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Supremum properties of Galois–type connections

Árpád Száz

Abstract. In a former paper, motivated by a recent theory of relators (families of rela-
tions), we have investigated increasingly regular and normal functions of one preordered
set into another instead of Galois connections and residuated mappings of partially or-
dered sets.
A function f of one preordered set X into another Y has been called

(1) increasingly g-normal, for some function g of Y into X, if for any x ∈ X and
y ∈ Y we have f(x) ≤ y if and only if x ≤ g(y);

(2) increasingly ϕ-regular, for some function ϕ of X into itself, if for any x1, x2 ∈ X

we have x1 ≤ ϕ(x2) if and only if f(x1) ≤ f(x2).

In the present paper, we shall prove that if f is an increasingly regular function of X
onto Y , or f is an increasingly normal function of X into Y , then f [sup(A)] ⊂ sup(f [A])
for all A ⊂ X. Moreover, we shall also prove some more delicate, but less important
supremum properties of such functions.

Keywords: preordered sets, Galois connections (residuated mappings), supremum pro-
perties
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Introduction

In a former paper [14], motivated by a recent theory of relators (see [10] and [7]),
we have investigated increasingly regular and normal functions of one preordered
set into another instead of Galois connections [5, p. 155] and residuated mappings
[2, p. 11] of partially ordered sets.

A function f of one preordered set X into another Y has been called

(1) increasingly g-normal, for some function g of Y into X , if for any x ∈ X

and y ∈ Y we have f(x) ≤ y if and only if x ≤ g(y);

(2) increasingly ϕ-regular, for some function ϕ of X into itself, if for any
x1, x2 ∈ X we have x1 ≤ ϕ(x2) if and only if f(x1) ≤ f(x2).

In the first part of the present paper, we shall prove that if f is an increasingly
regular function of X onto Y , or f is an increasingly normal function of X into Y ,
then

f [ sup(A)] ⊂ sup(f [A])
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for all A ⊂ X . Moreover, we shall also show that under some completeness
properties of X the converse statements are also true.

In the second part of present paper, we shall prove that if f is an increasingly
ϕ-regular function of X onto a partially ordered set Y , then

sup
(

f [A]
)

⊂ f
[

min
(

ub(A) ∩ ϕ[X ]
)]

for all A ⊂ X . Moreover, by using a similar proof, we shall also show that if f is
an increasingly g-normal function of X into Y , then

g
[

sup(f [A])
]

⊂ min
(

ub(A) ∩ g[Y ]
)

for all A ⊂ X .

Actually, we shall prove the same inclusions for the relations g
f
of Y into

X and ϕ
f
of X into itself defined by g

f
(y) = max{x ∈ X : f(x) ≤ y} and

ϕ
f
(x) = g

f
(f(x)) for all y ∈ Y and x ∈ X . Moreover, we shall establish some

immediate consequences of these inclusions.

1. A few basic facts on relations

A subset F of a product set X×Y is called a relation on X to Y . If in
particular F ⊂ X2, then we may simply say that F is a relation on X . Thus,
∆

X
= {(x, x) : x ∈ X} is a relation on X .

If F is a relation on X to Y , then for any x ∈ X and A ⊂ X the sets F (x) =
{y ∈ Y : (x, y) ∈ F} and F [A] =

⋃

a∈A F (a) are called the images of x and A
under F , respectively.

Moreover, the sets D
F
= {x ∈ X : F (x) 6= ∅} and R

F
= F [D

F
] are called the

domain and range of F , respectively. If in particular D
F
= X (R

F
= Y ), then

we say that F is a relation of X to Y (on X onto Y ).

In particular, a relation f on X to Y is called a function if for each x ∈ D
f

there exists y ∈ Y such that f(x) = {y}. In this case, by identifying singletons
with their elements, we may usually write f(x) = y in place of f(x) = {y}.

If F is a relation on X to Y , then a function f of D
F
to Y is called a selection

of F if f ⊂ F , i.e., f(x) ∈ F (x) for all x ∈ D
F
. Thus, the Axiom of Choice can

be briefly expressed by saying that every relation has a selection.

