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Retral spaces and continua with the fixed point property

J. van Mill, G.J. Ridderbos

Abstract. We show that every retral continuum with the fixed point property is locally
connected. It follows that an indecomposable continuum with the fixed point property
is not a retract of a topological group.
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1. Introduction

A space X is called a retral space if it is a retract of a topological group. If G
is a topological group, then the function µ defined by µ(x, y, z) = xy−1z has the
property that µ(x, y, y) = x = µ(y, y, x) for all x, y ∈ G. A continuous function
with this property is called a Mal’tsev function and if there is a Mal’tsev function
on a space X then X is called a Mal’tsev space. The class of Mal’tsev spaces is
closed under retractions and we have just shown that every topological group is
a Mal’tsev space. So every retral space is also a Mal’tsev space.
Mal’tsev functions were introduced by Mal’tsev in [7] and Uspenskĭı has shown

that much of the behaviour of topological groups generalizes to Mal’tsev spaces
(see for example [15], [16] and [11]). Since every retral space is a Mal’tsev space, it
is natural to ask whether the converse is also true. It was shown by Sipacheva in
[12] that every compact Mal’tsev space is retral (see also [6, Corollary 6] and [11,
Theorem 1.6] for generalizations). In [6], Gartside, Reznichenko and Sipacheva
provide an example of a Mal’tsev space which is not retral and Cauty [4] has
provided an example of a compact Mal’tsev space which is not a retract of a
compact topological group.
In this note we prove that every retral continuum with the fixed point property

is locally connected. This leads to interesting examples. The fixed point property
is crucial as the dyadic solenoid demonstrates.
We would like to thank Vladimir Uspenskĭı for some helpful comments on this

paper.

2. Preliminaries

We assume that all spaces are regular. A continuum is a compact and connected
set. A space X is locally connected if for all x ∈ X and every open neighbourhood
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U of x, there is a connected set C ⊆ U such that x ∈ IntC. If x, y ∈ X and
A ⊆ X , then we say that x and y are connected in A provided there is a connected
set C containing x and y such that C ⊆ A. In particular x and y are connected
in X if and only if they belong to the same component of X . By convention, the
empty set is a connected set.
A space X is said to have the fixed point property provided that for every

continuous function f : X → X , there is some x ∈ X such that f(x) = x.

Definition 2.1. Let X be a topological space. If x ∈ X , then we say that the
components of X are regularly locally connected at x if for every neighbourhood
U of x there is a neighbourhood V of x such that for every component C of X ,
there is a connected set C′ in X such that

V ∩ C ⊆ C′ ⊆ U.

We say that the components of X are regularly locally connected if for every
x ∈ X , the components of X are regularly locally connected at x.

The following straightforward lemma explains our terminology. The easy proof
is left to the reader.

Lemma 2.2. Consider the following statements regarding a space X .

(1) X is locally connected.
(2) The components of X are regularly locally connected.
(3) The components of X are locally connected.

For every space X we have (1) → (2) and (2) → (3). If X is connected then
(2)→ (1).

We now provide examples to show that in the previous lemma (3) 6→ (2) and
(2) 6→ (1).

Example 2.3. By I we denote the usual unit interval [0, 1]. The space Z is given
by {0} ∪ {1/n : n ∈ N}. Let X be the subspace of the plane R2 given by:

X =
(

Z × I
)

∪
⋃

{

[1/2n, 1/(2n− 1)]× {1} : n ∈ N
}

.

The space X is a compact metric space. The components of X are locally con-
nected since every component of X is homeomorphic to I. Using Proposition 2.5
below one verifies easily that the components of X are not regularly locally con-
nected. This shows that (3) 6→ (2) in Lemma 2.2.

Example 2.4. Let X be the subspace of R given by:

X = {0} ∪
⋃

{

[1/2n, 1/(2n− 1)] : n ∈ N
}

.

One verifies easily that the components ofX are regularly locally connected. Since
X is not locally connected, this example shows that (2) 6→ (1) in Lemma 2.2.

