
Comment.Math.Univ.Carolin. 47,4 (2006)695–705 695

Representation of bilinear forms in

non-Archimedean Hilbert space by linear operators
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This paper is dedicated to the memory of Tosio Kato.

Abstract. The paper considers representing symmetric, non-degenerate, bilinear forms
on some non-Archimedean Hilbert spaces by linear operators. Namely, upon making
some assumptions it will be shown that if φ is a symmetric, non-degenerate bilinear form
on a non-Archimedean Hilbert space, then φ is representable by a unique self-adjoint
(possibly unbounded) operator A.
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1. Introduction

Representing bounded or unbounded, symmetric, bilinear forms by linear op-
erators is among the most attractive topics in representation theory due to its
significance and its possible applications. Applications include those arising in
quantum mechanics through the study of the form sum associated with the Hamil-
tonians, mathematical physics, symplectic geometry, variational methods through
the study of weak solutions to some partial differential equations, and many oth-
ers, see, e.g., [3], [7], [10], [11]. This paper considers representing symmetric, non-
degenerate, bilinear forms defined over the so-called non-Archimedean Hilbert
spaces Eω by linear operators as it had been done for closed, positive, symmetric,
bilinear forms in the classical setting, see, e.g., Kato [11, Chapter VI, Theo-
rem 2.23, p. 331]. Namely, upon making some assumptions it will be shown that
if φ : D(φ) × D(φ) ⊂ Eω × Eω 7→ K (K being the ground field) is a symmetric,
non-degenerate, bilinear form, then there exists a unique self-adjoint (possibly
unbounded) operator A such that

(1.1) φ(u, v) = 〈Au, v〉, ∀u ∈ D(A), v ∈ D(φ)

where D(A) and D(φ) denote the domains of A and φ, respectively.
Note that a bilinear form φ on Eω × Eω satisfying (1.1) will be called repre-

sentable.
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Among other things, when the bilinear form φ is bounded, it will be shown that
the norm of φ coincides with that of both A and its adjoint A∗. In contrast with
the classical setting, we give a direct proof of the existence of those self-adjoint
operators rather than using a non-Archimedean Riesz representation theorem that
the author is unaware of. Moreover, because of non-positiveness in the non-
Archimedean world, we do not require that the form φ be “positive”, as it had
been required in the classical setting. One should also mention that the closedness
of bilinear forms in the sense of quadratic forms ([6]) will not be required here
although that was an important argument in the proof of both the first and second
representation theorems in the classical setting, see [11].
To deal with the above-mentioned issues we shall make extensive use of the

formalism of unbounded linear operators on non-Archimedean Hilbert spaces Eω

([4], [5]) and that of (un)bounded, symmetric, bilinear forms on Eω ×Eω, recently
introduced and studied in [6]. The general case, that is, representing general
bilinear forms on Eω × Eω, not necessarily symmetric will be left as an open
question.

2. Preliminaries

Let K be a complete non-Archimedean valued field. Classical examples of such
a field include (Qp, | · |), the field of p-adic numbers equipped with the p-adic
absolute value, where p ≥ 2 is a prime, Cp the field of complex p-adic numbers,
and the field of formal Laurent series, see, e.g., [8], [9].
A non-Archimedean Banach space E over K is said to be a free Banach space

([2], [4], [8], [9]) if there exists a family (ei)i∈I (I being an index set) of elements
of E such that each element x ∈ E can be written in a unique fashion as

x =
∑

i∈I

xiei, lim
i∈I

xiei = 0, and ‖x‖ = sup
i∈I

|xi|‖ei‖.

The family (ei)i∈I is then called an orthogonal base for E, and if ‖ei‖ = 1, for
all i ∈ I, the family (ei)i∈I is then called an orthonormal base. From now on, we
suppose that the index set I is N, the set of all natural integers.
For a free Banach space E, let E∗ denote its (topological) dual and B(E) the

Banach algebra of all bounded linear operators on E ([2], [8], [9]). Both E∗ and
B(E) are equipped with their respective natural norms. For (u, v) ∈ E×E∗, define
the linear operator (v ⊗ u) by setting

∀x ∈ E, (v ⊗ u)(x) := v(x)u = 〈v, x〉 u.