If F is a relation on X to Y , then the values F (x), where x ∈ X , uniquely
determine F since we have F =

⋃

x∈X{x}×F (x). Therefore, the inverse relation

F−1 can be defined such that F−1(y) = {x ∈ X : y ∈ F (x)} for all y ∈ Y .

Moreover, if in addition G is a relation on Y to Z, then the composition
relation G◦F can be defined such that (G◦F )(x) = G[F (x)] for all x ∈ X . Thus,
we also have (G ◦ F )[A] = G[F [A]] for all A ⊂ X .
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A relation R on X is called reflexive, antisymmetric, and transitive if ∆
X

⊂ R,

R∩R−1 ⊂ ∆
X
, and R ◦R ⊂ R, respectively. Moreover, a reflexive and transitive

relation is called a preorder. And an antisymmetric preorder is called a partial
order.

2. A few basic facts on ordered sets

If ≤ is a relation on a nonvoid set X , then having in mind the terminology of
Birkhoff [1, p. 2] the ordered pair X(≤) = (X,≤) is called a goset (generalized
ordered set). And we usually write X in place of X(≤).

If X(≤) is a goset, then by taking X∗ = X and ≤∗=≤−1 we can form a new
goset X∗(≤∗). This is called the dual of X(≤). And we usually write ≥ in place
of ≤∗.

The goset X is called reflexive, transitive, and antisymmetric if the inequality
relation ≤ in it has the corresponding property. Moreover, for instance, X is
called preordered if it is reflexive and transitive.

In particular, a preordered set will be called a proset and a partially ordered set
will be called a poset. The usual definitions on posets can be naturally extended
to gosets [12]. (See also [11].)

For instance, for any subset A of a goset X , the members of the families

lb(A) =
{

x ∈ X : ∀ a ∈ A : x ≤ a
}

and

ub(A) =
{

x ∈ X : ∀ a ∈ A : a ≤ x
}

are called the lower and upper bounds of A in X , respectively.

Moreover, the members of the families

min(A) = A ∩ lb(A), max(A) = A ∩ ub(A),

inf(A) = max
(

lb(A)
)

, sup(A) = min
(

ub(A)
)

are called the minima, maxima, infima and suprema of A in X , respectively.

Thus, for any A,B ⊂ X , we have A ⊂ lb(B) if and only if B ⊂ ub(A).
Moreover, in [13], we have proved that a reflexive goset X is antisymmetric if and
only if card(max(A)) ≤ 1 (resp. card(sup(A)) ≤ 1) for all A ⊂ X .

Now, the goset X may, for instance, be naturally called

(1) sup-complete if sup(A) 6= ∅ for all A ⊂ X ;
(2) quasi-sup-complete if sup(A) 6= ∅ for all A ⊂ X with A 6= ∅.

In [3], we have proved that X is quasi-sup-complete if and only if it is pseudo-inf-
complete in the sense that inf(A) 6= ∅ for all A ⊂ X with lb(A) 6= ∅.
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3. Closure operations and regular structures

Definition 3.1. A function ϕ of a prosetX into itself is called an unary operation
onX . More generally, a function f ofX into another proset Y is called a structure
on X .

Remark 3.2. The latter terminology has been mainly motivated by the various
structures derived from relators. (See [9] and [11].)

Definition 3.3. An operation ϕ on X is called

(1) expansive if ∆
X

≤ ϕ;

(2) quasi-idempotent if ϕ2 ≤ ϕ.

Moreover, a structure f on X is called increasing if for any x1, x2 ∈ X , with
x1 ≤ x2, we have f(x1) ≤ f(x2).

Remark 3.4. Note that if (1) holds, then we also have ϕ = ∆
X
◦ϕ ≤ ϕ◦ϕ = ϕ2.

Therefore, if both (1) and (2) hold andX is a poset, then ϕ is actually idempotent.

