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On large selforthogonal modules

Gabriella D’Este

Dedicated to Claus Michael Ringel on the occasion of his 60 th birthday.

Abstract. We construct non faithful direct summands of tilting (resp. cotilting) modules
large enough to inherit a functorial tilting (resp. cotilting) behaviour.

Keywords: partial tilting and partial cotilting modules, sincere and selforthogonal mo-
dules

Classification: 16E10, 16G70

Introduction

The aim of this note is to describe and explain the presence, in some sense the
omnipresence, of very special large selforthogonal modules. Roughly speaking, the
modules considered in the sequel are quite close to tilting and cotilting modules
from the functorial point of view, but not necessarily faithful. More precisely, they
satisfy a word-for-word generalization of one of the equivalent definitions of tilting
(resp. cotilting) modules of projective (resp. injective) dimension ≤ 1. As in many
definitions of tilting/cotilting objects, local and global conditions seem to be quite
different. First of all, the local properties satisfied by our modules are inherited by
their direct summands. Secondly, the only property of our modules which seems
to be of global type is a functorial Hom−Ext property, concerning the kernels
of certain functors, namely their intersection. However, we may obtain the same
intersection by dealing with the Hom and Ext functors associated to a big faithful
module (for instance an injective cogenerator, or a projective generator) and one
of its sincere summands of the smallest possible “size” (Examples 4 and 7).
This paper is organized as follows. In Section 1 we fix the notation and the

conventions used in the sequel. In Section 2 we collect some lemmas on “super-
fluous” summands with respect to our functorial Hom−Ext property. Finally, in
Section 3, we show that any natural number n ≥ 2 occurs as the projective (resp.
injective) dimension of an injective (resp. projective) A-module M , where A is a
finite dimensional K-algebra, and the following conditions hold:

• M is a sincere and selforthogonal module of minimal dimension over K,
but M is not faithful;
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• the intersection of the kernels of all Hom and Ext covariant (resp. con-
travariant) functors associated to M is equal to 0.

1. Preliminaries

Throughout the paper, given any ring R, we denote by R–Mod the class of
all left R-modules. Next for every M ∈ R–Mod, we denote by AddM (resp.
ProdM) the class of all modules isomorphic to summands of direct sums (resp.
products) of copies of M .

In particular, for every cardinal λ, we denote by M (λ) (resp. Mλ) the direct
sum (resp. product) of λ copies of M . Finally, as in [B1] and [B2], we denote by

M⊥∞ and ⊥∞M the following classes:

M⊥∞ :=
{

X ∈ R–Mod /ExtiR(M, X) = 0 for all i ≥ 1
}

,

⊥∞M :=
{

X ∈ R–Mod /ExtiR(X, M) = 0 for all i ≥ 1
}

.

In the following we say that an R-module T is an n-tilting module if the following
conditions hold:

(T1) the projective dimension of T is at most n;

(T2) ExtiR(T, T (λ)) = 0 for every i ≥ 1 and every cardinal λ;
(T3) there is a long exact sequence of the form:

0→ R → T0 → T1 → · · · → Tn → 0,

where Ti ∈ Add T for every i = 0, 1, . . . , n.

Dually, we say that an R-module C is an n-cotilting module, if the following
conditions hold:

(C1) the injective dimension of C is at most n;

(C2) Exti(Cλ, C) = 0 for every i ≥ 1 and every cardinal λ;
(C3) there is a long exact sequence of the form:

0→ Cn → · · · → C1 → C0 → E → 0,

where E is an injective cogenerator of R–Mod and Ci ∈ ProdC for every
i = 0, 1, . . . , n.

We also say that a module T (resp. C) is a partial n-tilting (resp. n-cotilting)
module, if T (resp. C) satisfies conditions (T1) and (T2) (resp. (C1) and (C2)).
Finally, we denote by (T3′) and (C3′) the following functorial properties of two
modules T and C:

(T3′) KerHom(T,−) ∩ T⊥∞ = 0,

(C3′) KerHom(−, C) ∩ ⊥∞C = 0.
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Keeping the above notation, we recall some Hom−Ext conditions, which are
strong enough to characterize “global” tilting/cotilting objects in the larger worlds
of “local” tilting/cotilting objects.