The following proposition provides a reformulation of Definition 2.1. We omit
the easy proof.
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Proposition 2.5. SupposeX is a space and x ∈ X . The following are equivalent.

(1) The components of X are regularly locally connected at x.
(2) For every neighbourhood U of x there is a neighbourhood V of x such
that for all y, z ∈ V the following holds: If y and z are connected in X ,
then y and z are connected in U .

3. Retral continua with the fixed point property

Let U be a cover of the space X . We say that another cover V of X refines U
if for all V ∈ V there is some U ∈ U such that V ⊆ U .
If A ⊆ X and f : A → X then we say that f is limited by U provided that for

every z ∈ A there is an element U ∈ U containing both z and f(z). For a set A,
by ∆(A) we denote the diagonal in A2 which is given by {(a, a) : a ∈ A}.

Lemma 3.1. Let X be a Mal’tsev space. For every open cover U of X and

compact subset K ⊆ X , there is an open cover V of X such that whenever

x, y ∈ V ∈ V , there is a continuous map f : X → X such that f(x) = y and f ↾ K
is limited by U .

Proof: Fix a Mal’tsev function µ on X . By regularity we may refine the open
cover U by an open cover W of X , such that the cover {W : W ∈ W} is also a
refinement of U . For every W ∈ W we choose UW ∈ U such that W ⊆ UW . We
have that

∆(X)× W ⊆ µ−1[UW ].

Claim. For every W ∈ W there is an open cover VW of X such that

⋃

{

V × V ×
(

K ∩ W
)

: V ∈ VW

}

⊆ µ−1[UW ].

Proof of Claim: Let W ∈ W be given. If K ∩ W = ∅ then there is nothing to
prove. So assume K ∩ W 6= ∅. We fix x ∈ X . For every w ∈ K ∩ W , there are
open sets Ew and Gw such that

(x, x, w) ∈ Ew × Ew × Gw ⊆ µ−1[UW ].

Since K ∩W is compact, there is a finite set F ⊆ K ∩W such that the collection
{Gw : w ∈ F} covers K ∩W . Let Vx be given by

⋂

{Ew : w ∈ F}. Then Vx is an
open neighbourhood of x and clearly

Vx × Vx ×
(

K ∩ W
)

⊆ µ−1[UW ].

Therefore, the open cover VW may be given by {Vx : x ∈ X}. �

Since K is compact, we may fix a finite subcollection W ′ of W , such that W ′

is an open cover of K. Since W ′ is finite we may find an open cover V of X , such
that V is a refinement of VW for every W ∈ W ′.
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We claim that the cover V is as required. To show this, suppose that x, y ∈ V
for some V ∈ V . We define f : X → X by the formula f(z) = µ(y, x, z). Then
f is continuous and f(x) = µ(y, x, x) = y. To show that f ↾ K is limited by U ,
suppose z ∈ K. Then z ∈ W for some W ∈ W ′. Since x, y ∈ V ∈ V and V refines
VW , we have

(y, x, z) ∈ V × V ×
(

K ∩ W
)

⊆ µ−1[UW ].

It follows that f(z) = µ(y, x, z) ∈ UW . Recall that z ∈ W ⊆ UW and therefore it
follows that {z, f(z)} ⊆ UW . Since z was an arbitrary element of K, this shows
that f ↾ K is limited by U . �

For the remainder of this section, we are mainly concerned with compact spaces.
Recall from [12] that every compact Mal’tsev space is retral.

Theorem 3.2. Let X be a compact Mal’tsev space in which all components

have the fixed point property. Then the components of X are regularly locally
connected.

Proof: We use the formulation provided by Proposition 2.5. So fix x ∈ X and
let U be some arbitrary neighbourhood of x. Fix a Mal’tsev function µ on X .
Let G be a neighbourhood of x such that G ⊆ U . We have

G ×∆(X) ⊆ µ−1[U ].

So we may find an open cover W of X such that

⋃

{

G × W × W :W ∈ W
}

⊆ µ−1[U ].