Thus, according to [1, p. 111], we may also naturally have the following

Definition 3.5. An increasing, expansive and quasi-idempotent operation ϕ on
X is called a closure operation on X .

Remark 3.6. Now, an operation ϕ on X may be naturally called an interior
operation if it is a closure operation on X∗.

In [14], having in mind the ideas of [7], we have also introduced the following

Definition 3.7. A structure f on X is called increasingly ϕ-regular, for some
operation ϕ on X , if for any x1, x2 ∈ X we have

x1 ≤ ϕ(x2) ⇐⇒ f(x1) ≤ f(x2).

Remark 3.8. Now, a structure f on X to Y may be naturally called decreasingly
ϕ-regular if it is an increasingly ϕ-regular structure on X to Y ∗.

If f is a ϕ-regular structure on X , then according to a recent definition of
Galois connections [5, p. 155] we may also naturally say that the pair (f, ϕ) is a
Pataki connection on X .

However, even instead of Galois connections, it has been more convenient to
use residuated mappings ([2, p. 11]) in the following modified form.

Definition 3.9. A structure f on X to Y is called increasingly g-normal, for
some structure g on Y to X , if for any x ∈ X and y ∈ Y we have

f(x) ≤ y ⇐⇒ x ≤ g(y).
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Remark 3.10. Now, a structure f on X to Y may be naturally decreasingly
g-normal if it is an increasingly g-normal structure on X to Y ∗.

The importance of the latter definition lies mainly in the fact that ifX is a goset
and F (A) = ub(A) and G(A) = lb(A) for all A ⊂ X , then F is a decreasingly
G-normal structure on P(X). (See [5, 7.24 and 7.38].)

4. Relationships between closure operations and regular structures

By using the above definitions, in [14], we have proved the following theorems.

Theorem 4.1. If f is an increasingly ϕ-regular structure on X , then

(1) ϕ is expansive;
(2) f is increasing;
(3) f ≤ f ◦ ϕ ≤ f .

Corollary 4.2. If f is an increasingly ϕ-regular structure on X to a poset Y ,

then f = f ◦ ϕ.

Theorem 4.3. If ϕ is an operation on X , then the following assertions are equi-

valent:

(1) ϕ is a closure operation;
(2) ϕ is increasingly ϕ-regular;
(3) there exists an increasingly ϕ-regular structure f on X .

Corollary 4.4. If f is a structure and ϕ is an operation on X , then f is increa-

singly ϕ-regular if and only if ϕ is a closure operation and for any x1, x2 ∈ X we

have ϕ(x1) ≤ ϕ(x2) if and only if f(x1) ≤ f(x2).

Theorem 4.5. If f is an increasingly g-normal structure on X to Y and ϕ is an

operation on X such that ϕ ≤ g ◦ f ≤ ϕ, then f is increasingly ϕ-regular.

Hence, by using that now g is an increasingly f -normal structure on Y ∗ to X∗,
we can also state

Theorem 4.6. If f is an increasingly g-normal structure on X to Y , then f and

g are increasing. Moreover, ϕ = g ◦ f is a closure operation on X and ψ = f ◦ g
is an interior operation on Y .

Moreover, we shall also need the following very particular results of [14].

Theorem 4.7. If f is an increasingly ϕ-regular structure on one poset X to

another Y , then f is injective if and only if ϕ = ∆
X
.

Theorem 4.8. If f is an increasingly g-normal structure on one poset X to

another Y , then f is injective if and only if Rg = X .
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5. Characterizations of increasingly normal structures

Definition 5.1. For a structure f on X to Y , we define two relations Γ
f
and g

f

on Y to X such that

Γ
f
(y) =

{

x ∈ X : f(x) ≤ y
}

and g
f
(y) = max

(

Γ
f
(y)

)

for all y ∈ Y .

Remark 5.2. Note that if in particularX is a poset, then g
f
is already a function

of a subset of Y into X .

Concerning the relation g
f
, in [14], we have, for instance, proved the following

Theorem 5.3. For any structures f on X to Y and g on Y to X , the following

assertions are equivalent:

(1) f is increasingly g-normal;
(2) f is increasing and g is a selection of g

f
.