• A finitely presented module T is a 1-tilting module iff T satisfies conditions
(T1), (T2) and (T3′) [C, Theorem 1] (also see [CbF, Theorem 3.2.1 and
Section 3.1]).

• A module C is a 1-cotilting module iff C satisfies conditions (C1), (C2)
and (C3′) ([AnTT, Proposition 2.3], [CDT1, Theorem 1.7], [CDT2]) and
[CbF, Section 2.5].

• A tilting complex (over a ring R) in the sense of Rickard [Rk] is a right
bounded complex, say T •, of finitely generated projective R-modules,
which satisfies some selforthogonal conditions, involving the i-th translates
T •[i]’s, together with the following global condition (i.e. condition (iii)′ in
[Mi, p. 184]):

For each non-zero right bounded complex X•, of projective
R-modules, there is some i ∈ Z such that
HomKR–Mod(T

•, X•[i]) 6= 0, i.e. some complex morphism
T • → X•[i] is not homotopic to zero.

• A tilting object, say T , in an abelian category A, in the sense of Happel-
Reiten-Smalø [HReS] satisfies several conditions of local type, together
with the following condition:

ExtiA(T, X) = 0 for all i ≥ 0 implies X = 0.

• For every n ≥ 2, every n-tilting (resp. n-cotilting) module satisfies condi-
tion (T3′) (resp. (C3′)) [B1, p. 371].

However, we know from [D1] that a partial 2-tilting (resp. 2-cotilting) mo-
dule satisfying condition (T3′) (resp. (C3′)) is not necessarily a 2-tilting (resp.
2-cotilting) module. As we shall see, the examples constructed in [D1] do not de-
scribe “sporadic” or “pathological” modules. Indeed a similar result holds, by re-
placing 2 with every natural number n > 2. From now on, we shall say, for brevity,
that a module T (resp. C) is a large partial n-tilting (resp. n-cotilting) module,
if T (resp. C) satisfies conditions (T1), (T2), (T3′) (resp. (C1), (C2), (C3′)).
In the following, K always denotes an algebraically closed field, and we always

identify indecomposable modules with their isomorphism classes. In particular,
we often replace indecomposable finite dimensional modules, defined over a K-
algebra A given by a quiver Q, according to [R], by some pictures describing their
composition factors in an obvious way. Over a representation-finite algebra given
by a quiver Q, we often denote by S(x) the simple module corresponding to the
vertex x, and by P (x) and I(x) the projective cover and the injective envelope
of S(x). If there exist only finitely many simple modules, we say that a module
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M of finite length is sincere ([AuReS, p. 317]), if every simple module appears
as a composition factor of M . Next, we say that a module M is selforthogonal
([H2]), if Exti(M, M) = 0 for every i ≥ 1. Finally, if M is a module of finite

length of the form
⊕m

i=1Mdi

i , where di > 0 for every i and M1, . . . , Mm are
indecomposable and pairwise non isomorphic, then we denote m by δ(M). Under
the same hypotheses, we say that M is multiplicity-free ([HR] and [H2]) if di = 1
for every i.
For unexplained representation-theoretic terminology, we refer to [AuReS]

and [R].

2. Proofs

In the next statement we collect some results often used in the sequel.

Lemma 0. Let A be a representation-finite algebra of finite global dimension m.
The following facts hold.

(i) The regular module AA is an n-cotilting module for some n ≤ m.
(ii) The injective cogenerator AD = HomK(AA, K) is an n-tilting module for
some n ≤ m.

(iii) Let M be a module of finite length satisfying either (T3′) or (C3′). Then
M is sincere.

