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Intersections of minimal prime ideals

in the rings of continuous functions

Swapan Kumar Ghosh

Abstract. A space X is called µ-compact by M. Mandelker if the intersection of all free
maximal ideals of C(X) coincides with the ring CK(X) of all functions in C(X) with
compact support. In this paper we introduce φ-compact and φ′-compact spaces and we
show that a space is µ-compact if and only if it is both φ-compact and φ′-compact. We
also establish that every space X admits a φ-compactification and a φ′-compactification.
Examples and counterexamples are given.
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1. Introduction

By a space we always mean a completely regular Hausdorff space. It is well-
known that if X is realcompact, then the intersection of all free maximal ideals
of C(X) coincides with the ring CK(X) of all functions in C(X) with compact
support ([1, 8.19]). A space with the latter property is called µ-compact by
M. Mandelker in 1971 ([5]). A subset A of βX is called round by M. Mandelker
in 1969 if for any zero set Z of X , clβX Z is a neighbourhood of A whenever
clβX Z ⊇ A ([4, 4]). In 1973, D.G. Johnson and M. Mandelker have shown that
for any space X , there is a smallest µ-compact space µX lying between X and
βX ([3, 4.1]). They have also proved that µX is the smallest subspace of βX
containing X for which βX −µX is round ([3, 4.3]). We define φ-compact spaces
in terms of intersections of minimal prime ideals of C(X). The class of all φ-
compact spaces extends the class of all µ-compact spaces. We prove that for
any space X , there is a smallest φ-compact space φX lying between X and βX .
Mandelker’s definition of round subsets of βX characterizes P -spaces. In fact, X
is a P -space if and only if every subset of βX is round ([4, 5.6]). The question
is what type of subsets of βX characterize F -spaces? We define almost round
subsets of βX . It turns out that a space X is an F -space if and only if every
subset of βX is almost round. We also establish that φX is the smallest subspace
of βX containingX for which βX−φX is almost round. Our motivation to define
φ′-compact spaces is the theorem in which we show that a space is µ-compact if
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and only if it is both φ-compact and φ′-compact. We prove that for any space X ,
there is a smallest φ′-compact space φ′X lying between X and βX . We define
nearly round subsets of βX and similar results as for round and almost round
subsets are established. Finally we show that an F -space X is a P -space if and
only if every subset of βX is nearly round.

2. Maximal, prime and minimal prime ideals

As usual, βX is the Stone-Čech compactification of X . There is a one-one cor-
respondence between the points of βX and the maximal ideals of C(X), described
in the following theorem ([1, 7.3]).

Theorem 2.1 ([Gelfand-Kolmogoroff]). The maximal ideals of C(X) are given
by Mp = {f ∈ C(X) : p ∈ clβX Z(f)}(p ∈ βX), here Z(f) = {x ∈ X : f(x) = 0}
is the zero-set of f .

Also the set Op = {f ∈ C(X) : clβX Z(f) is a neighbourhood of p} is an ideal
of C(X), for each p ∈ βX .
An ideal I of C(X) is called a z-ideal if Z(f) = Z(g) and f ∈ I implies g ∈ I.
It is clear that for each p ∈ βX , Mp and Op are z-ideals of C(X).
We now write down the following important theorem given in [1, 7.15].

Theorem 2.2. Every prime ideal P of C(X) contains Op for a unique p andMp

is the unique maximal ideal that contains P .

It is well-known that X is an F -space if and only if Op is prime for each
p ∈ βX ([1, 14.25]), and X is a P -space if and only if Op =Mp for each p ∈ βX
([1, 14.29]). Clearly every P -space is an F -space, the converse is not true. The
space βR\R is a compact F -space ([1, 14.27]). It fails to be a P -space since every
compact P -space is finite ([1, 4k, 2]).
Every z-ideal in C(X) is an intersection of prime ideals ([1, 2.8]). Since Op is

a z-ideal we have the following theorem.

Theorem 2.3. The ideal Op is the intersection of all minimal prime ideals con-

taining it.