Definition 5.4. For a structure f on X to Y , we define

Q
f
=

{

g ∈ XY : f is increasingly g-normal
}

.

Moreover, if in particular Q
f
6= ∅, then we say that f is increasingly normal.

Concerning increasingly normal structures, in [14], we have, for instance,
proved the following theorems.

Theorem 5.5. If f is a structure on X to Y , then the following assertions are

equivalent:

(1) f is increasingly normal;
(2) f is increasing and Y is the domain of g

f
.

Theorem 5.6. If f is an increasingly normal structure on X to Y , then

g
f
(y) =

{

g(y) : g ∈ Q
f

}

for all y ∈ Y . Therefore, we actually have g
f
=

⋃

Q
f
.

Theorem 5.7. If f is an increasingly normal structure on a poset X to Y , then

g
f
is an increasing structure on Y to X and Q

f
= {g

f
}.

6. Characterizations of increasingly regular structures

Definition 6.1. For a structure f on X , we define two relations Λ
f
and ϕ

f
on

X such that

Λ
f
(x) =

{

u ∈ X : f(u) ≤ f(x)
}

and ϕ
f
(x) = max

(

Λ
f
(x)

)

for all x ∈ X .
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Remark 6.2. Note thus Λ
f
is preorder relation on X . Moreover, we have Λ

f
=

Γ
f
◦ f and ϕ

f
= g

f
◦ f .

Concerning the relation ϕ
f
, in [14], we have also proved the following

Theorem 6.3. If ϕ is an operation and f is a structure on X , then the following

assertions are equivalent:

(1) f is increasingly ϕ-regular;
(2) f is increasing and ϕ is a selection of ϕ

f
.

Definition 6.4. For a structure f on X , we define

O
f
=

{

ϕ ∈ XX : f is increasingly ϕ-regular
}

.

Moreover, if in particular O
f
6= ∅, then we say that f is increasingly regular.

Concerning increasingly regular structures, in [14], we have, for instance,
proved the following theorems.

Theorem 6.5. If f is a structure on X , then the following assertions are equi-

valent:

(1) f is increasingly regular;
(2) f is increasing and X is the domain of ϕ

f
.

Theorem 6.6. If f is an increasingly regular structure on X , then

ϕ
f
(x) =

{

ϕ(x) : ϕ ∈ O
f

}

for all x ∈ X . Therefore, we actually have ϕ
f
=

⋃

O
f
.

Theorem 6.7. If f is an increasingly regular structure on X onto Y , then f is

already increasingly normal.

Theorem 6.8. If f is an increasingly regular structure on a poset X , then ϕ
f
is

a closure operation on X and O
f
= {ϕ

f
}.

7. Supremum properties of increasingly normal structures

As an extension of an observation of Pickert [8] and the first part of [5, Propo-
sition 7.31], we can prove the following

Theorem 7.1. If f is an increasingly normal structure on X to Y , then for any

A ⊂ X we have

f [ sup(A)] ⊂ sup
(

f [A]
)

.

Proof: If y ∈ f [sup(A)], then there exists x ∈ sup(A) such that y = f(x).
Hence, we can see that

x ∈ ub(A) and x ∈ lb
(

ub(A)
)

.
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Thus, in particular, for any a ∈ A, we have a ≤ x. Hence, by using Theorem 4.6,
we can infer that f(a) ≤ f(x) = y. Therefore, y ∈ ub(f [A]).

On the other hand, if v ∈ ub(f [A]), then for any a ∈ A we have f(a) ≤ v.
Hence, by choosing a g ∈ Q

f
, we can infer that a ≤ g(v). Therefore, g(v) ∈ ub(A).