Proof: See [D1, Lemmas 1 and 2]. �

Under suitable hypotheses (for instance, the hypotheses of Lemma 0), every in-
decomposable projective-injective module occurs as a direct summand of every n-
tilting or n-cotilting module for every n. However, an indecomposable projective-
injective module is not necessarily a direct summand of a large partial 2-tilting
(resp. 2-cotilting) module ([D1, Example 3]), defined over a representation-finite
algebra of global dimension 2. More generally, the following lemmas indicate that
condition (T3′) (resp. (C3′)) does not depend on indecomposable projective (resp.
injective) summands with a very special structure.

Lemma 1. Let P be an indecomposable projective module with the following
properties:

(1) socP is a simple and essential submodule of P ;
(2) Hom(P/ socP, P ) 6= 0.

Suppose P/ socP is a summand of a module M , and let L denote the module
M ⊕ P . Then the following conditions are equivalent:

(i) KerHom(M,−) ∩ M⊥∞ = 0;

(ii) KerHom(L,−) ∩ L⊥∞ = 0.

Proof: (i)⇒(ii) This immediately follows from the remark that L⊥∞ = M⊥∞

and KerHom(L,−) ⊆ KerHom(M,−).
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(ii)⇒(i) Let X be a non-zero module such that X ∈ M⊥∞ . We claim that

Hom(M, X) 6= 0. Indeed, since (ii) holds and L⊥∞ = M⊥∞ , there is a non-zero
morphism f : L = M ⊕ P → X . If f(M) 6= 0, then we have Hom(M, X) 6= 0,
as claimed. Next assume f(P ) 6= 0. If Ker f ∩ P = 0, then X has a sub-
module isomorphic to P . Since Hom(P/ socP, P ) 6= 0 by (2), it follows that
Hom(P/ socP, X) 6= 0. If Ker f ∩ P 6= 0, then we deduce from (1) that socP ⊆

Ker f . Thus, also in this case, we have Hom(P/ socP, X) 6= 0. Since P/ socP is
a summand of M , we conclude that Hom(M, X) = 0. Hence (i) holds. �

Note that any uniserial projective module of finite length ≥ 2 with isomorphic
socle and top obviously satisfies conditions (1) and (2) of Lemma 1. Dually, any
uniserial injective module with the same properties satisfies conditions (1) and
(2) of the following lemma.

Lemma 2. Let I be an indecomposable injective module with the following pro-
perties:

(1) I has a unique maximal submodule, say rad I;
(2) Hom(I, rad I) 6= 0.

Suppose rad I is a summand of a module M , and let L denote the module M ⊕ I.
Then the following conditions are equivalent:

(i) KerHom(−, M) ∩ ⊥∞M = 0;

(ii) KerHom(−, L) ∩ ⊥∞L = 0.

Proof: (i)⇒(ii) This is an obvious consequence of the fact that ⊥∞L = ⊥∞M
and KerHom(−, L) ⊆ KerHom(−, M).

(ii)⇒(i) Let X be a non-zero module such that X ∈⊥∞ M . We claim that

Hom(X, M) 6= 0. Indeed, since (ii) holds and ⊥∞L =⊥∞ M , there is a non zero
morphism f : X → L =M ⊕ I. If either f(X) 6= I or f(X) ⊆ rad I then we have
Hom(X, M) 6= 0, as desired. Finally, suppose f(X) = I. This assumption and
(2) imply that Hom(X, rad I) 6= 0. Since rad I is a summand of M , also in this
case we have Hom(X, M) 6= 0, as claimed. �

The proof of Lemmas 1 and 2 suggests the following result.

Theorem 3. Let L andM be modules, and let P (resp. I) be an indecomposable
projective (resp. injective) module. The following facts hold.

