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On free modes

Micha l Marek Stronkowski

Abstract. We prove a theorem describing the equational theory of all modes of a fixed
type. We use this result to show that a free mode with at least one basic operation
of arity at least three, over a set of cardinality at least two, does not satisfy identities

selected by Á. Szendrei in Identities satisfied by convex linear forms, Algebra Universalis
12 (1981), 103–122, that hold in any subreduct of a semimodule over a commutative
semiring. This gives a negative answer to the question raised by A. Romanowska: Is it
true that each mode is a subreduct of some semimodule over a commutative semiring?
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1. Introduction

Modes are entropic and idempotent algebras (properties defined later). The
class of these algebras is very wide. It contains such structures as affine spaces,
semilattices or convex sets. Most of them are known to be subreducts of ap-
propriate semimodules over commutative semirings. This suggests the following
question raised by A. Romanowska (see [7, p. 543] and [6, Problem 8.11]):

Problem 1. Is it true that each mode is a subreduct of some semimodule over a
commutative semiring?

A positive answer for groupoid modes was given in [4]. A slightly stronger
result for Szendrei modes (modes satisfying the Szendrei identities) with one n-
ary basic operation, for any n ≥ 2, may easily be deduced from [5] (where in fact
the authors consider a much more general situation). In this paper we show that
not all modes are Szendrei modes. This ultimately gives a negative answer to
Romanowska’s question. We do it in two steps. First we prove Theorem 3: if a
certain identity holds in the class of all modes of a fixed type, then there exists a
proof of it, using entropicity and idempotency, having a certain quite transparent
form. Next, using this result, we show that the Szendrei identities cannot be
derived from entropicity and idempotency (Theorem 7).

The work on this paper was conducted within the framework of INTAS project no. 03 51
4110 “Universal algebra and lattice theory”.
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2. Basic concepts

Let Ω be a set of operation symbols, and let τ : Ω→ Z
+ be a type function. We

do not allow constants, because modes with constants are just trivial algebras.
For ω, µ, ν ∈ Ω we shall consider the idempotent identities

(ιω) ω(x, . . . , x) = x,

the entropic identities

(εµ,ν) µ(ν(x11, . . . , x
1
τ(ν)), . . . , ν(x

τ(µ)
1 , . . . , x

τ(µ)
τ(ν)
))

= ν(µ(x11, . . . , x
τ(µ)
1 ), . . . , µ(x1τ(ν), . . . , x

τ(µ)
τ(ν)
))

and the Szendrei identities

(σi,j
ω ) ω(ω(x11, . . . , x

1
τ(ω)), . . . , ω(x

τ(ω)
1 , . . . , x

τ(ω)
τ(ω)
))

= ω(ω(πi
j(x
1
1), . . . , π

i
j(x
1
τ(ω))), . . . , ω(πi

j(x
τ(ω)
1 ), . . . , πi

j(x
τ(ω)
τ(ω)
))),

where 1 ≤ i < j ≤ τ(ω) and πi
j is a permutation of the variables which transposes

xi
j with x

j
i and leaves the other variables fixed. As an example, σ

1,2
ω , for τ(ω) = 3

is given by

ω(ω(x11, x
1
2, x
1
3), ω(x

2
1, x
2
2, x
2
3), ω(x

3
1, x
3
2, x
3
3))

= ω(ω(x11, x
2
1, x
1
3), ω(x

1
2, x
2
2, x
2
3), ω(x

3
1, x
3
2, x
3
3)).

Note that if τ(ω) = 2, then σ
1,2
ω and εω,ω coincide. Define ι = { ιω | ω ∈ Ω},

ε = { εµ,ν | µ, ν ∈ Ω} and σ = { σ
i,j
ω | ω ∈ Ω, 1 ≤ i < j ≤ τ(ω)}. An algebra

(A,Ω) is called a mode if (A,Ω) |= ι ∪ ε, and a Szendrei mode if additionally
(A,Ω) |= σ. The fundamental monograph on modes is [7] and the most resent
survey is [6]. Szendrei modes were investigated in [8], and later in [2].
Semirings are intuitively “rings without subtraction.” Similarly, semimodules

are “modules without subtraction.” They are like modules, but with a commu-
tative monoid instead of an abelian group. The precise definitions are as follows:
A commutative semiring is an algebra (R,+, 0, ·, 1), where (R,+, 0) and (R, ·, 1)
are commutative monoids, 0x = 0 and · distributes over +. A semimodule over
a commutative semiring (R,+, 0, ·, 1) is an algebra (M,+, 0, R) where the unary
operations determined by elements of R are endomorphisms of the commutative
monoid (M,+, 0) and moreover