Hence, by using that x ∈ lb(ub(A)), we can infer that x ≤ g(v). This implies that
y = f(x) ≤ v. Therefore, y ∈ lb

(

ub(f [A])
)

, and thus

y ∈ ub
(

f [A]
)

∩ lb
(

ub
(

f [A]
))

= sup
(

f [A]
)

also holds. This proves the required inclusion. �

From the above theorem, it is clear that in particular we have

Corollary 7.2. If f is an increasingly normal structure on a sup-complete proset

X to a poset Y , then f [sup(A)] = sup(f [A]) for all A ⊂ X .

Proof: Note that now, in addition to f [sup(A)] ⊂ sup(f [A]), we also have
f [sup(A)] 6= ∅ and card

(

sup(f [A])
)

≤ 1 for all A ⊂ X . Therefore, the required
assertion is also true. �

Moreover, we can also prove the following partial converse to Theorem 7.1.

Theorem 7.3. If f is a structure on a sup-complete proset X to Y such that

f [ sup(A)] ⊂ sup
(

f [A]
)

for all A ⊂ X , then f is increasingly normal.

Proof: By Theorem 5.5, it is enough to show only that now f is increasing and
g

f
(y) 6= ∅ for all y ∈ Y .

For this, first note that if x1, x2 ∈ X such that x1 ≤ x2, then by taking
A = {x1, x2} we have

x2 ∈ A ∩ ub(A) = max(A) ⊂ sup(A).

Hence, by using the assumed sup-preservingness of f , we can infer that

f(x2) ∈ f [ sup(A)] ⊂ sup
(

f [A]
)

⊂ ub
(

f [A]
)

= ub
(

{f(x1), f(x2)}
)

.

Therefore, f(x1) ≤ f(x2), and thus f is increasing.

Next, note that if y ∈ Y , then by the assumed sup-completeness of X there
exists x ∈ X such that x ∈ sup

(

Γ
f
(y)

)

. Hence, by using the assumed sup-
preservingness of f , we can infer that

f(x) ∈ f
[

sup
(

Γ
f
(y)

]

⊂ sup
(

f [Γ
f
(y)]

)

⊂ lb
(

ub
(

f [Γ
f
(y)]

))

.
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Moreover, by Definition 5.1, we have f(u) ≤ y for all u ∈ Γ
f
(y), and thus y ∈

ub
(

f [Γ
f
(y)]

)

. Hence, it is clear that f(x) ≤ y, and thus x ∈ Γ
f
(y). Therefore,

x ∈ Γ
f
(y) ∩ sup

(

Γ
f
(y)

)

= max
(

Γ
f
(y)

)

= g
f
(y),

and thus g
f
(y) 6= ∅ is also true. �

Now, as an immediate consequence of Theorems 7.1 and 7.3, we can also state
the following extension of an observation of Pickert [8] and the first part of [5,
Proposition 7.34].

Corollary 7.4. If f is a structure on a sup-complete proset X to Y , then the

following assertions are equivalent:

(1) f is increasingly normal;
(2) f [sup(A)] ⊂ sup(f [A]) for all A ⊂ X .

8. Supremum properties of increasingly regular structures

From Theorem 7.1, by using Theorem 6.7, we can immediately derive

Theorem 8.1. If f is an increasingly regular structure on X onto Y , then for

any A ⊂ X we have

f [ sup(A)] ⊂ sup
(

f [A]
)

.

Proof: In this case, by Theorem 6.7, the structure f is increasingly normal.
Therefore, Theorem 7.1 can be applied to get the required inclusion. �

From the above theorem, it is clear that in particular we also have

Corollary 8.2. If f is an increasingly regular structure on a sup-complete proset

X onto a poset Y , then f [sup(A)] = sup(f [A]) for all A ⊂ X .

Moreover, analogously to Theorem 7.3, we can also prove the following

Theorem 8.3. If f is a structure on a quasi-sup-complete proset X to Y such

that

f [ sup(A)] ⊂ sup
(

f [A]
)

for all A ⊂ X with A 6= ∅, then f is increasingly regular.

Proof: By Theorem 6.5, it is enough to show only that f is increasing and
ϕ

f
(x) 6= ∅ for all x ∈ X .