(i) Suppose L = M ⊕ P and Hom(M, X) 6= 0 for every module X such that

X ∈ M⊥∞ and Hom(P, X) 6= 0. Then we have KerHom(M,−)∩M⊥∞ =

0 if and only if KerHom(L,−) ∩ L⊥∞ = 0.
(ii) Suppose L = M ⊕ I and Hom(X, M) 6= 0 for every module X such that

X ∈ ⊥∞M and Hom(X, I) 6= 0. Then we have KerHom(−, M)∩⊥∞M =

0 if and only if KerHom(−, L) ∩⊥∞ L = 0.
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Proof: (i) The first part of the proof is similar to the proof of Lemma 1. To end
the proof, we proceed as follows. Let g : P → X be a non-zero morphism with
X ∈ M⊥∞ . Then our assumptions imply that Hom(M, X) 6= 0.
(ii) To see this, we proceed as in the first part of the proof of Lemma 2. To

complete the proof, we continue as follows. Let g : X → I be a non-zero morphism
with X ∈ ⊥∞M . Then our hypotheses guarantee that Hom(X, M) 6= 0. �

In view of condition (2), the modules P in Lemma 1 and I in Lemma 2 admit
non-zero endomorphisms which are not isomorphisms. However this restriction
does not hold for the modules P and I in Theorem 3. Indeed, we shall prove
Example 4 by means of a Nakayama [AuReS] algebra with the following property:

Some indecomposable projective-injective modules U satisfy the hy-
potheses of P or I in Theorem 3, and the endomorphism ring of U is
isomorphic to K.

3. Applications

The proof of the next result makes use of modules with an easy structure.
Indeed, their Loewy length ([AF] or [AuReS]) is equal to two.

Example 4. Let n be a natural number ≥ 2. Then there exist a K-algebra A
and two A-modules T and C with the following properties:

(i) A is a representation-finite algebra of finite global dimension, such that
δ(A) = n+ 1;

(ii) T and C are non faithful modules, such that δ(T ) = δ(C) ≤ (n+3)/2 and
dimK(T ) = dimK(C) ≤ n+ 2;

(iii) T (resp. C) is a large partial n-tilting (resp. n-cotilting) module of pro-
jective (resp. injective) dimension n;

(iv) if M is a multiplicity-free sincere and selforthogonal module of projective
(resp. injective) dimension n, then we have δ(M) ≥ δ(T ) and dimK(M) ≥
dimK(T ).

Construction. Let A denote the K-algebra given by the quiver

•
1

α1 // •
2

α2 // •
3

•
n

αn // •
n+1

with relations αi+1αi = 0 for i = 1, . . . , n − 1. Then condition (i) clearly holds.
Next, let T denote the following injective module:

T =
�

�

n
n+1 ⊕

n−2
n−1 ⊕ · · · ⊕ 2

3 ⊕ 1 if n is even

n
n+1 ⊕

n−1
n

⊕ · · · ⊕ 2
3 ⊕ 1 if n is odd

.
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Finally, let C denote the following projective module:

C = �

�

n+1 ⊕ n−1
n

⊕ · · · ⊕ 3
4 ⊕

1
2 if n is even

n+1 ⊕ n
n+1 ⊕ · · · ⊕ 3

4 ⊕
1
2 if n is odd

.

Then condition (ii) holds, and n is the projective (resp. injective) dimension of T
(resp. C). Moreover, by Lemma 0, T (resp. C) is a partial n-tilting (resp. n-

cotilting) module. The definition of T and C also implies that T⊥∞ (resp. ⊥∞C)
is the class of all injective (resp. projective) modules. Consequently, it is easy

to check (or to deduce from Theorem 3) that KerHom(T,−) ∩ T⊥∞ = 0 and

KerHom(−, C) ∩ ⊥∞C = 0. Hence T (resp. C) is a large partial n-tilting (resp.
n-cotilting) module. This remark completes the proof of (iii).
Let M be as in the hypotheses of (iv). Then M has a decomposition of the

form S ⊕ L, where S is a simple module and L is a projective-injective module.
We also note that 2δ(L) = dimK(L) ≥ n. Thus the following facts hold:

(1) δ(M) = 1 + δ(L) ≥ 1 +
n

2
;

(2) dimK(M) is an odd natural number ≥ n+ 1.

On the other hand, T has the following properties:

(3) δ(T ) ≤
n+ 3

2
and dimK(T ) is the largest odd natural number ≤ n+ 2.