Let Pmin(X) denote the class of all minimal prime ideals of C(X). We define
the relation ‘∼’ on Pmin(X) by P ∼ Q if and only if P,Q are contained in a
same maximal ideal. Obviously ‘∼’ is an equivalence relation on Pmin(X). All
the minimal prime ideals of C(X) contained in Mp (i.e. containing Op) for some
p ∈ βX form an equivalence class which will be denoted by Ep. We state the
following important characterization of minimal prime ideals of C(X) which is an
immediate consequence of [2, Lemma 1.1].

Theorem 2.4. Let P be a prime ideal of C(X). Then P is minimal if and only
if for any f ∈ P , there exists g ∈ C(X)− P such that fg = 0.
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Notations 2.5. Let X ⊆ Y ⊆ βX and p ∈ βX . The ideal {f ∈ C(X) :
cl

βX
Z(f) is a neighbourhood of p} of C(X) will be denoted by Op

X and the ideal

{f ∈ C(Y ) : cl
βX

Z(f) is a neighbourhood of p} of C(Y ) will be denoted by Op
Y .

We note that every minimal prime ideal in C(X) is a z-ideal ([1, 14.7]). Now
we prove the following theorem.

Theorem 2.6. Let X ⊆ Y ⊆ βX and p ∈ βX . If PY is a minimal prime ideal

of C(Y ) with PY ⊇ Op
Y and if f ∈ PY then there exists a minimal prime ideal

PX of C(X) with PX ⊇ O
p
X such that f |X ∈ PX . Also if PX is a minimal prime

ideal of C(X) with PX ⊇ O
p
X and if f ∈ PX with f

Y ∈ C(Y ) then there exists

a minimal prime ideal PY of C(Y ) with PY ⊇ Op
Y
such that fY ∈ PY , here fY

is the continuous extension of f over Y .

Proof: Let f ∈ PY where PY is a minimal prime ideal of C(Y ) with PY ⊇ O
p
Y .

Then there exists g ∈ C(Y ) such that fg = 0 and g /∈ PY (Theorem 2.4). Clearly,
g /∈ O

p
Y . Let g

′ = g|X . Then Z(g
′) ⊆ Z(g) and hence g′ /∈ O

p
X . Let f

′ = f |X .

Clearly, f ′g′ = 0. Now g′ /∈ Op
X implies that there exists a minimal prime ideal

PX of C(X) with PX ⊇ O
p
X such that g

′ /∈ PX . Thus f
′ = f |X ∈ PX .

Conversely let, f ∈ PX with f
Y ∈ C(Y ) where PX is a minimal prime ideal

of C(X) such that PX ⊇ Op
X
. Now there exists g ∈ C(X) with fg = 0 such

that g /∈ PX (Theorem 2.4). Let h = g ∧ 1. Since g /∈ PX and PX is a z-ideal,

h /∈ PX . Clearly fh = 0. Let h
Y be the continuous extension of h over Y .

Then, fY hY = 0. We claim that there exists a minimal prime ideal PY of C(Y )

with PY ⊇ O
p
Y such that h

Y /∈ PY . If not, then h
Y ∈ O

p
Y and so there is a

neighbourhood V of p in βX (= βY ) such that Z(hY ) ⊇ V ∩ Y ([1, 7.12(a)]).

Thus, Z(h) = X ∩ Z(hY ) ⊇ V ∩ Y ∩X = V ∩X and so, h ∈ Op
X ([1, 7.12(a)]).

Hence g ∈ O
p
X since O

p
X is a z-ideal. This shows that g ∈ PX , a contradiction.

So, hY /∈ PY for some minimal prime ideal PY of C(Y ) with PY ⊇ O
p
Y and thus

fY ∈ PY . �

3. φ-compact spaces and almost round subsets

Recall the equivalence relation introduced in Section 2. Let us now give the
following definition.

Definition 3.1. Let A ⊆ βX . A family F of minimal prime ideals of C(X) is
said to be adequate for A if F ∩ Ep 6= φ ∀p ∈ A. A space X is defined to be
φ-compact if

⋂
F ⊆ CK(X) for every family F of minimal prime ideals of C(X),

adequate for βX −X .