1m = m,

0m = 0,

(r1 · r2)m = r1(r2m),

(r1 + r2)m = r1m+ r2m.
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For further information on semirings and semimodules, we refer the reader to [3].
A reduct of an algebra (A,Ω) is an algebra (A,Ψ) such that all the operations

in Ψ are term operations of (A,Ω). A subreduct is a subalgebra of a reduct.
Now the question of A. Romanowska may be formulated in the following way:

Is it true that for any mode (A,Ω) there exists a semimodule (M,+, 0, R) such
that A ⊆ M and for any ω ∈ Ω there are rω

1 , . . . , rω
τ(ω) ∈ R such that

ω(a1, . . . , aτ(ω)) =

τ(ω)
∑

i=1

rω
i ai ?

Note that all subreducts of a semimodule satisfy the Szendrei identities. Thus if
the answer is “yes”, all modes satisfy the Szendrei identities.
Let X be a countable infinite set of variables. The absolutely free algebra

of type τ (free in the variety of all τ -algebras) over the set X is denoted by
(Fτ (X),Ω). Its elements are τ -terms with variables in X . A term is unary if only
one variable occurs in it. A term is linear if each of its variables occurs exactly
once in it. An identity t = s is linear if both terms t and s are linear.
In this note we use a common convention and use the same symbol to denote a

term and the term operation corresponding to it. We apply this convention mostly
to the absolutely free algebra (Fτ (X),Ω). In particular for any term p ∈ Fτ (X)
we have p(x1, . . . , xn) = p, where x1, . . . , xn are variables occurring in p. In this
equality symbol p denotes on the right hand side simply a term and on the left
hand side a term function.
Note that for any p ∈ Fτ (X) there are a linear term t and not necessarily

mutually distinct variables x1, . . . , xn such that p = t(x1, . . . , xn). Obviously
the set {x1, . . . , xn} is equal to the set of variables occurring in p. In other words
p = f(t) for a certain endomorphism f of (Fτ (X),Ω) such that f(X) ⊆ X . In
such situation we say that p is obtained from a linear term t.
It is well known that equational theories with variables in the set X are just

fully invariant congruences of (Fτ (X),Ω). An equational theory overX with basis
E ⊆ Fτ (X)

2 is denoted by Th(E). An equational theory is linear if it has a basis
consisting of linear identities. The following lemma, proved in [5, Theorem 1.1],
will be useful in the sequel.

Lemma 2. Let T ⊆ Fτ (X)
2 be a linear equational theory. Then for any iden-

tity t = s in T there is a linear identity t′ = s′ in T and an endomorphism

f : (Fτ (X),Ω)→ (Fτ (X),Ω) such that f(t′) = t, f(s′) = s and f(X) ⊆ X .

For a relation R ⊆ Fτ (X)
2 let us denote by R∞ its transitive and reflexive

closure and by R† its converse. By R ◦ S we denote the composition of relations.

3. Equational theory of modes

For p, q ∈ Fτ (X) let (p, q) ∈ I→ if q results from p by replacing one occur-
rence of a variable x by ω(x, . . . , x). One may formalize this as follows. Let
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p = t(x1, . . . , xn) be obtained from a linear term t. Then (p, q) ∈ I→ if q =
t(x1, . . . , xi−1, ω(xi, . . . , xi), xi+1, . . . , xn) for some i ∈ {1, . . . , n}. Moreover
(p, q) ∈ (I→)∞ whenever there are unary terms u1 = u1(x1), . . . , un = un(xn)

such that q = t(u1, . . . , un). Put I← = (I→)†.

Theorem 3. Th(ι ∪ ε) = (I→)∞ ◦ Th(ε) ◦ (I←)∞.