Let (ei)i∈N
be an orthogonal base for E. We then define e′i ∈ E∗ by setting

x =
∑

i∈N

xiei, e′i(x) = xi.
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It turns out that
∥

∥e′i

∥

∥ = 1
‖ei‖
. Furthermore, every x′ ∈ E∗ can be expressed as

a pointwise convergent series x′ =
∑

i∈N

〈

x′, ei
〉

e′i, and
∥

∥x′
∥

∥ := supi∈N

|〈x′,ei〉|
‖ei‖

.

Recall that every bounded linear operator A on E can be expressed as
a pointwise convergent series ([8], [9]), that is, there exists an infinite matrix
(aij)(i,j)∈N×N with coefficients in K such that

(2.1) A =
∑

ij

aij(e
′
j ⊗ ei), and for any j ∈ N, lim

i→∞

∣

∣aij

∣

∣ ‖ei‖ = 0.

Moreover, for each j ∈ N, Aej =
∑

i∈N
aijei and its norm is defined by

(2.2) ‖A‖ := sup
i,j

∣

∣aij

∣

∣ ‖ei‖
∥

∥ej

∥

∥

.

In this paper we shall make extensive use of the non-Archimedean Hilbert
space Eω whose definition is given below. Again, for details, see, e.g., [2], [4], [8],
[9], and [2]. Let ω = (ωi)i∈N be a sequence of non-zero elements in a complete
nontrivial non-Archimedean field K. Define the space Eω by

Eω :=

{

u = (ui)i∈N
| ∀ i, ui ∈ K and lim

i→∞
|ui| |ωi|

1/2 = 0

}

.

Clearly, u = (ui)i∈N
∈ Eω if and only if limi→∞ u2i ωi = 0. Actually Eω is a

non-Archimedean Banach space over K with the norm given by

(2.3) u = (ui)i∈N
∈ Eω , ‖u‖ = sup

i∈N

|ui| |ωi|
1/2 .

Clearly, Eω is a free Banach space and it has a canonical orthogonal base.
Namely, (ei)i∈N

, where ei is the sequence all of whose terms are 0 except the

i-th term which is 1, in other words, ei =
(

δij
)

j∈N
, where δij is the usual Kro-

necker symbol. We shall make extensive use of such a canonical orthogonal base

throughout the paper. It should be mentioned that for each i, ‖ei‖ = |ωi|
1/2.

Now if |ωi| = 1 we shall refer to (ei)i∈N
as the canonical orthonormal base.

Let 〈·, ·〉 : Eω × Eω → K be the K-bilinear form defined by

(2.4) ∀u, v ∈ Eω , u = (ui)i∈N
, v = (vi)i∈N

, 〈u, v〉 :=
∑

i∈N

ωi uivi.

Clearly, 〈·, ·〉 is a symmetric, non-degenerate form on Eω ×Eω with value in K,
and it satisfies the Cauchy-Schwarz inequality

|〈u, v〉| ≤ ‖u‖ . ‖v‖,

for all u, v ∈ Eω.
In addition to the above, note that the vectors (ei)i∈N, of the canonical or-

thogonal base satisfy the following:
〈

ei, ej
〉

= ωiδij for all i, j ∈ K.
In the next sections, we shall be studying (general) symmetric, bilinear forms,

which have some common properties as the K-form, 〈·, ·〉, given by (2.4). However,
most of those forms do not necessarily satisfy the Cauchy- Schwarz inequality.
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Definition 2.2 ([4], [8], [9]). The space (Eω , ‖ · ‖, 〈·, ·〉) is called a non-Archime-
dean (or p-adic) Hilbert space.

Remark 2.2. In contrast with the classical context, the norm given in (2.3) is not
deduced from the inner product given in (2.4).

Let ω = (ωi)i∈N, ̟ = (̟i)i∈N be sequences of nonzero elements in a complete
non-Archimedean field K, and let Eω and E̟ denote their corresponding non-
Archimedean Hilbert spaces, respectively. Let (ei)i∈N and (hj)j∈N denote the
canonical orthogonal bases associated with Eω and E̟, respectively.