From the proof of Theorem 7.3, it is clear that f is increasing. Moreover,
if x ∈ X , then by Definition 6.1 we have x ∈ Λ

f
(x), and thus Λ

f
(x) 6= ∅.

Therefore, by the assumed quasi-sup-completeness of X , there exists α ∈ X such
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that α ∈ sup
(

Λ
f
(x)

)

. Hence, by using the assumed sup-preservingness of f , we
can infer that

f(α) ∈ f
[

sup
(

Λ
f
(x)

]

⊂ sup
(

f [Λ
f
(x)]

)

⊂ lb
(

ub
(

f [Λ
f
(x)]

))

.

Moreover, by Definition 6.1, we also have f(u) ≤ f(x) for all u ∈ Λ
f
(x), and thus

f(x) ∈ ub
(

f [Λ
f
(x)]

)

. Hence, it is clear that f(α) ≤ f(x), and thus α ∈ Λ
f
(x).

Therefore,
α ∈ Λ

f
(x) ∩ sup

(

Λ
f
(x)

)

= max
(

Λ
f
(x)

)

= ϕ
f
(x),

and thus ϕ
f
(x) 6= ∅ is also true. �

Now, as an immediate consequence of Theorems 8.1 and 8.3, we can also state

Corollary 8.4. If f is a structure on a quasi-sup-complete proset X onto Y ,

then the following assertions are equivalent:

(1) f is increasingly regular;
(2) f [sup(A)] ⊂ sup(f [A]) for all A ⊂ X .

Remark 8.5. Note that if f is as an increasingly regular structure on X onto Y ,
or f is an increasingly normal structure on X to Y , then by Theorems 8.1 and 7.1
we also have

f [ min(X)] = f [ sup(∅)] ⊂ sup
(

f [∅]
)

= min(Y ).

9. Further supremum properties of increasingly regular structures

In addition to Theorem 8.1, we can also prove the following

Theorem 9.1. If f is a increasingly regular structure on X onto a poset Y , then

for any A ⊂ X we have

sup
(

f [A]
)

⊂ f
[

min
(

ub(A) ∩ ϕ
f
[X ]

)]

.

Proof: If y ∈ sup(f [A]), then by the corresponding definitions we have

y ∈ ub
(

f [A]
)

and y ∈ lb
(

ub
(

f [A]
))

.

Thus, in particular, for any a ∈ A we have f(a) ≤ y. Moreover, since Y = f [X ],
there exists x ∈ X such that y = f(x). Therefore, we also have f(a) ≤ f(x).
Hence, by taking a ϕ ∈ O

f
, we can infer that a ≤ ϕ(x). Therefore,

ϕ(x) ∈ ub(A) ∩ ϕ[X ] ⊂ ub(A) ∩ ϕ
f
[X ].

Namely, by Theorem 6.3, we have ϕ ⊂ ϕ
f
, and thus ϕ[X ] ⊂ ϕ

f
[X ].
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On the other hand, if v ∈ ub(A) ∩ ϕ
f
[X ], then for any a ∈ A we have a ≤ v,

and moreover there exists u ∈ X such that v ∈ ϕ
f
(u). Hence, by Theorem 6.6,

we can see that there exists ψ ∈ O
f
such that v = ψ(u). Therefore, we also

have a ≤ ψ(u), and thus f(a) ≤ f(u). Hence, it is clear that f(u) ∈ ub(f [A]).
Moreover, since

f(x) = y ∈ lb
(

ub
(

f [A]
))

,

we can also see that f(x) ≤ f(u). Hence, by using Corollary 4.4, we can infer
that ψ(x) ≤ ψ(u) = v. Moreover, by Theorem 6.3, we also have

ϕ(x), ψ(x) ∈ ϕ
f
(x) = max

(

Λ
f
(x)

)

= Λ
f
(x) ∩ ub

(

Λ
f
(x)

)

.

