≤n

P

( p
⋂

j=1

Aij

)

=
1

p!
.
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Obviously we have E(IAn
) = P(An), thus ESn =

∑n
k=1 P(Ak). By the Cauchy-

Schwarz inequality we get

E(Sn) = E(SnISn
k=1Ak

) ≤ P

( n
⋃

k=1

Ak

)1/2(

E

n
∑

i,j=1

IAi∩Aj

)1/2

for arbitrary events A1, A2, . . . An, and hence

P

( n
⋃

k=1

Ak

)

≥
(E(Sn))

2
∑n

i,j=1 P(Ai ∩ Aj)

which is the Chung Erdös inequality [1]. Which gives

lim sup
(E(Sn))

2
∑n

i,j=1 P(Ai ∩ Aj)
≤ 1.

From this inequality, the fact that the condition (1.1) is satisfied,

E(S2n) =

n
∑

i,j=1

P(Ai ∩ Aj) = E(Sn) + 2
∑

1≤i<j≤n

P(Ai ∩ Aj)

and

2
∑

1≤i<j≤n

P(Ai)P(Aj) = (ESn)
2 −

n
∑

i=1

P(Ai)
2

we get, the conditions (1.2) and (1.3) are equivalent, and

lim
n→∞

1

(E(Sn))2

∑

1≤i<j≤n

P(Ai)P(Aj) =
1

2

which gives

H + 2αH = lim inf

∑

1≤i,j≤n P(Ai ∩ Aj)

(
∑n

k=1 P(Ak))2

because of (if (an) converges and (bn) arbitrary, then lim inf(an + bn) = lim an +
lim inf bn). Thus the result of [7] is the same as those of [9] and [3].

3. Stirling numbers and moments of Sn

In order to obtain an exact expression of E(Sp
n), we need the following notions

on the Stirling numbers which can be found in [10].
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For each positive integer n, let

(t)n := t(t − 1) . . . (t − n+ 1) ∈ Q[t]

be the descending (falling) factorial. Also define (t)0 = 1. Stirling numbers of
first kind , denoted by s(n, k), and Stirling numbers of the second kind , denoted
S(n, k) with n, k ∈ N, are defined to be the coefficients in the expression

(t)n =

n
∑

k=0

s(n, k)tk

and in the expression

tn =

n
∑

k=0

S(n, k)(t)k.

We know also that if c(n, k) denotes the number of permutations π of {1, 2, . . . , n}

with exactly k cycles, then s(n, k) = (−1)n−kc(n, k). And if we denote by P (n, k)
the set of all partitions of an n-set into k nonempty subsets (blocs), then

S(n, k) = |P (n, k)|.

So we just mention that the two groups of numbers have similar properties and
their generating functions are given by

∞
∑

n=k

S(n, k)
zn

n!
=
1

k!
(exp(z)− 1)k

and
∞
∑

n=k

s(n, k)
zn

n!
=
1

k!
[log(1 + z)]k.

We will be mostly concerned with Stirling numbers of the first and second kind
in the following theorem.

Theorem 3.1. Let A1, A2, . . . , An be a sequence of measurable sets, and p be a

positive integer. Then we have

( n
∑

k=1

IAk

)p

=

p
∑

k=0

S(p, k)k!
∑

1≤i1<i2<···<ik≤n

ITk
j=1 Aij

and

p!
∑

1≤i1<i2<···<ip≤n

ITp
j=1Aij

=

p
∑

k=0

s(p, k)

( n
∑

k=1

IAk

)k

.
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Proof: Remark that for all ω ∈ Ω, we have
∑n

k=1 IAk
(ω) = t if and only if

k!
∑

1≤i1<i2<···<ik≤n

ITk
j=1Aij

(ω) = (t)k

which gives the result. �

By taking the expectation, the following corollary is an immediate consequence
of Theorem 3.1.

Corollary 3.2. Let A1, A2, . . . , An be a sequence of events, and p be a positive

integer. Then we have

E

( n
∑

k=1

IAk

)p

=

p
∑

k=0

S(p, k)k!
∑

1≤i1<i2<···<ik≤n

P

( k
⋂

j=1

Aij

)

and

p!
∑

1≤i1<i2<···<ip≤n

P

( p
⋂

j=1

Aij

)

=

p
∑

k=0

s(p, k)E

( n
∑

k=1

IAk

)k

.