Examples 3.2. (a) Every F -space is φ-compact. In fact, if X is an F -space
then Ep = {Op} ∀p ∈ βX . So if F is a family of minimal prime ideals of C(X),
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adequate for βX−X then Op ∈ F ∀p ∈ βX−X . Clearly,
⋂
F ⊆

⋂
p∈βX−X Op =

CK(X) and thus X is φ-compact.

(b) Every µ-compact space is φ-compact (hence every realcompact space is φ-
compact). In fact, if F is any family of minimal prime ideals of C(X), adequate for
βX−X then

⋂
F ⊆

⋂
p∈βX−X Mp. Now ifX is µ-compact then

⋂
p∈βX−X Mp =

CK(X) and thus
⋂
F ⊆ CK(X). So X becomes φ-compact.

(c) The Tychonoff plank T is not φ-compact. We know that there is only one
free maximal ideal, say M t in C(T ). Also Ot is not prime ([1, 8J , 6]). Thus if
P is any minimal prime ideal of C(T ) with P ⊆ M t then Ot $ P and hence T
cannot be φ-compact.

Our next theorem shows that every space X admits a φ-compactification.

Theorem 3.3. For every space X , there is a smallest φ-compact space φX lying
between X and βX . So X is φ-compact if and only if X = φX .

Proof: Let Φ denote the set of all φ-compact spaces lying between X and βX .
Clearly Φ 6= ∅ since βX ∈ Φ. Let φX =

⋂
Φ. To complete the theorem we shall

show that φX is φ-compact. Consider any family F of minimal prime ideals of
C(φX), adequate for β(φX)−φX (= βX−φX) and suppose f ∈

⋂
F . Let Y ∈ Φ

and p ∈ βX − Y . Then p ∈ βX − φX . Since F is adequate for βX − φX , there
is a minimal prime ideal PφX of C(φX) in F with PφX ⊇ Op

φX
. So f ∈ PφX .

Clearly f ∈ C∗(φX) and let fY be the continuous extension of f over Y . By
Theorem 2.6, there is a minimal prime ideal PY of C(Y ) with PY ⊇ Op

Y
such that

fY ∈ PY . Thus F
′ = {PY : PY is a minimal prime ideal of C(Y ) with f

Y ∈ PY }
is adequate for βY − Y and fY ∈

⋂
F ′. Since Y is φ-compact, fY ∈ CK(Y ).

So, clY (Y − Z(fY )) is compact and hence so is
⋂

Y ∈Φ clY (Y − Z(fY )). Clearly,

clφX(φX−Z(f)) ⊆
⋂

Y ∈Φ clY (Y −Z(fY )). Let p ∈
⋂

Y ∈Φ clY (Y −Z(fY )). Then
p ∈ Y ∀Y ∈ Φ and so p ∈ φX . Take any neighbourhood U of p in φX . Then
there is a neighbourhood V of p in Y (where Y ∈ Φ) such that V ∩ φX = U .

Also, V ∩ (Y −Z(fY )) 6= ∅. Thus, V ∩ (Y −Z(fY )) is a non-void open set in Y .

Since φX is dense in Y , φX ∩ V ∩ (Y −Z(fY )) 6= ∅ i.e. U ∩ (φX −Z(f)) 6= ∅. So
p ∈ clφX (φX − Z(f)). Thus, clφX (φX − Z(f)) =

⋂
Y ∈Φ clY (Y − Z(fY )). Hence

f ∈ CK(φX) and φX becomes φ-compact. �

We now define almost round subsets as follows.

Definition 3.4. A subset A of βX is said to be almost round if
⋂
F ⊆

⋂
p∈AO

p

for every family F of minimal prime ideals of C(X), adequate for A.

Obviously X is φ-compact if and only if βX−X is almost round. We also note
that the union of any collection of almost round subsets of βX is almost round.

We now prove the following two lemmas.
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Lemma 3.5. Let X ⊆ Y ⊆ vX . Then f ∈ Op
X if and only if f

Y ∈ Op
Y where

fY is the continuous extension of f over Y .