Hence, in particular, we can see that ϕ(x) ≤ ψ(x), and thus ϕ(x) ≤ v also holds.
Consequently, ϕ(x) ∈ lb

(

ub(A) ∩ ϕ
f
[X ]

)

, and thus

ϕ(x) ∈
(

ub(A) ∩ ϕ
f
[X ]

)

∩ lb
(

ub(A) ∩ ϕ
f
[X ]

)

= min
(

ub(A) ∩ ϕ
f
[X ]

)

is also true. Now, by Corollary 4.2, it is clear that

y = f(x) = f
(

ϕ(x)
)

∈ f
[

min
(

ub(A) ∩ ϕ
f
[X ]

)]

.

Therefore, the required inclusion is true. �

Remark 9.2. From the above proof, we can also see that if f is an increasingly
ϕ-regular structure on X onto a poset Y , then for any A ⊂ X we have

sup
(

f [A]
)

⊂ f
[

min
(

ub(A) ∩ ϕ[X ]
)]

.

Moreover, as an immediate consequence of Theorems 8.1 and 9.1, we can also
state

Theorem 9.3. If f is an increasingly regular structure on X onto a poset Y ,

then

f [ sup(A)] = sup
(

f [A]
)

for all A ⊂ X with ub(A) ⊂ ϕ
f
[X ].

Proof: Namely, if A ⊂ X , then by Theorem 8.1 we have

f [ sup(A)] ⊂ sup
(

f [A]
)

even if Y only a proset.

Moreover, if ub(A) ⊂ ϕ
f
[X ], then by Theorem 9.1 we also have

sup
(

f [A]
)

⊂ f
[

min
(

ub(A) ∩ ϕ
f
[X ]

)]

= f
[

min
(

ub(A)
)]

= f [ sup(A)].

Therefore, the required equality is also true. �

From the latter theorem, by Theorems 6.8 and 4.7, it is clear that in particular
we also have
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Theorem 9.4. If f is an injective increasingly regular structure on one poset X

onto another Y , then for any A ⊂ X we have

f [ sup(A)] = sup
(

f [A]
)

.

Proof: Namely, by Theorem 6.8, the structure f is increasingly ϕ
f
-regular. Hen-

ce, by Theorem 4.7, we can see that ϕ
f
is the identity function of X . Therefore,

ϕ
f
[X ] = X . Now, by Theorem 9.3, it is clear that the required assertion is true.

�

10. Further supremum properties of increasingly normal structures

From Theorem 9.1, by using Theorem 4.5 and Remark 6.2, we can also get the
following

Theorem 10.1. If f is a increasingly normal structure on X onto a poset Y ,

then for any A ⊂ X we have

sup
(

f [A]
)

⊂ f
[

min
(

ub(A) ∩ g
f
[Y ]

)]

.

Proof: Now, by Theorem 4.5, the structure f is increasingly regular. Moreover,
by Remark 6.2, we have ϕ

f
= g

f
◦ f . Thus, in particular

ϕ
f
[X ] =

(

g
f
◦ f)[X ] = g

f

[

f [X ]
]

= g
f
[Y ].

Hence, by Theorem 9.1, it is clear that the required inclusion is also true. �

Now, as an immediate consequence of Theorems 7.1 and 10.1, we can also state

Theorem 10.2. If f is an increasingly normal structure on X onto a poset Y ,

then

f [ sup(A)] = sup
(

f [A]
)

for all A ⊂ X with ub(A) ⊂ g
f
[Y ].

Hence, by Theorems 5.7 and 4.8, it is clear that in particular we also have the
following

Theorem 10.3. If f is an injective increasingly normal structure on one poset

X onto another Y , then for any A ⊂ X we have

f [ sup(A)] = sup
(

f [A]
)

.

Proof: Now, by Theorem 5.7, the structure f is g
f
-normal. Hence, by Theo-

rem 4.8, we can see that X = g
f
[Y ]. Therefore, by Theorem 10.2, the required

assertion is true. �

However, it now more interesting that, analogously to Theorem 9.1, we can
also prove the following
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Theorem 10.4. If f is an increasingly normal structure on X to Y , then for

any A ⊂ X we have

g
f

[

sup
(

f [A]
)]

⊂ min
(

ub(A) ∩ g
f
[Y ]

)

.