Putting (1), (2) and (3) together, we obtain δ(M) ≥ δ(T ) and dimK(M) ≥

dimK(T ). Hence (iv) holds, and the proof is complete. �

Remark 5. Let A be the algebra constructed in Example 4. If n is even, then
conditions (ii) and (iii) uniquely determine the modules T and C. On the other
hand, if n is odd, then also the following modules T ′ and C′ satisfy conditions (ii)
and (iii):

T ′ = n
n+1 ⊕

n−2
n−1 ⊕ · · · ⊕ 1

2 ⊕ 1 ,

C′ = n+1 ⊕ n−1
n

⊕ · · · ⊕ 2
3 ⊕

1
2 .

Consequently, the indecomposable summands of both T and T ′ (resp. C and C′),

that is the modules
n

n+1 and 1 (resp. n+1 and
1
2
), are also direct summands of any

sincere and selforthogonal module M of projective (resp. injective) dimension n.
Hence T and T ′ (resp. C and C′) are as different as possible. Moreover, T ⊕ T ′

is a cogenerator (resp. C ⊕ C′ is a generator) of A-Mod.

In the next corollary we compare large partial n-tilting modules and maximal
summands of multiplicity free n-tilting modules, that is almost complete tilting
modules (see, for instance, [H1], [Mt], [HU], [CoHU] and [BS]).
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Corollary 6. Any natural number n ≥ 2 is the projective dimension of a mo-
dule M , such that M is a large partial n-tilting module, but M is not an almost

complete tilting module.

Proof: Assume first n ≥ 4. Next, let A and T be as in Example 4. Since n ≥ 4
and condition (ii) holds, we have

δ(A)− δ(T ) ≥ n+ 1−
n+ 3

2
> 1.

This means that T is not an almost complete tilting module. On the other hand,
by Example 4(iii), T is a large partial n-tilting A-module of projective dimension
n. Hence we may choose M = T . To complete the proof, let S and R be the
K-algebras given by the following quivers:

1
•

$$IIIIIIIIII

}}||
||

||
||

2 •

!!B
BB

BB
BB

B
• 3 ,

zzuuuuuuuuuu

•

4

1
•

%%KKKKKKKKKKK

||xx
xx

xx
xx

x

2 •

##GG
GG

GG
GG

G
• 3 ,

xxrrrrrrrrrr

• 4

��
• 5

with relations αiαj = 0 for all arrows αi and αj . Then the R-moduleM = 2 3
4

⊕1

satisfies the hypotheses of the corollary with n = 2 ([D1, Corollary 7]). Finally,

it is easy to check ([D1, Proposition 8]) that the S-module M = 4
5
⊕ 2 3
4

⊕ 1

satisfies the hypotheses of the corollary with n = 3. The proof is complete. �

The next result shows that many large partial m-tilting and m-cotilting mo-
dules (with m ≥ 2 and m even) are indecomposable. As we shall see, they are
actually uniserial modules with a very rigid structure. Indeed, they are bricks
([R, p. 52]), that is their endomorphism ring is isomorphic to K.

Example 7. Let n be a natural number ≥ 2, and let m = 2(n − 1). Then there
exist a K-algebra Λ and two Λ-modules T and C with the following properties:

(i) Λ is a representation-finite algebra of finite global dimension such that
δ(Λ) = n;

(ii) T and C are indecomposable non faithful Λ-modules such that dimK(T ) =
dimK(C) = n;

(iii) T (resp. C) is a large partial m-tilting (resp. m-cotilting) module of pro-
jective (resp. injective) dimension m.
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Construction. Let Λ denote the Nakayama algebra, considered in [M, Exam-
ple 3.2], given by the quiver

•

1

α1 // •
2

•

n−1

αn−1 // •
n

αn

��

with relation αn · · ·α1 = 0. Next, let T and C denote the modules I(1) and P (1)
respectively. Then conditions (i) and (ii) obviously hold. Suppose first n = 2.
Then also condition (iii) holds ([D1, Example 3]). Assume now n > 2. Then the
indecomposable projective modules P (1), P (2), . . . , P (n) are of the form

1
2
...
n

,

2
3
...
1
2

, . . . ,

n − 1
n
...

n − 2
n − 1

,

n
1
2
...

n − 1
n

.