We apply Lemma 3.1 to the open cover W to obtain an open cover V of X such
that whenever y, z ∈ V ∈ V , there is a continuous function f : X → X such that
f(y) = z and f is limited by W .
Now choose V ∈ V such that x ∈ V . We claim that V ∩ G is as required.

To see this, let y, z ∈ V ∩ G and suppose that y and z are connected in X .
Let C be the component of X containing y and z. By construction there is a
continuous function f : X → X such that f(y) = z and f is limited by W . We
define a function g : X → X by g(w) = µ(y, w, f(w)). Then g is continuous.
Since f(y) = z, we have f [C] ⊆ C and therefore there is some v ∈ C such that
f(v) = v. It follows that g(v) = µ(y, v, f(v)) = µ(y, v, v) = y. Since we also
have that g(y) = µ(y, y, f(y)) = f(y) = z, the set C′ = g[C] is a connected set
containing both y and z. We will show that C′ ⊆ U .
So suppose that w ∈ C. Then {w, f(w)} ⊆ W for some W ∈ W . Since y ∈ G,

it follows that (y, w, f(w)) ∈ µ−1[U ] and therefore

g(w) = µ(y, w, f(w)) ∈ U.
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Since w was an arbitrary element of C, we have shown that C′ = g[C] ⊆ U and
this completes the proof. �

It follows in particular that the space X given in Example 2.3 is not a Mal’tsev
space and by compactness it follows that this space is not retral. We now obtain
our main result:

Corollary 3.3. Every Mal’tsev continuum with the fixed point property is locally

connected.

Proof: This follows from Theorem 3.2 and Lemma 2.2 �

The following result is a generalization of the previous corollary, but it is in
fact equivalent to it.

Corollary 3.4. Suppose X is a Mal’tsev space and let C ⊆ X be a compact

component of X with the fixed point property. Then C is locally connected.

Proof: Let µ be a Mal’tsev function on X . Since C is a component of X it
follows that µ[C3] is a connected subset of X . If x ∈ C, then µ(x, x, x) = x and
therefore µ[C3] = C. It follows that µ ↾ C3 : C3 → C is a Mal’tsev function on
C. Now apply Corollary 3.3 to the Mal’tsev continuum C. �

A continuum X is called decomposable if it is the union of two proper subcon-
tinua. A continuum is indecomposable if it is not decomposable. It is well-known
that indecomposable continua are not locally connected, see for example [8, Corol-
lary 1.10.14]. We obtain the following corollary:

Corollary 3.5. Suppose X is an indecomposable continuum with the fixed point
property. Then X is not a Mal’tsev space and hence not a retract of a topological
group.

Example 3.6. Let S be the dyadic solenoid, see [8, p. 85] for a description.
Then S is indecomposable but S admits a group structure which makes S into
a topological group. Thus S is a metric continuum which is both retral and
indecomposable. This example shows that the fixed point property is essential in
Corollary 3.3.

Let Sn be the n-dimensional unit sphere in Rn+1 and Bn the closed n-dimen-
sional unit ball in R

n. A metric space X is connected in dimension m, abbrevi-
ated Cn, if for every 0 ≤ m ≤ n, every continuous function f : Sm → X can be
extended to a continuous function f : Bm+1 → X . A metric space X is called
locally connected in dimension n, abbreviated LCn, if for every x ∈ X and for ev-
ery neighbourhood U of x and for every 0 ≤ m ≤ n, there exists a neighbourhood
V of x such that every continuous function f : Sm → V can be extended to a con-
tinuous function f : Bm+1 → U . Note that a metric space X is path-connected
if and only if it is C0 and locally path-connected if and only if it is LC0.
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Let X be a metric continuum with the fixed point property and assume that
X is a Mal’tsev space. Then X is locally connected by Corollary 3.3. It follows
from the Mazurkiewicz Theorem (cf. [8, Theorem 1.5.22] and [8, Corollary 1.5.24])
that X is path-connected and locally path-connected and thus X is C0 and LC0.
We do not know whether this result generalizes to higher dimensional forms of
connectivity. For example, let X be a metric continuum with the fixed point
property and n > 0. Suppose X is a Mal’tsev space which is Cn, is then X
also LCn?