Proof: If y ∈ sup(f [A]), then by the corresponding definitions we have

y ∈ ub
(

f [A]
)

and y ∈ lb
(

ub
(

f [A]
))

.

Thus, in particular, for any a ∈ A we have f(a) ≤ y. Hence, by taking any
g ∈ Q

f
, we can infer that a ≤ g(y). Therefore,

g(y) ∈ ub(A) ∩ g[Y ] ⊂ ub(A) ∩ g
f
[Y ].

Namely, by Theorem 5.3, we have g ⊂ g
f
, and thus g[Y ] ⊂ g

f
[Y ].

On the other hand, if u ∈ ub(A)∩g
f
[Y ], then for any a ∈ A we have a ≤ u, and

moreover there exists v ∈ Y such that u ∈ g
f
(v). Hence, by Theorem 5.6, we can

see that there exists h ∈ Q
f
such that u = h(v). Therefore, a ≤ h(v), and thus

f(a) ≤ v. This shows that v ∈ ub(f [A]). Hence, by using that y ∈ lb(ub(f [A])),
we can infer that y ≤ v. Now, by Theorem 4.6, it is clear that h(y) ≤ h(v) = u.
Moreover, by Theorem 5.3, we also have

g(y), h(y) ∈ g
f
(y) = max

(

Γ
f
(y)

)

= Γ
f
(y) ∩ ub

(

Γ
f
(y)

)

.

Hence, in particular, we can see that g(y) ≤ h(y), and thus g(y) ≤ u also holds.
Consequently, g(y) ∈ lb

(

ub(A) ∩ g
f
[Y ]

)

, and thus

g(y) ∈ ub(A) ∩ g
f
[Y ] ∩ lb

(

ub(A) ∩ g
f
[Y ]

)

= min
(

ub(A) ∩ g
f
[Y ]

)

is also true. Now, by Theorem 5.6, it is clear that

g
f
(y) =

{

g(y) : g ∈ Q
f

}

⊂ min
(

ub(A) ∩ g
f
[Y ]

)

.

Therefore,

g
f

[

sup
(

f [A]
)]

=
⋃

{

g
f
(y) : y ∈ sup

(

f [A]
)}

⊂ min
(

ub(A) ∩ g
f
[Y ]

)

is also true. �

Remark 10.5. From the above proof, we can also see that if f is an increasingly
g-normal structure on X to Y , then for any A ⊂ X we have

g
[

sup
(

f [A]
)]

⊂ min
(

ub(A) ∩ g[Y ]
)

.

Moreover, as an immediate consequence of Theorem 10.4, we can also state
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Corollary 10.6. If f is an increasingly normal structure on X to Y , then

g
f

[

sup
(

f [A]
)]

⊂ sup(A)

for all A ⊂ X with ub(A) ⊂ g
f
[Y ].

Hence, it is clear that in particular we also have

Corollary 10.7. If f is an increasingly normal structure on a poset X to a

sup-complete proset Y , then

sup(A) = g
f

[

sup
(

f [A]
)]

for all A ⊂ X with ub(A) ⊂ g
f
[Y ].

Moreover, from Corollary 10.6, by using Theorems 5.7 and 4.8, we can also
immediately get the following

Theorem 10.8. If f is an injective increasingly normal structure on a poset X

to another Y , then for any A ⊂ X we have

g
f

[

sup
(

f [A]
)]

⊂ sup(A).

Proof: Now, by Theorem 5.7, the structure f is g
f
-normal. Hence, by Theo-

rem 4.8, we can see that X = g
f
[Y ]. Therefore, by Corollary 10.6, the required

assertion is true. �

From the above theorem, it is clear that in particular we also have

Corollary 10.9. If f is an injective increasingly normal structure on a poset X

to a sup-complete poset Y , then for any A ⊂ X we have

sup(A) = g
f

[

sup
(

f [A]
)]

.
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