Definition 2.3 ([4], [5]). An unbounded linear operator A from Eω into E̟ is a
pair (D(A), A) consisting of a subspace D(A) ⊂ Eω (called the domain of A) and
a (possibly not continuous) linear transformation A : D(A) ⊂ Eω 7→ E̟. Namely,
the domain D(A) contains the basis (ei)i∈N and consists of all u = (ui)i∈N ∈ Eω

such Au =
∑

i∈N
uiAei converges in E̟, that is,

(2.5)















D(A) := {u = (ui)i∈N ∈ Eω : lim
i→∞

|ui| ‖Aei‖ = 0},

A =
∑

i,j∈N

aij e′j ⊗ hi, ∀ j ∈ N, lim
i→∞

|ai,j | ‖hi‖ = 0.

Let U(Eω , E̟) denote the collection of those unbounded linear operators from
Eω into E̟. Note that if A is a bounded linear operator from Eω into E̟ then
D(A) = Eω . Without loss of generality, throughout the rest of the paper we
suppose that Eω = E̟. We then denote U(Eω , Eω) by U(Eω).

Definition 2.4 ([4]). A linear operator















D(A) := {u = (ui)i∈N ∈ Eω : lim
i→∞

|ui| ‖Aei‖ = 0},

A =
∑

i,j∈N

aij e′j ⊗ ei, ∀ j ∈ N, lim
i→∞

|aij | ‖ei‖ = 0

is said to have an adjoint A∗ ∈ U(Eω) if and only if

(2.6) lim
j→∞

(

|aij |

|ωj |1/2

)

= 0, ∀ i ∈ N.

In this event the adjoint A∗ of A is uniquely expressed by















D(A∗) := {v = (vi)i∈N ∈ Eω : lim
i→∞

|vi| ‖A
∗ei‖ = 0},

A∗ =
∑

i,j∈N

a∗ij e′j ⊗ ei, ∀ j ∈ N, lim
i→∞

|a∗ij | |ωi|
1

2 = 0,
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where a∗ij = ω−1
i ωjaji.

Let U0(Eω) denote the collection of linear operators in U(Eω) whose adjoint
operators exist.

Remark 2.5. In contrast with the classical setting: (1) There are linear operators
which do not have adjoint operators and, (2) If A ∈ U0(Eω), then A∗∗ = A,
rather Ā, the closure of A.

Throughout the rest of the paper K denotes a complete non-Archimedean field.
If ω = (ωi)i∈N is a sequence of nonzero elements in K, we then let Eω denote its
corresponding non-Archimedean Hilbert space and (ei)i∈N denotes the canonical
orthogonal base for Eω.

3. Non-Archimedean bilinear forms

Definition 3.1. A (symmetric) mapping φ : Eω×Eω 7→ K is said to be a bilinear
form whenever u 7→ φ(u, v) is linear for each v ∈ Eω and v 7→ φ(u, v) linear for
each u ∈ Eω .

One can easily check that if φ : Eω × Eω 7→ K is a well-defined (symmetric)
bilinear form over Eω × Eω, then, for all u = (ui)i∈N, v = (vj)j∈N ∈ Eω ,

(3.1) φ(u, v) =

∞
∑

i,j=0

σij uivj , and ∀ j ∈ N, lim
i→∞

{

|ui| . |σij |
1/2
}

= 0,

where σij = φ(ei, ej) for all i, j ∈ N with σij = σji for all i, j ∈ N.

3.1 Bounded bilinear forms.

Definition 3.2. A non-Archimedean bilinear form φ : Eω × Eω 7→ K is said to
be bounded if there exists M ≥ 0 such that

(3.2) |φ(u, v)| ≤ M . ‖u‖ . ‖v‖, u, v ∈ Eω .

The smallest M such that (3.2) holds is called the norm of the bilinear form φ

and is defined by

‖φ‖ = sup
u,v 6=0

{

|φ(u, v)|

‖u‖ . ‖v‖

}

.