4. Proofs of theorems

We shall often need Jensen’s inequality which is as follows. If g is a convex
function and X random variable such that E|g(X)| < ∞ then

g(EX) ≤ E(g(X)).

Recall that Sn =
∑n

k=1 IAk
, and assume the sequence of events A1, A2, . . .

satisfies (1.1).
To prove our Theorems, we need the following lemmas:

Lemma 4.1. We have

P

( n
⋃

k=1

Ak

)(p−1)

≥
(ESn)

p

E(S
p
n)

.

Proof: By using Hölder’s inequality we have

E(Sn) = E(SnISn
k=1Ak

) ≤ P

( n
⋃

k=1

Ak

)(p−1)/p

(E(Sp
n))
1/p

which proves the lemma. �
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Lemma 4.2. Let p > 1 be a real number, and I be an infinite subset of N. If

there exists c ≥ 0 such that E(S
p
n) ≤ c(ESn)

p for all n ∈ I, then

lim
I∋n→∞

E(S
q
n)

(ESn)p
= 0

for all 0 < q < p.

Proof: Let n ∈ I. From Jensen’s inequality it follows that

E(Sq
n) ≤ (E(S

p
n))

q

p .

Because of the assumption of the lemma it follows that

E(Sq
n) ≤ c

q

p (ESn)
q

and hence
E(Sq

n)

(ESn)p
≤ c

q

p (ESn)
q−p

which proves our statement since limESn =∞. �

Lemma 4.3. Let p > 1 be an integer, and I be an infinite subset of N. If there

exists c ≥ 0 such that E(Sp
n) ≤ c(ESn)

p for all n ∈ I, then

lim
I∋n→∞

∑

1≤i1<i2<···<ik≤n P(
⋂k

j=1Aij )

(ESn)p
= 0

for any integer 0 < k < p.

Proof: By using Corollary 3.2, we get

∑

1≤i1<i2<···<ik≤n

P

( k
⋂

j=1

Aij

)

=
1

k!

k
∑

j=0

s(k, j)E

( n
∑

i=1

IAi

)j

.

Hence

1

(ESn)p

∑

1≤i1<i2<···<ik≤n

P

( k
⋂

j=1

Aij

)

=
1

k!

k
∑

j=0

s(k, j)
ES

j
n

(ESn)p

and by applying Lemma 4.2 we get the result. �
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Lemma 4.4. Let m ≥ 1 be an integer, and I be an infinite subset of N. If there

exists c ≥ 0 such that E(S
p
n) ≤ c(ESn)

p for all n ∈ I, then

lim
I∋n→∞

1

(ESn)p

(

∑

1≤i1<i2<···<ip≤n

P

( p
⋂

j=1

Aij

)

−
∑

m≤i1<i2<···<ip≤n

P

( p
⋂

j=1

Aij

))

=0.

Proof: This follows from the fact that

∑

1≤i1<i2<···<ip≤n

P

( p
⋂

j=1

Aij

)

−
∑

m≤i1<i2<···<ip≤n

P

( p
⋂

j=1

Aij

)

≤ m
∑

1≤i1<i2<···<ip−1≤n

P

( p−1
⋂

j=1

Aij

)

and Lemma 4.3. �

Lemma 4.5. For every integer m ≥ 1, we have

lim
n→∞

1

(ESn)p

(

∑

1≤i1<i2<···<ip≤n

p
∏

j=1

P(Aij )−
∑

m≤i1<i2<···<ip≤n

p
∏

j=1

P(Aij )

)

= 0.

Proof: This follows from the fact that

∑

1≤i1<i2<···<ip≤n

p
∏

j=1

P(Aij )−
∑

m≤i1<i2<···<ip≤n

p
∏

j=1

P(Aij )

≤ m
∑

1≤i1<i2<···<ip−1≤n

p−1
∏

j=1

P(Aij ) ≤
m

(p − 1)!
(ESn)

p−1.

�

The main part of the proof of Theorem 2.3 (second part) is the following lemma.

Lemma 4.6. Let a1, a2, . . . , an be positive numbers and p a positive integer.

