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More than a 0-point

Jana Flašková

Abstract. We construct in ZFC an ultrafilter U ∈ N∗ such that for every one-to-one
function f : N → N there exists U ∈ U with f [U ] in the summable ideal, i.e. the sum of
reciprocals of its elements converges. This strengthens Gryzlov’s result concerning the
existence of 0-points.
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1. Introduction

In his talk during the 12th Winter School on Abstract Analysis in Srńı, A. Gry-
zlov defined 0-points and he constructed such ultrafilters in ZFC (see [2], [3]). Let
us recall that an ultrafilter U ∈ N

∗ is called a 0-point if for every one-to-one
function f : N → N there exists a set U ∈ U such that f [U ] has asymptotic
density zero.
We strengthen Gryzlov’s result and construct a summable ultrafilter which we

define as an ultrafilter U ∈ N
∗ such that for every one-to-one function f : N → N

there exists U ∈ U with f [U ] in the summable ideal. Our proof was motivated
by Gryzlov’s original construction as it was written down by K.P. Hart [4].

The summable ideal is the family {A ⊆ N :
∑

a∈A
1
a < +∞}. It is not difficult

to prove that every set in the summable ideal has asymptotic density zero, but
the converse is not true (consider, e.g., the set of all prime numbers). It is also
known that the summable ideal is a P -ideal, i.e., whenever An, n ∈ N, are sets
from the ideal there exists A in the summable ideal that contains all but finitely
many elements of each An (we use the notation An ⊆∗ A for this).
We call a family F ⊆ P(N) summable if for every one-to-one function f : N →

N there is A ∈ F such that f [A] belongs to the summable ideal.
Let us recall that a family F ⊆ P(N) is called k-linked if F0 ∩F1 ∩ · · · ∩Fk is

infinite whenever Fi ∈ F , i ≤ k, and it is called centered if any finite subfamily
of F has an infinite intersection, i.e., it is k-linked for every k ∈ N.
During the construction we make use of the following upper bound for partial

sums of the harmonic series:

Fact 1.1. 1 + 12 + · · ·+ 1
N ≤ 1 + lnN ≤ 1 + log2N for every N ∈ N.
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2. Construction

Lemma 2.1 is fairly general, but it will enable us to construct a summable
centered system by applying Proposition 2.2 to get summable k-linked families
for every k. The summable centered system may then be extended to a summable
ultrafilter.

Lemma 2.1. If Fk is a k-linked family of infinite subsets of N for every k ∈ N

then F = {F ⊆ N : (∀k)(∃Uk ∈ Fk)Uk ⊆∗ F} is a centered system.

If moreover, I is a P -ideal, f ∈ N
N a one-to-one function and for every k ∈ N

there exists Uk ∈ Fk such that f [Uk] ∈ I then there exists U ∈ F such that

f [U ] ∈ I . In particular, if Fk is summable for every k then F is summable.

Proof: Take F 1, F 2, . . . , Fn ∈ F and for every j = 1, . . . , n choose U
j
k
∈ Fk

such that U
j
k
⊆∗ F j for every k. For every k ≥ n family Fk is n-linked, hence

⋂n
j=1 U

j
k
is an infinite set. We have

n⋂

j=1

U
j
k
⊆∗

n⋂

j=1

F j

for every k ≥ n and it follows that family F is centered.
For the moreover part, consider A ∈ I such that f [Uk] ⊆

∗ A for every k ∈ N.
We get Uk ⊆∗ f−1[A] for every k ∈ N. According to the definition, the set
U = f−1[A] belongs to F and f [U ] = A ∈ I . �

In the proof of the next proposition we treat the natural numbers as both
numbers and sets. In order to help the reader we use

∏
to denote a product of

sets and
⊙
to denote a product of numbers.

Proposition 2.2. Let A be an infinite subset of N. For every k ∈ N there exists

a summable k-linked family Fk ⊆ P(A).

Proof: Fix k ∈ N. We divide A into disjoint finite blocks, A =
⋃

n∈N
Bn, and

for every n enumerate Bn, faithfully, as {b(ϕ) : ϕ ∈
∏k

j=0Q(j, n)} where Q(j, n)

is defined by Q(j, n) = 2n·2
j
. Notice that for every i ≤ k we have Q(i, n) =

2n ·
⊙i−1

j=0Q(j, n).

For every i ≤ k, x ∈ Q(i, n) and s ∈
∏k

j=i+1Q(j, n) define Bn(i, x, s) =

{b(ϕa〈x〉as) : ϕ ∈
∏i−1

j=0Q(j, n)}. For every one-to-one function f : N → N

let m
f
x = min f [Bn(i, x, s)]. Finally, let x(f, s) ∈ Q(i, n) be that x for which

m
f
x is maximal, i.e., m

f
x(f,s)

= max{mf
x : x ∈ Q(i, n)}. Now, we may define

Af ⊆ A block by block as the union Af =
⋃

n∈N
B

f
n , where B

f
n ⊆ Bn is defined
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in two stages: first B
f
n =

⋃k
i=0B

f
n(i) and second B

f
n(i) =

⋃
{Bf

n(i, s) : s ∈∏k
j=i+1Q(j, n)}, where B

f
n(i, s) = Bn(i, x(f, s), s).

Claim 1. The family Fk = {Af : f ∈ N
N one-to-one} is k-linked.