Proposition 3.3. Let φ : Eω × Eω 7→ K be a bounded bilinear form. Then its
norm ‖φ‖ can be explicitly expressed as

‖φ‖ = sup
i,j∈N

{

|φ(ei, ej)|

‖ei‖ . ‖ej‖

}

.
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Proof: The inequality, ‖φ‖ ≥ supi,j∈N

{

|φ(ei,ej)|
‖ei‖ . ‖ej‖

}

, is a straightforward conse-

quence of the definition of the norm ‖φ‖ of φ.
Now using the ultrametric inequality in K it easily follows that for all u =

(ui)i∈N, v = (vj)j∈N ∈ Eω and n, m ∈ N,

∣

∣

∣

∣

∣

n
∑

i=0

m
∑

j=0

φ(ei, ej) uivj

∣

∣

∣

∣

∣

≤ max
0≤i≤n

∣

∣

∣

∣

∣

m
∑

j=0

φ(ei, ej) uivj

∣

∣

∣

∣

∣

≤ max
0≤i≤n

(

max
0≤j≤m

∣

∣φ(ei, ej) uivj

∣

∣

)

≤ sup
i,j∈N

(

|φ(ei, ej)uivj |
)

.

One should point out that supi,j∈N

(

|φ(ei, ej)uivj |
)

< ∞ since φ(ei, ej) uivj → 0
in K as i, j → ∞.
Passing to the limit in the previous inequality, as n, m → ∞, one has

∣

∣

∣

∣

∣

∞
∑

i,j=0

φ(ei, ej) uivj

∣

∣

∣

∣

∣

≤ sup
i,j∈N

(

|φ(ei, ej)| . |ui| . |vj |
)

.

Now suppose u, v 6= 0. In view of the above, one has

|φ(u, v)| =

∣

∣

∣

∣

∣

∞
∑

i,j=0

φ(ei, ej) uivj

∣

∣

∣

∣

∣

≤ sup
i,j∈N

(

|φ(ei, ej)| . |ui| . |vj |
)

= sup
i,j∈N

{

|φ(ei, ej)|(|ui| . ‖ei‖) (|vj | . ‖ej‖)

‖ei‖ . ‖ej‖

}

≤ ‖u‖ . ‖v‖ . sup
i,j∈N

{

|φ(ei, ej)|

‖ei‖ . ‖ej‖

}

,

and hence

‖φ‖ ≤ sup
i,j∈N

{

|φ(ei, ej)|

‖ei‖ . ‖ej‖

}

.

One completes the proof by combining the first and the latest inequalities. �

Theorem 3.4. Let φ : Eω ×Eω 7→ K be a (symmetric) non-degenerate, bounded
bilinear form on Eω × Eω . Suppose that

(3.3) ∀ j ∈ N, lim
i→∞

|φ(ei, ej)|

‖ei‖
= 0.
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Then there exists a unique bounded self-adjoint operatorA with ‖A∗‖ = ‖A‖ =
‖φ‖ and such that

φ(u, v) = 〈Au, v〉

for all u, v ∈ Eω.

Proof: From the expression of φ in (3.1), define (formally) the linear operator
A on Eω by setting

A :=
∑

i,j∈N

[

φ(ei, ej)

ωi

]

(e′j ⊗ ei).

We first show that the operator A given above is well-defined on Eω . Indeed,
for all j ∈ N,

lim
i→∞

∣

∣

∣

∣

φ(ei, ej)

ωi

∣

∣

∣

∣

‖ei‖ = lim
i→∞

|φ(ei, ej)|

‖ei‖
= 0,

by using assumption (3.3).
Moreover, it is not hard to see that φ(u, v) = 〈Au, v〉 for all u, v ∈ Eω . Now,

the uniqueness of A is guaranteed by the fact that φ is non-degenerate. It remains
to show that A∗, the adjoint of A exists and that A∗ = A. Indeed,

lim
j→∞





∣

∣

∣

φ(ei,ej)
ωi

∣

∣

∣

‖ej‖



 =
1

|ωi|
. lim

j→∞

(

|φ(ei, ej)|

‖ej‖

)