Proof: The lemma follows from the fact that clβX Z(f) = clβX Z(fY ). �

Lemma 3.6. Let X ⊆ Y ⊆ vX . Then Y is φ-compact if and only if βX − Y is
almost round (with respect to X).

Proof: Let Y be φ-compact and let F be a family of minimal prime ideals of
C(X), adequate for βX−Y . Suppose f ∈

⋂
F and fY is the continuous extension

of f over Y . If p ∈ βX − Y then there is a minimal prime ideal PX ∈ F with
PX ⊇ O

p
X , F being adequate for βX −Y . So by Theorem 2.6, there is a minimal

prime ideal PY of C(Y ) with PY ⊇ O
p
Y such that f

Y ∈ PY . Thus F ′ = {PY : PY

is a minimal prime ideal of C(Y ) with fY ∈ PY } is adequate for βX − Y and

fY ∈
⋂
F ′. Since Y is φ-compact, fY ∈ CK(Y ). Thus f

Y ∈ Op
Y ∀p ∈ βX − Y .

So by Lemma 3.5, f ∈ Op
X

∀p ∈ βX − Y . Consequently,
⋂
F ⊆

⋂
p∈βX−Y Op

X
and so βX − Y is almost round.
Conversely let βX − Y be almost round. Suppose F ′ is any family of minimal

prime ideals of C(Y ), adequate for βY −Y (= βX−Y ) and suppose f ∈
⋂
F ′. Let

f1 = f |X and p ∈ βX − Y . Since F ′ is adequate for βX − Y , there is a minimal
prime ideal PY ∈ F ′ such that PY ⊇ Op

Y
. Also f ∈ PY . By Theorem 2.6, there

is a minimal prime ideal PX of C(X) with PX ⊇ O
p
X such that f1 ∈ PX . Thus

F = {PX : PX is a minimal prime ideal of C(X) with f1 ∈ PX} becomes adequate
for βX −Y and f1 ∈

⋂
F . Since βX −Y is almost round, f1 ∈ Op

X ∀p ∈ βX −Y

and so by Lemma 3.5, f ∈ O
p
Y ∀p ∈ βX −Y . So

⋂
F ′ ⊆

⋂
p∈βX−Y O

p
Y = CK(Y )

and hence Y is φ-compact. �

Corollary 3.7. For any space X , βX − φX is almost round.

We now use Lemma 3.6 to prove the following theorem.

Theorem 3.8. For any space X , φX is the smallest subspace of βX containing
X for which βX − φX is almost round.

Proof: Let X ⊆ Y ⊆ βX such that βX−Y is almost round. Then (βX−φX)∪
(βX − Y ) = βX − (φX ∩ Y ) is almost round. Clearly X ⊆ φX ∩ Y ⊆ vX and so
Lemma 3.6 implies that φX∩Y is φ-compact. Since φX is the smallest φ-compact
space between X and βX , φX ⊆ φX ∩ Y . So φX ⊆ Y and the theorem follows.

�

Almost round subsets characterize F -spaces in the following way.

Theorem 3.9. X is an F -space if and only if every subset of βX is almost round.

Proof: The necessity follows from the fact that for an F -space X , Ep = {Op}
∀p ∈ βX .
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To prove the sufficiency let p ∈ βX . Since {p} is almost round, Op = P for any
minimal prime ideal P with P ⊇ Op. Thus Op is prime and so X is an F -space.
Let X be a φ-compact space. If τ : X → Y is a homeomorphism then τ has an

extension to a homeomorphism τ1 : βX → βY such that τ |βX−X : βX −X →
βY − Y is also a homeomorphism. Also the map ψ : C(Y ) → C(X) defined by
f → f◦τ is an isomorphism. If F = {Pα

Y : α ∈ ∧} is a family of minimal prime
ideals of C(Y ), adequate for βY −Y then clearly FX = {ψ(Pα

Y ) : α ∈ ∧} becomes
a family of minimal prime ideals of C(X), adequate for βX −X . It is now easy
to see that Y is φ-compact. Hence we have the following theorem. �

Theorem 3.10. φ-compactness is a topological property.