Proof: Put Γ = (I→)∞ ◦Th(ε)◦ (I←)∞. The inclusion Γ ⊆ Th(ι∪ε) is obvious.
In order to prove that these relations are equal it is sufficient to note that ι∪ε ⊆ Γ
and to show that Γ is a fully invariant congruence of (Fτ (X),Ω). We do this in
few steps.
First we prove that

(1) (I←)∞ ◦ (I→)∞ ⊆ (I→)∞ ◦ Th(ε) ◦ (I←)∞.

Let p (I←)∞ q (I→)∞ r. Assume that q = t(x1, . . . , xn) is obtained from a linear
term t. Let u1 = u1(x1), . . . , un = un(xn), v1 = v1(x1), . . . , vn = vn(xn) be
unary terms such that p = t(u1, . . . , un) and r = t(v1, . . . , vn). Then

p = t(u1, . . . , un)

(I→)∞ t(u1(v1), . . . , un(vn))

Th(ε) t(v1(u1), . . . , vn(un))

(I←)∞ t(v1, . . . , vn)

= r.

Hence (p, r) ∈ (I→)∞◦Th(ε)◦(I←)∞. Next assume that an identity p = q belongs
to Th(ε). Then, by Lemma 2, we have p = t(x1, . . . , xn) and q = s(x1, . . . , xn)
for some linear identity t = s ∈ Th(ε). Hence

p I→ t(x1, . . . , xi−1, ω(xi, . . . , xi), xi+1, . . . , xn)

Th(ǫ) s(x1, . . . , xi−1, ω(xi, . . . , xi), xi+1, . . . , xn) I← q.

This implies

(2) Th(ε) ◦ I→ ⊆ I→ ◦ Th(ε).

Dually we have

(3) I← ◦ Th(ε) ⊆ Th(ε) ◦ I←.

It follows first by (1) and then by (2) and (3) that

Th(ε) ◦ (I←)∞ ◦ (I→)∞ ◦ Th(ε)

⊆ Th(ε) ◦ (I→)∞ ◦ Th(ε) ◦ (I←)∞ ◦ Th(ε)

⊆ (I→)∞ ◦ Th(ε) ◦ (I←)∞
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and hence

(I→)∞ ◦ Th(ε) ◦ (I←)∞ ◦ (I→)∞ ◦ Th(ε) ◦ (I←)∞ ⊆ (I→)∞ ◦ Th(ε) ◦ (I←)∞.

This means that Γ is transitive. Further

((I→)∞ ◦ Th(ε) ◦ (I←)∞)† = ((I←)∞)† ◦ (Th(ε))† ◦ ((I→)∞)†

= (I→)∞ ◦Th(ε) ◦ (I←)∞.

Thus Γ is symmetric. As Γ is obviously reflexive, it is an equivalence relation.
Now note that (I→)∞ and (I←)∞ are subalgebras of (Fτ (X)

2,Ω). This is
also true for Th(ε), since it is a fully invariant congruence of (Fτ (X),Ω). Hence
Γ = (I→)∞ ◦Th(ε)◦ (I←)∞ is a subalgebra of (Fτ (X)

2,Ω), too. This means that
Γ is a congruence of (Fτ (X),Ω).
It remains to show that Γ is fully invariant. So let (p, q) ∈ Γ and f be an

endomorphism of (Fτ (X),Ω). We would like to show that (f(p), f(q)) ∈ Γ. Let
p = t(x1, . . . , xn) be obtained from a linear term t and q = s(x1, . . . , xn) be
obtained from a linear term s. By the assumption there are unary terms u1 =
u1(x1), . . . , un = u1(xn), vn = v1(x1), . . . , vn = vn(xn) such that the identity
t(u1, . . . , un) = s(v1, . . . , vn) belongs to Th(ε). Put f(xi) = ri = ri(x

i
1, . . . , xi

ki
).

Then

f(p) = t(r1, . . . , rn)

(I→)∞ t(r1(u1(x
1
1), . . . , u1(x

1
k1
)), . . . , rn(un(x

n
1 ), . . . , un(x

n
kn
)))

Th(ε) t(u1(r1), . . . , un(rn))

Th(ε) s(v1(r1), . . . , vn(rn))

Th(ε) s(r1(v1(x
1
1), . . . , v1(x

1
k1
)), . . . , rn(vn(x

n
1 ), . . . , vn(x

n
kn
)))

(I←)∞ s(r1, . . . , rn)

= f(q).