As observed in [M, Example 3.2], there is a long exact sequence (i.e. the sequence
of complements of a projective-injective almost complete tilting module) of the
form

(1) 0→ C = P (1)→ P (n)→ P (n)→ · · · → P (2)→ P (2)→ T = I(1)→ 0.

Since the modules P(2), . . . , P(n) are injective, we deduce from (1) that T (resp. C)
is a partial m-tilting (resp. m-cotilting) module of projective (resp. injective)
dimension m. To complete the proof of (iii), it remains to check that T (resp. C)
satisfies condition (T3′) (resp. (C3′)). To this end, we first note that

(2) A moduleM of finite length belongs to KerHomΛ(T,−) (resp. KerHomΛ(−, C))
if and only if the simple module S(2) (resp. S(n)) is not a composition factor
of M .

Hence the following triangle, contained in the Auslander-Reiten quiver of Λ, de-
scribes the indecomposable modules X such that HomΛ(T, X) = 0.

•

��?
??

?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?

_ _

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

�
�

•

��?
??

?

??����

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

_ _

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?

�
� •

•

??����

•

��?
??

?

?
?

?
?

?
?

_ _

?
?

?
?

?

�
� •

��?
??

?

•

1

??����
?

?

_ _

�
� •

n

•

4

??����
•

3
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By looking at the top of these modules (or by looking at the slices depicted in
the picture), we observe that

(3) If X is an indecomposable module such that HomA(T, X) = 0, then
Ext1A(S(i), X) 6= 0 for some i = 2, . . . , n.

On the other hand, by dimension shifting, we deduce from (1) that

(4) Ext2Λ(T,−) ≃ Ext1Λ(S(2),−), Ext4Λ(T,−) ≃ Ext1Λ(S(3),−), . . .

. . . , ExtmΛ (T,−) ≃ Ext1Λ(S(n),−).

Putting (3) and (4) together, we obtain

(5) KerHomΛ(T,−) ∩ T⊥∞ = 0.

Dually, a triangle of the form

•

��?
??

?

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

_ _

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

?
?

•

��?
??

?

??����
•

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

_ _

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

?
?

•

??����

•

��?
??

? •

��?
??

?

�
�

�
�

�

_ _

�
�

�
�

�
�

?
?

•

??����
•

n − 1

••

n − 2

•

2

??����
•

1

_ _

�
� ?

?

describes the indecomposable modules Y such that HomΛ(Y, C) = 0. In this case,
by looking at the socle of these modules (or by looking at the slices depicted in
the above picture), we note that

(6) If Y is an indecomposable module such that HomΛ(Y, C) = 0, then
Ext1Λ(Y, S(i)) 6= 0 for some i = 2, . . . , n.

Finally, we deduce from (1) that

(7) Ext2Λ(−, C) ≃ Ext1Λ(−, S(n)), Ext4Λ(−, C) ≃ Ext1Λ(−, S(n − 1)), . . .

. . . , ExtmΛ (−, C) ≃ Ext1Λ(−, S(2)).

Comparing (6) and (7), we obtain

(8) KerHomΛ(−, C) ∩ ⊥∞C = 0.

By the previous remarks, (5) and (8) complete the proof of condition (iii). �
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The big gap between n-tilting modules and large partial n-tilting modules (with
n ≥ 2) also appears by comparing tilting complexes in the sense of Rickard [Rk]
and bounded complexes (of finitely generated projective modules) obtained as
projective resolutions of large partial n-tilting modules. For instance, all the
modules T , used in Example 4, correspond to complexes T • which behave quite
differently form Rickard’s tilting complexes, also in the world of complexes (of
finitely generated modules) bounded on both sides ([D2]).

References

[AF] Anderson F.W., Fuller K.R., Rings and categories of modules, Graduate Texts in
Math. 13, Springer, New York, 1992.
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