Example 3.11. Let Y = βN − {p} where p ∈ βN −N . Then Y is an F -space
and hence φ-compact. The lone free maximal ideal of C(Y ) is M

p
Y = {f ∈ C(Y ) :

p ∈ clβY Z(f)}. Clearly p ∈ clβN (Y − N). Define f : N → R by f(n) = 1
n and

suppose h = fβ |Y . Then h ∈ C(Y ) and Z(h) = Y − N . Thus h ∈ M
p
Y . Now

clY (Y − Z(h)) = clY N = Y which is not compact and so h /∈ CK(Y ). Hence Y
is not µ-compact.

4. φ′-compact spaces and nearly round subsets

Recall the definition of a family F of minimal prime ideals of C(X), adequate
for βX −X (Definition 3.1). Let us now give the following definition.

Definition 4.1. A space X is said to be φ′-compact if for any f ∈
⋂

p∈βX−XM
p,

there is a family F of minimal prime ideals of C(X), adequate for βX −X such
that f ∈

⋂
F .

Example 4.2. Every µ-compact space is φ′-compact (hence every realcompact
space is φ′-compact). In fact, if X is µ-compact and if f ∈

⋂
p∈βX−X Mp then

f ∈ CK(X) and so f is in every free minimal prime ideal of C(X). So if F is the
collection of all free minimal prime ideals in C(X) then f ∈

⋂
F . Clearly F is

adequate for βX −X .

The following theorem relates µ-compact spaces, φ-compact spaces and φ′-
compact spaces.

Theorem 4.3. A space is µ-compact if and only if it is both φ-compact and
φ′-compact.

Proof: Necessity follows from 3.2(b) and 4.2.
For sufficiency we assume that X is both φ-compact and φ′-compact. Let

f ∈
⋂

p∈βX−X Mp. Since X is φ′-compact, there is a family F of minimal prime

ideals of C(X), adequate for βX −X such that f ∈
⋂
F . Now φ-compactness of

X implies
⋂
F ⊆ CK(X). Thus f ∈ CK(X) and so X is µ-compact. �
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Example 4.4. Recall the space Y = βN −{p} where p ∈ βN −N given in 3.11.
The space is φ-compact but not µ-compact. Hence the space is also not φ′-compact
by the previous theorem.

Notations 4.5. Let X ⊆ Y ⊆ βX and p ∈ βX . The maximal ideal {f ∈
C(X) : p ∈ clβX Z(f)} of C(X) will be denoted by Mp

X and the maximal ideal

{f ∈ C(Y ) : p ∈ clβY Z(f)} of C(Y ) will be denoted by Mp
Y
.

In our next theorem we shall show that every space X admits a φ′-compacti-
fication.

Theorem 4.6. For any space X , there is a smallest φ′-compact space φ′X lying
between X and βX . Thus X is φ′-compact if and only if X = φ′X .

Proof: Let Φ′ be the family of all φ′-compact spaces lying between X and βX .
Then Φ′ 6= ∅ since βX ∈ Φ′. Let φ′X =

⋂
Φ′. To prove the theorem we shall show

that φ′X is φ′-compact. So let f ∈
⋂

p∈βX−φ′X Mp
φ′X
and let p ∈ βX − φ′X .

Then there is Y ∈ Φ′ such that p ∈ βX − Y . Now f ∈ C∗(φ′X) and let fY be
the continuous extension of f over Y . Let q ∈ βX − Y . Clearly q ∈ βX − φ′X .
So f ∈ M

q
φ′X
. Hence q ∈ clβX Z(f) ⊆ clβX Z(fY ). Thus fY ∈ M

q
Y . So

fY ∈
⋂

q∈βX−Y M
q
Y . Since Y is φ

′-compact and p ∈ βX − Y , there is a minimal

prime ideal PY of C(Y ) with PY ⊇ Op
Y such that f

Y ∈ PY . So by Theorem 2.6,

there is a minimal prime ideal Pφ′X of C(φ
′X) with Pφ′X ⊇ O

p
φ′X

such that

f ∈ Pφ′X . So F = {Pφ′X : Pφ′X is a minimal prime ideal of C(φ
′X) with

f ∈ Pφ′X} is adequate for βX − φ′X and f ∈
⋂
F . Thus φ′X is φ′-compact. �

We now define nearly round subsets as follows.