4. Retracts of coset spaces and Mal’tsev spaces

In this section we study the connection between Mal’tsev spaces and retracts
of coset spaces. A space X is called a coset space provided that there is a topolog-
ical group G with closed subgroup H such that X and G/H are homeomorphic.
A topological space X is called homogeneous provided that for every x, y ∈ X ,
there exists a homeomorphism h ofX such that h(x) = y. Every topological group
is homogeneous. Every coset space is also homogeneous but the converse is not
true in general, see Ford [5], van Mill [9] and van Mill and Ridderbos [10] for ex-
amples. However, Ungar [13] has shown that every locally compact homogeneous
metric space is a coset space.
Given a certain class A of homogeneous spaces, it is natural to ask which spaces

are retracts of members of A. Uspenskĭı has shown in [14], that every space is a
retract of a homogeneous space. By a result of Motorov (cf. [1]), not every compact
space is a retract of a compact homogeneous space, an example is the well-known
sin(1/x)-curve. Other results in this spirit have already been mentioned in the
introduction. In addition it follows from Corollary 3.3 that the sin(1/x)-curve is
not a Mal’tsev space and therefore it is not a retract of a topological group. This
observation also follows from the following simple argument which was brought to
our attention by Uspenskĭı. Every Mal’tsev space X has the following property:
for every x, y ∈ X there is a continuous function f : X → X such that f(x) = y
and f(y) = x. The sin(1/x)-curve does not have this property, hence it is not a
Mal’tsev space.
Mal’tsev spaces and retracts of coset spaces both arise naturally as retracts

of certain classes of homogeneous spaces. In the first case this is the class of all
topological groups and in the second case this is the class of all coset spaces. Since
every topological group is a coset space, every Mal’tsev space which is retral is a
retract of a coset space. Not every Mal’tsev space is retral by [6] and this raises
the following question:

Question 4.1. Is every Mal’tsev space a retract of a coset space?

The previous question is motivated by the fact that the conclusion of
Lemma 3.1 also holds for retracts of coset spaces, this was proved in [10, Corol-
lary 2.3]. Since the sin(1/x)-curve does not satisfy the conclusion of Lemma 3.1,



Retral spaces and continua 667

it follows that this space is not a retract of a coset space. Further examples of
spaces which are not retracts of coset spaces can be found in [10, Section 4].
We may also ask the converse question: Is every retract of a coset space a

Mal’tsev space? Uspenskĭı ([16, Proposition 16]) has noted that if n /∈ {0, 1, 3, 7},
then Sn is not a Mal’tsev space. For example, the 2-dimensional sphere S2 is a
coset space of a compact group which is not a Mal’tsev space and this answers
the previous question negatively. As an application of Corollary 3.5 we provide
yet another example of a compact coset space which is not a Mal’tsev space.
Recall that the pseudo-arc is the unique non-degenerate metric continuum

which is chainable and hereditarily indecomposable (see Bing [3]). It was shown
by Bing in [2] that the pseudo-arc is homogeneous. By Ungar’s result in [13] it
follows that the pseudo-arc is a compact coset space.

Example 4.2. Let M be the pseudo-arc. Then M is an indecomposable metric
continuum with the fixed point property. It follows from Corollary 3.5 that M
is not a Mal’tsev space and hence not a retract of a topological group. So the
pseudo-arc is an example of a coset space which is not a Mal’tsev space.

Remark 4.3. As an application of [10, Corollary 2.3], some results are proved
in [10] for retracts of coset spaces. By Lemma 3.1 the conclusion of Corollary 2.3
in [10] also holds for Mal’tsev spaces and therefore the results in [10, Section 3]
are also valid for Mal’tsev spaces. This applies in particular to Theorem 3.1,
Theorem 3.3, Theorem 3.4 and Corollary 3.5 in [10]. Not all of these results are
new.
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