The proof is finished. �

In fact our proof allows us to formulate a slightly stronger result. For an
operation ω ∈ Ω and an unary term t consider the identity

(εt,ω) t(ω(x1, . . . , xτ(ω))) = ω(t(x1), . . . , t(xτ(ω))).

Put ε∗ = {εt,ω | t is an unary τ -term and ω ∈ Ω}.

Theorem 4. Let L ⊆ Fτ (X)
2 be a set of linear identities such that ε∗ ⊆ Th(L).

Then Th(ι ∪ L) = (I→)∞ ◦ Th(L) ◦ (I←)∞.

But we shall not use this in the subsequent considerations.
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4. Non-Szendrei modes

The main result of this section, Theorem 7, shows that any Szendrei iden-

tity σ
i,j
ω , where τ(ω) > 2, is not a consequence of the idempotent and entropic

identities. We start with some auxiliary results.

Lemma 5. Let Ψ ⊆ Ω and ρ = τ |Ψ. If t and s are ρ-terms, and the identity

t = s is satisfied in every τ -mode, then it is satisfied in every ρ-mode.

Proof: Let (A,Ψ) be a mode. We enrich this algebra by adding new operations
from Ω − Ψ. For µ ∈ Ω − Ψ we put µ(a1, . . . , aτ(µ)) = a1. Then (A,Ω) is a

τ -mode and by the assumption it must satisfy the identity t = s. Hence (A,Ψ)
satisfies it as well. �

For the moment we switch our attention to linear identities involving only
one operation symbol which can be derived from the corresponding entropic law.
Assume that Ω = {ω} and τ(ω) = n > 1. For a linear term, define the addresses of
variables occurring in it as words over the alphabet {1, . . . , n}, given recursively
by a(x, x) = ǫ, the empty word, and further by a(ω(t1, . . . , tn), x) = ia(ti, x) if x
is a variable of ti. A linear term t is full if all its variables have addresses of the
same length. This length is called the depth of t.
For a natural number m let Tm be the set of all linear full terms with depth m

over the set Am = {1, . . . , n}m = {α1, . . . , αN}, where N = nm. We identify the
set Am with the set of words over the alphabet {1, . . . , n} of length m. Obviously
there is a bijection from Tm onto the set Am! of all permutations of Am given by

t(α1, . . . , αN ) 7→ (αi 7→ a(t, αi)).

For a word β ∈ Ak, where 0 ≤ k < m − 1, we define a permutation eβ of Am

by

eβ : α 7→

{
βijγ if α = βjiγ,

α otherwise,

where i, j ∈ {1, . . . , n} and γ is a word of length n − k − 2. Note that each such
permutation is an involution. Let (Gm, ◦, −1, 1) be the subgroup of the group

(Am!, ◦,
−1, 1) generated by all permutations eβ , where β ∈ Ak and k < m − 1.

Lemma 6. Let s ∈ Tm be a term such that for all α ∈ Am we have a(s, α) = α.

For t ∈ Tm the identity s = t is a consequence of εω,ω if and only if ϕ: α 7→ a(t, α)
belongs to Gm.

Theorem 7. A free mode of type τ over a set of cardinality at least two does

not satisfy the Szendrei identity σ
i,j
ω , for τ(ω) = n > 2.

Proof: Let x, y ∈ X be two distinct variables and let

p = ω(ω(x, . . . , x), ω(y, x, . . . , x), ω(y, x, . . . , x), ω(x, . . . , x), . . . , ω(x, . . . , x)),