Definition 4.7. A subset A of βX is said to be nearly round if f ∈
⋂

p∈AM
p

implies f ∈
⋂
F for some family F of minimal prime ideals of C(X), adequate

for A.

Obviously X is φ′-compact if and only if βX − X is nearly round. We note
that the union of any collection of nearly round subsets of βX is nearly round.
We also note that a subset of βX is round if and only if it is both almost round
and nearly round.
We now prove the following lemma.

Lemma 4.8. Let X ⊆ Y ⊆ vX . Then Y is φ′-compact if and only if βX − Y is
nearly round (with respect to X).

Proof: Let Y be φ′-compact and let f ∈
⋂

p∈βX−Y M
p
X . Let f

Y be the

continuous extension of f over Y . Then clβX Z(fY ) = clβX Z(f) and thus

fY ∈
⋂

p∈βX−Y M
p
Y . Suppose p ∈ βX − Y . Now φ′-compactness of Y im-

plies that there is a minimal prime ideal PY of C(Y ) with PY ⊇ O
p
Y such that
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fY ∈ PY . So by Theorem 2.6, there is a minimal prime ideal PX of C(X) with
PX ⊇ O

p
X such that f ∈ PX . Thus F = {PX : PX is a minimal prime ideal of

C(X) with f ∈ PX} is adequate for βX−Y and f ∈
⋂
F . Consequently βX−Y

is nearly round.
Conversely let βX −Y be nearly round and let f ∈

⋂
p∈βX−Y M

p
Y . Let f |X =

g. Then clβX Z(f) = clβX Z(g) and so g ∈
⋂

p∈βX−Y Mp
X . Let q ∈ βX − Y .

Since βX − Y is nearly round, there is a minimal prime ideal PX of C(X) with
PX ⊇ Oq

X such that g ∈ PX . Hence by Theorem 2.6, there is a minimal prime

ideal PY of C(Y ) with PY ⊇ O
q
Y such that f ∈ PY . Thus F

′ = {PY : PY is a

minimal prime ideal of C(Y ) with f ∈ PY } is adequate for βX−Y and f ∈
⋂
F ′.

Thus Y is φ′-compact. �

Corollary 4.9. For any space X , βX − φ′X is nearly round.

We now use Lemma 4.8 to prove the following theorem.

Theorem 4.10. For any spaceX , φ′X is the smallest subspace of βX containing
X for which βX − φ′X is nearly round.

Proof: Let X ⊆ Y ⊆ βX such that βX−Y is nearly round. Then (βX−φ′X)∪
(βX −Y ) = βX − (φ′X ∩Y ) is nearly round. Clearly X ⊆ φ′X ∩ Y ⊆ vX and so
by Lemma 4.8, φ′X∩Y is φ′-compact. Since φ′X is the smallest φ′-compact space
between X and βX , φ′X ⊆ φ′X ∩ Y . So φ′X ⊆ Y and the proof is complete. �

The following theorem gives a necessary and sufficient condition for an F -space
to be a P -space.

Theorem 4.11. An F -space X is a P -space if and only if every subset of βX is
nearly round.

Proof: Let X be a P -space and A ⊆ βX . Suppose f ∈
⋂

p∈AM
p. Then

f ∈
⋂

p∈AO
p. Thus F = {Op : p ∈ A} is a family of minimal prime ideals of

C(X), adequate for A with f ∈
⋂
F . So A is nearly round.