=
1

|ωi|
. lim

j→∞

(

|φ(ej , ei)|

‖ej‖

)

= 0, ∀ i ∈ N,

by using assumption (3.3), and hence the adjoint A∗ of A exists.
Now, writing A∗ =

∑

i,j∈N
a∗ij(e

′
j ⊗ ei) it is clear that the coefficients a∗ij of A

∗

can be expressed in terms of those of A as follows:

a∗ij = ω−1
i ωj

[

φ(ej , ei)

ωj

]

=

[

φ(ei, ej)

ωi

]

,

that is A = A∗.
Now

‖A∗‖ = ‖A‖ := sup
i,j





∣

∣

∣

φ(ei,ej)
ωi

∣

∣

∣ ‖ei‖
∥

∥ej

∥

∥



 = sup
i,j∈N

(

|φ(ei, ej)|

‖ei‖ . ‖ej‖

)

= ‖φ‖.

�
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Example 3.5. Let K = Qp equipped with the p-adic absolute value and let

ωi = p−i for each i ∈ N. If m ∈ N with m ≥ 1 (fixed), then set

Q(ωi, ωj) = 1 +
1

ωiωj
+
1

ω2i ω2j
+ · · ·+

1

ωm
i ωm

j

for all i, j ∈ N.

Clearly, ∀ j ∈ N, limi→∞
|Q(ωi,ωj)|

‖ei‖
= 0, since |Q(ωi, ωj)| = 1 and ‖ei‖ = pi/2

for all i ∈ N. For all u = (ui)i∈N, v = (vj)j∈N ∈ Eω, define the (symmetric)
bilinear form φ(u, v) =

∑∞
i,j=0Q(ωi, ωj) uivj . Clearly, φ is well-defined since,

∀ j ∈ N,

lim
i→∞

(

|ui| . |Q(ωi, ωj)|
1/2
)

≤ ‖u‖ . lim
i→∞

(

|Q(ωi, ωj)|

|ωi|

)1/2

= 0.

Moreover φ is non-degenerate, and its norm, ‖φ‖ = 1. Therefore, the only
bounded self-adjoint operator on Eω associated with φ is the one defined by

A =
∑

i,j∈N

[

Q(ωi, ωj)

ωi

]

(e′j ⊗ ei)

with ‖A‖ = ‖φ‖ = 1.

3.2 Unbounded symmetric bilinear forms. In this subsection we prove an
unbounded version of Theorem 3.4. For that, we will make use of the definition
of an unbounded bilinear form that was introduced by the author in [6].

Definition 3.6 ([6]). A (symmetric) mapping φ : D(φ)× D(φ) ⊂ Eω × Eω 7→ K

is called a non-Archimedean (unbounded) bilinear form if u 7→ φ(u, v) is linear
for each v ∈ D(φ) and v 7→ φ(u, v) linear for each u ∈ D(φ), where D(φ) contains
the basis (ei)i∈N and



















D(φ) := {u = (ui)i∈N ∈ Eω : lim
i→∞

(

|ui| |φ(ei, ei)|
1/2
)

= 0},

φ(u, v) =

∞
∑

i,j=0

σij uivj , and ∀ j ∈ N, lim
i→∞

(

|ui| . |σij |
1/2
)

= 0

for all u, v ∈ D(φ), where σij = φ(ei, ej).

The subspace D(φ) ⊂ Eω defined above is called the domain of the bilinear
form φ.
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Theorem 3.7. Let φ : D(φ) × D(φ) 7→ K be an unbounded, symmetric, non-
degenerate, bilinear form such that (3.3) holds. Then there exists a unique un-
bounded linear operator A such that

φ(u, v) = 〈Au, v〉, ∀u ∈ D(A), v ∈ D(φ).

Moreover, the adjoint A∗ exists and A = A∗.

Proof: Although the proof is similar to that of Theorem 3.4, the domains D(φ)
and D(A) should be watched with care.
For all u = (ui)i∈N, v = (vj)j∈N ∈ D(φ), write

φ(u, v) =

∞
∑

i,j=0

φ(ei, ej) uivj , with ∀ j ∈ N, lim
i→∞

(

|ui| . |φ(ei, ej)|
1/2
)

= 0.