q = ω(ω(x, y, x, . . . , x), ω(x, . . . , x), ω(y, x, . . . , x), ω(x, . . . , x), . . . , ω(x, . . . , x)).
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Suppose that (p, q)∈Th(ι∪ε). Let t be a linear term such that p=t(y, y, x, x, . . . , x)
and q = t(y, x, y, x, . . . , x). By Theorem 3 there are unary terms u1 = u1(y), u2 =
u2(y), u3 = u3(x), . . . , un2 = un2(x) and v1 = v1(y), v2 = v2(x), v3 = v3(y), v4 =
v4(x), . . . , vn2 = vn2(x), such that the identity t(u1, . . . , un2) = t(v1, . . . , vn2)
follows from entropicity. By Lemma 5 we may assume that all ui and vj contain
only the operation symbol ω. Further by Lemma 2 we may assume that all these
terms are full and have the same depth. This means that they are equal to w(x)
or to w(y), where w is a full unary term of depth m − 2, for certain m > 1,
involving only operation ω.
The theory Th(ε) is linear, hence by Lemma 2 there exist terms s′(α1, . . . , αN )

and t′(α1, . . . , αN ) in the set Tm and a mapping f : {α1, . . . , αN} → {x, y} such
that

p′ := t(w(y), w(y), w(x), w(x), . . . , w(x)) = s′(f(α1), . . . , f(αN )),

q′ := t(w(y), w(x), w(y), w(x), . . . , w(x)) = t′(f(α1), . . . , f(αN ))

and (t′, s′) ∈ Th(ε). Without loss of generality we may assume that for all α ∈ Am

we have a(s′, α) = α. Let ϕ ∈ Am! be the corresponding bijection of Lemma 6.
Then

t′(α1, . . . , αN ) = s′(ϕ−1(α1), . . . , ϕ−1(αN )).

Let t[γ] denote a subterm of the term t under the address γ. We know that
p′[21 . . . 1] = y, whence q′[ϕ(21 . . . 1)] = y. So

ϕ(21 . . . 1) ∈ {12γ | γ ∈ Am−2} ∪ {31γ | γ ∈ Am−2}.

On the other hand

ϕ(21 . . . 1) ∈ {21 . . . 1, 121 . . .1, . . . , 1 . . . 12}.

Thus we get
ϕ(21 . . . 1) = 121 . . .1.

Further note that for any permutation β ∈ Am−2 and 0 ≤ k ≤ m − 1 if

eβ(

k times
︷ ︸︸ ︷

1 . . . 1 21 . . .1) =

k′ times
︷ ︸︸ ︷

1 . . . 1 21 . . . 1,

then

eβ(

k times
︷ ︸︸ ︷

1 . . . 1 31 . . .1) =

k′ times
︷ ︸︸ ︷

1 . . . 1 31 . . . 1.

Thus, because ϕ is a composition of such permutations, we get

ϕ(31 . . . 1) = 131 . . .1.

This would mean that q′[131 . . .1] = y, but we have q′[131 . . .1] = x, a contradic-
tion.
We have shown that σ

1,2
ω cannot hold in any free mode over the set of cardi-

nality at least two. Similar considerations show the same for any other Szendrei

identity σ
i,j
ω . �
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Corollary 8. No nontrivial free mode having at least one basic operation of arity

at least 3 is a subreduct of a semimodule.

Remark 9. After reading a preliminary version of this article, David Stanovský
from Charles University in Prague was able to construct a finite example of a
non-Szendrei mode. With his permission, we present it here.
Let ω be a ternary operation on the set {0, 1, 2} given by

ω(x, y, z) =

{
2− z if x = y = 1,

z otherwise.

Then

ω(ω(x1, x2, x3), ω(y1, y2, y3), ω(z1, z2, z3))

=







2− z3 if x3 = y3 = 1 and (z1, z2) 6= (1, 1)

or z1 = z2 = 1 and (x3, y3) 6= (1, 1),

z3 otherwise.

So the algebra ({0, 1, 2}, ω) is a mode. But

ω(ω(0, 0, 1), ω(0, 0, 0), ω(0, 1, z)) = z 6= 2− z = ω(ω(0, 0, 0), ω(0, 0, 0), ω(1, 1, z))

for z 6= 1. Thus ({0, 1, 2}, ω) is not a Szendrei mode.

Problem 10. Is the equational theory of all modes of a fixed type decidable?

Acknowledgments. The author is grateful to David Stanovský for allowing
us to present his example of a finite, non-Szendrei mode. We would also like
to express our gratitude to Prof. Anna Romanowska for her support and many
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