Consider f0, f1, . . . , fk distinct one-to-one functions from N to N. Since

k⋂

j=0

Afj ⊇
∞⋃

n=1

k⋂

j=0

B
fj
n

it suffices to show that
⋂k

j=0B
fj
n 6= ∅ for every n ∈ N. To see this fix n and define

ϕ ∈
∏k

j=0Q(j, n) recursively: put s0 = ∅ and set ϕ(k) = x(f0, s0), next s1 =

〈ϕ(k)〉 and ϕ(k − 1) = x(f1, s1), and so on. It follows that b(ϕ) ∈
⋂k

j=0B
fj
n (k −

j, sj) ⊆
⋂k

j=0B
fj
n (k − j) ⊆

⋂k
j=0B

fj
n .

Claim 2. The set f [Af ] belongs to the summable ideal for every one-to-one func-
tion f .
Our aim is to bound the sum

∑
a∈B

f
n

1
f(a)

from above by elements of a con-

vergent series because f [Af ] =
⋃

n∈N
f [B

f
n]. At first, we estimate the sum of the

reciprocals of elements in f [B
f
n(i, s)] for every i ≤ k and s ∈

∏k
j=i+1Q(j, n).

Since |f [Bf
n(i, s)]| =

⊙i−1
j=0Q(j, n) we have

(1)
∑

a∈B
f
n(i,s)

1

f(a)
≤

i−1⊙

j=0

Q(j, n) ·
1

min f [Bf
n(i, s)]

=
2n·(2

i
−1)

m
f
x(f,s)

.

Put qi,n =
⊙k

j=i+1Q(j, n) and enumerate {mf
x(f,s)

: s ∈
∏k

j=i+1Q(j, n)}

increasingly as {ml : l = 1, . . . , qi,n}. It is easy to see that ml ≥ l · Q(i, n) for
every l and it follows that

(2)

qi,n∑

l=1

1

ml
≤

1

Q(i, n)
·

qi,n∑

l=1

1

l
≤
1 + log2 qi,n

Q(i, n)
=
1 +

∑k
j=i+1 log2Q(j, n)

Q(i, n)

where we used Fact 1.1.
Now, observe that

(3) 1 +

k∑

j=i+1

log2Q(j, n) ≤ 1 + n

k∑

j=0

2j = 1 + n(2k+1 − 1) ≤ n2k+1
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and putting together (1), (2) and (3) we obtain

(4)
∑

a∈B
f
n(i)

1

f(a)
≤

i−1⊙

j=0

Q(j, n) ·
1 +

∑k
j=i+1 log2Q(j, n)

Q(i, n)
=

n2k+1

2n
.

Thus we get for every n

(5)
∑

a∈B
f
n

1

f(a)
≤

k∑

i=0

n2k+1

2n
=

n(k + 1)2k+1

2n

and finally

(6)
∑

a∈Af

1

f(a)
≤

∞∑

n=1

n(k + 1)2k+1

2n
≤ 2(k + 1)2k+1,

i.e., the set f [Af ] belongs to the summable ideal. �

While constructing a 0-point Gryzlov made use of function Q(j, n) = n2
j
.

We cannot use this function for our purpose because it “grows too slowly”. Its
polynomial growth with respect to n provides in formula (4) (or (5)) a divergent

series as an upper bound for
∑

a∈B
f
n

1
f(a)
. So it seems to be necessary that Q(j, n)

depends exponentially on n. In formula (4) occurs
⊙i−1

j=0Q(j, n)·Q(i, n)−1, which

excludes functions of type 2n · p(j) or 2n·p(j) where p(j) is a polynomial in j.

Hence our definition Q(j, n) = 2n·2
j
seems to be the best possible to use while

constructing a summable ultrafilter.

Theorem 2.3. There is a summable ultrafilter on N.

Proof: Consider an arbitrary countable family {Ak : k ∈ N} of infinite subsets of
natural numbers and apply Proposition 2.2 to obtain a summable k-linked family
Fk on Ak for every k. From Lemma 2.1 we obtain a summable centered system
F on N. It is obvious that any ultrafilter that extends F is summable. �

Corollary 2.4. There are 22
ω
distinct summable ultrafilters on N.

Proof: Assume {Ak : k ∈ N} is a countable family of disjoint infinite subsets of N
and Fk is a summable k-linked family on Ak for every k. For every free ultrafilter
U on N let FU ⊆ P(N) consist of sets F such that {k : F ∩ Ak ∈ Fk} ∈ U . It
is easy to see that FU is a summable filter and FU 6= FV whenever U 6= V . It
follows that there are 22

ω
distinct summable ultrafilters. �
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3. Open questions

The construction relies strongly on the fact that functions in question are one-
to-one. It is a limiting assumption, but it is not known at the moment whether it
is possible to construct in ZFC a summable ultrafilter if we enlarge the family of
functions considered in the definition of a summable ultrafilter to all finite-to-one
functions, or even more, to all functions from N to N (examples constructed under
Martin’s Axiom for countable posets can be found in [1]).
Another interesting question arises if we replace the summable ideal in the

definition of a summable ultrafilter by a generalized summable ideal that is defined
for any (decreasing) function g : N → [0,∞) with limn→∞ g(n) = 0 by Ig =
{A ⊆ N :

∑
a∈A g(a) < ∞} where we assume

∑
n∈N

g(n) =∞ to obtain a proper
ideal. It is easy to see that the ideal Ig is a P -ideal that extends the ideal of all
finite sets. Again, a straightforward modification of construction in [1] provides
examples of such ultrafilters under Martin’s Axiom for countable posets, but there
are no examples in ZFC at the moment.
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