Then the following inequality

(4.1)

( n
∑

i=1

ai

)p

− p!
∑

1≤i1<i2<···<ip≤n

p
∏

j=1

aij ≤

p
∑

j=2

(

p

j

)( n
∑

i=1

ai

)p−j n
∑

i=1

a
j
i
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holds. In particular if ai ∈ [0, 1] for i = 1, 2, . . . , n, we have

( n
∑

i=1

ai

)p

− p!
∑

1≤i1<i2<···<ip≤n

p
∏

j=1

aij ≤

p
∑

j=2

(

p

j

)( n
∑

i=1

ai

)p+1−j

.

Proof: Remark that the left side of inequality (4.1) is less than or equal to

n
∑

k=1

p
∑

j=2

(

p

j

)

a
j
k

(

− ak +

n
∑

i=1

ai

)p−j

.

Now by the fact that −ak +
∑n

i=1 ai ≤
∑n

i=1 ai we obtain the first inequality.

The second part follows from the first one by using
∑n

i=1 ai ≥
∑n

i=1 a
j
i for

j ≥ 2 and ai ∈ [0, 1]. �

Lemma 4.7. We have

∣

∣

∣

∣

E(Sp
n)− p!

∑

1≤i1<i2<···<ip≤n

P

( p
⋂

j=1

Aij

)∣

∣

∣

∣

≤ (p!− 1) (E(Sp
n))
(p−1)/p

for all n such that E(Sn) ≥ 1.

Proof: First we have s(p, p) = 1. Now, by applying Corollary 3.2, we get

∣

∣

∣

∣

E(Sp
n)− p!

∑

1≤i1<i2<···<ip≤n

P

( p
⋂

j=1

Aij

)
∣

∣

∣

∣

≤

p−1
∑

k=0

|s(p, k)|E(Sk
n)

and, by using Jensen’s inequality, we obtain E(Sk
n) ≤ (ES

p
n)

k/p for all 0 ≤ k ≤ p.

Remark that if ESn ≥ 1 then ES
p
n ≥ 1 and thus

(

ES
p
n
)(p−1)/p

≥ E(Sk
n) for all

0 ≤ k ≤ p − 1. We have also
∑p−1

k=0 |s(p, k)| = p!− 1 which completes the proof.
�

Proof of Theorem 2.3: Remark that E(Sn) ≤ E(S
p
n) for large n, and so the

second part of the theorem follows from Lemma 4.7.
The first part of the theorem follows from Lemma 4.6 by ai = P(Ai) and this

completes the proof of Theorem 2.3. �

Proof of Theorem 2.1: By applying Lemma 4.1, we get

P

( N
⋃

k=m+1

Ak

)(p−1)

≥
(E(SN − Sm))

p

E(SN − Sm)p
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and, by applying Theorem 2.3 we have

(E(SN − Sm))
p ∼N→∞ p!

∑

m+1≤i1<i2<···<ip≤N

p
∏

j=1

P(Aij )

and

E(SN − Sm)
p ∼N→∞ p!

∑

m+1≤i1<i2<···<ip≤N

P

( p
⋂

j=1

Aij

)

.

Combining these with equation (2.1) we obtain

P

( ∞
⋃

k=m+1

Ak

)(p−1)

≥
1

C

which terminates the proof. �

Lemma 4.8. If α < ∞, then there exist an infinite subset I of positive integers

and a constant C such that

ESp
n ≤ C(ESn)

p.

Proof: It follows from the assumption α < ∞ that one can choose an infinite I

of positives integers such that

α = lim
I∋n→∞

∑

1≤i1<i2<···<ip≤n P(
⋂p

j=1Aij )

(E(Sn))p
.

Now by applying Theorem 2.3 we prove the lemma. �

Proof of Theorem 2.2: By applying Lemma 4.1, we get

P

( N
⋃

k=m+1

Ak

)(p−1)

≥
(E(SN − Sm))

p

E(SN − Sm)p
.

By applying Lemma 4.8, then Lemmas 4.3, 4.4 and 4.5 we get

α = lim inf
E(Sp

n)

p!(ESn)p
,

thus

P

( ∞
⋃

k=m+1

Ak

)(p−1)

≥
1

p!α

and the proof of the theorem is complete. �

We complete this article with the following result which can be obtained by
the same method.
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Proposition 4.9. Let A1, A2, . . . be a sequence of events such that
∑

n P(An)
diverges. Let p > 1 be a real number. Then we have

P(lim supAn)
(p−1) ≥ lim sup

(ESn)
p

ES
p
n

.
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