Define the linear operator A on Eω by setting















D(A) := {u = (ui)i∈N ∈ Eω : lim
i→∞

|ui| ‖Aei‖ = 0},

Au =
∑

i,j∈N

[

φ(ei, ej)

ωi

]

(e′j ⊗ ei)u, ∀u = (ui)i∈N ∈ D(A).

Clearly, A is well-defined, since, ∀ j ∈ N,

lim
i→∞

∣

∣

∣

∣

φ(ei, ej)

ωi

∣

∣

∣

∣

‖ei‖ = lim
i→∞

|φ(ei, ej)|

‖ei‖
= 0,

by using assumption (3.3). And,

Au =
∑

j∈N

1

ωj

(

∑

i∈N

uiφ(ei, ej)

)

ej , ∀u = (ui)i∈N ∈ D(A).

First of all, note that D(A) ⊂ D(φ). Indeed, if u = (ui)i∈N ∈ D(A), then,
∀ i ∈ N,

|ui|
2 |φ(ei, ei)| = |ui|

2‖ei‖

(

|φ(ei, ei)|

‖ei‖

)

≤ |ui|
2‖ei‖ . ‖Aei‖

= (|ui|‖ei|) . (|ui|‖Aei‖),

and hence limi→∞

(

|ui| . |φ(ei, ei)|
1/2
)

= 0, that is, u ∈ D(φ).
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Now

〈Au, v〉 =
∑

k∈N

ωkvk
1

ωk

(

∑

i∈N

uiφ(ei, ek)

)

=
∑

k∈N

vk

(

∑

i∈N

uiφ(ei, ek)

)

=
∑

i,k∈N

φ(ei, ek)uivk

= φ(u, v)

for all u = (ui)i∈N ∈ D(A) ⊂ D(φ) and v = (vk)k∈N ∈ D(φ).
To justify the above equalities, note that uivkφ(ei, ek) → 0 as i, k → ∞, by

using the fact that (u ∈ D(A) ⊂ D(φ) and v ∈ D(φ)):

|uivkφ(ei, ek)| =
(

|ui||φ(ei, ek)|
1/2
)

.
(

|φ(ek , ei)|
1/2|vk|

)

→ 0, i, k → ∞.

And hence
∑

k∈N

∑

i∈N

uivkφ(ei, ek) =
∑

i∈N

∑

k∈N

uivkφ(ei, ek),

according to a result by Cassels [1].
Furthermore, the uniqueness of A is guaranteed by the fact that φ is non-

degenerate. It remains to show that A∗, the adjoint of A exists and that A∗ = A;
this can be done as in the bounded case.
Now, writing A∗ =

∑

i,j∈N
a∗ij(e

′
j ⊗ ei) it is clear that the coefficients a∗ij of A

∗

can be expressed in terms of that of A as follows:

a∗ij = ω−1
i ωj

[

φ(ej , ei)

ωj

]

=

[

φ(ei, ej)

ωi

]

,

that is A = A∗. �

Example 3.8. We consider a non-Archimedean version of an example considered
by Kato [11, Example 1.24, p. 317] consisting of the bilinear form defined by

φ(u, v) =
∑

i∈N

aiuivi, ∀u = (ui)i∈N, v = (vi)i∈N ∈ D(φ)

where a = (ai)i∈N ⊂ K is a sequence of nonzero elements and D(φ) is defined by

D(φ) = {u = (ui)i∈N ∈ Eω : lim
i→∞

|ai||ui| = 0}.
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Here, φ(ei, ej) = δijai where δij is the classical Kronecker symbol. And an
equivalent of (3.3) is given by

lim
i→∞

|ai|

‖ei‖
= 0.

Upon making the previous assumption, the unique self-adjoint operator asso-
ciated with φ is given by

Au =
∑

i∈N

ai

ωi
uiei, ∀u = (ui)i∈N ∈ D(A)

where D(A) = {u = (ui)i∈N ∈ Eω : limi→∞
|ai|
‖ei‖

|ui| = 0}.
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