Conversely let X be an F -space and every subset of βX be nearly round. Let
p ∈ βX and suppose f ∈Mp. Since {p} is nearly round there is a minimal prime
ideal P of C(X) with P ⊇ Op such that f ∈ P . Also since X is an F -space,
P = Op and thus f ∈ Op. So Op =Mp and hence X is a P -space.
Let X be a φ′-compact space. If τ : X → Y is a homeomorphism then τ has an

extension to a homeomorphism τ1 : βX → βY such that τ1|βX−X : βX −X →
βY − Y is also a homeomorphism. Also the map ψ : C(Y ) → C(X) defined
by f → f◦τ is an isomorphism. If f is in the intersection of all free maximal
ideals of C(Y ) then ψ(f) is in the intersection of all free maximal ideals of C(X).
Now φ′-compactness of X implies that there is a family FX = {Pα

X : α ∈ ∧} of
minimal prime ideals of C(X), adequate for βX −X with ψ(f) ∈

⋂
FX . Then

FY = {ψ←(Pα
X ) : α ∈ ∧} becomes a family of minimal prime ideals of C(Y )
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adequate for βY − Y and f ∈
⋂
FY . Thus Y is also φ

′-compact. So we have the
following theorem. �

Theorem 4.12. φ′-compactness is a topological property.

Notation 4.13. Let ω1 denote the space of all countable ordinals. Let T
∗ =

(ω1 + 1)× (ω0 + 1) and T = T
∗ − {(ω1, ω0)} be the Tychonoff plank.

Let us denote for computational convenience, (α, ω1)× {n} ((α, ω1]× {n}) by
(α, {n}) ((α, {n}], respectively), where α � ω1 and n ∈ (ω0 + 1).

Lemma 4.14. For each f ∈M t−Ot, there exists g /∈ Ot such that fg = 0 where
t = {(ω1, ω0)}.

Proof: Since f ∈ M t, i.e. t ∈ clβT Z(f), every neighbourhood of t must meet

Z(f). Also f /∈ Ot and so clβT Z(f) is not a neighbourhood of t. Now any

neighbourhood of t is of the form (α, ω1] × N ′, where N ′ ⊆ ω0 + 1, α � ω1 and
(ω0+1)− N ′ is at most a finite set. Thus there exist infinite subsets N1, N2 of ω0
with N1∪N2 = ω0 and α � ω1, such that, for each n ∈ N1, f((α, {n}]) = 0 and for
each n ∈ N2, f((α, {n}]) 6= 0. The choice of single α is possible here because of the
non-cofinality character of any denumerable subset of ω1. Also f((α, {ω0})) = 0.
Choose g : T → R by defining g((α, {n}]) = 1

n , for each n ∈ N1, g((α, {n}]) = 0
for each n ∈ N2 and assign 0 on rest of the region. Clearly, g is continuous in
[0, α] × (ω0 + 1). Choose (γ, n) ∈ (α, {n}], n ∈ ω0. Then (α, {n}] is an open
neighbourhood of (γ, n) and g((α, {n}]) is either = 0 or 1n . Thus f is continuous
at (γ, n). If now (γ, ω0) ∈ (α, {ω0}), then g((γ, ω0)) = 0. Choose any ǫ 	 0. Then
there exists n ∈ ω0 such that

1
n � ǫ. TakeM = (ω0+1)−{r ∈ ω0 : r ≦ n}. Then

(α, ω1]×M −{t} is an open neighbourhood of (γ, ω0) and g(((α, ω1]×M)−{t})
is contained in (−ǫ, ǫ). Hence g is continuous at (γ, ω0). Thus g is continuous on
T . Also since T − Z(g) contains (α, ω1]×N1, g /∈ Ot. Clearly, fg = 0. �

Using the above lemma, we now show that the Tychonoff plank T is φ′-compact
but not µ-compact.

Example 4.15. Since T is not φ-compact (Example 3.2(c)), it is neither µ-
compact. We now show that T is φ′-compact. So let f ∈

⋂
p∈βT−T M

p i.e.

f ∈ M t. We have to produce a family F of minimal prime ideals of C(T ),
adequate for βT − T = {t} such that f ∈

⋂
F . If f ∈ Ot, then it becomes

obvious, if not then fg = 0 for some g /∈ Ot by Lemma 4.14. Since Ot is the
intersection of all minimal prime ideals containing it, there is a minimal prime
ideal, say P containing Ot such that g /∈ P . So f ∈ P since P is prime. Let
F = {P}. Clearly F is adequate for βT − T and f ∈

⋂
F .
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