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Locally realcompact and HN-complete spaces

David Buhagiar, Emmanuel Chetcuti

Abstract. Two classes of spaces are studied, namely locally realcompact spaces and HN-
complete spaces, where the latter class is introduced in the paper. Both of these classes
are superclasses of the class of realcompact spaces. Invariance with respect to subspaces

and products of these spaces are investigated. It is shown that these two classes can
be characterized by demanding that certain equivalences hold between certain classes
of Baire measures or by demanding that certain classes of Baire measures have non
empty support. It is known that a space is locally realcompact if and only if it is open
in its Hewitt-Nachbin realcompactification; we give an external characterization of HN-
completeness with respect to the Hewitt-Nachbin realcompactification. In addition, a
complete characterization of products of these classes is given.
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1. Introduction

Realcompact spaces (originally called Q-spaces) were introduced by Hewitt in
1948 [13]. One can define realcompact spaces as those spaces which are homeo-
morphic to a closed subspace of a product of real lines and therefore, it is evident
that realcompactness is a generalization of compactness. One can note that the
above definition requires realcompact spaces to be at least Tychonoff (a T1 space
on which every point x and every closed set F disjoint from x are functionally
separated).

Many generalizations of realcompact spaces have been studied, see for ex-
ample [2], [6], [9], [10], [17], [18]. This paper is devoted to the study of two
properties weaker than realcompactness, namely local realcompactness and HN-
completeness . It will be shown that these two properties are measurable. The
notion of locally realcompact space was studied in [15], [14]. It is known that a
space is locally realcompact if and only if it is open in its Hewitt-Nachbin real-
compactification. Here we give an external characterization of HN-completeness
relative to the Hewitt-Nachbin realcompactification.

Throughout the paper, all (topological) spaces are assumed to be at least Ty-
chonoff. For well-known characterizations and properties concerning realcompact
spaces one can consult [11], [19].
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2. Definitions, notation and basic results

For sake of completeness, we now give some definitions and well-known results
that are needed below. Let A(X) be the algebra generated by the collection
Z(X) of all zero sets of a space X . By a measure µ on A(X) we mean a finitely
additive non-negative real-valued function on A(X). A measure µ is called regular
if µ(B) = inf{µ(U) : B ⊂ U ∈ C(X)} for each B ∈ A(X), where C(X) denotes the
collection of all cozero sets of X . Equivalently, µ is regular if µ(B) = sup{µ(Z) :
B ⊃ Z ∈ Z(X)} for each B ∈ A(X). From now on by a measure we mean a
regular measure.

Definition 2.1. Let µ be a measure on A(X).

(I) µ is called σ-additive if

µ

( ∞
⋃

i=1

Bi

)

=

∞
∑

i=1

µ(Bi)

whenever {Bi : i = 1, 2, . . .} is a disjoint countable subcollection of A(X)
with

⋃

∞
i=1Bi ∈ A(X).

(II) µ is called τ -additive if for every open cover U of X by cozero sets and
for every ǫ > 0 there is a finite subcollection V of U such that µ(

⋃

V) >
µ(X)− ǫ.

A measure µ on X is called a two-valued measure if µ(A(X)) = {0, 1}. Let x
be a fixed point of X . Then, a Dirac measure δx is defined by

δx(B) =

{

1 if x ∈ B ∈ A(X),

0 if x /∈ B ∈ A(X).

We denote by T(X), Tσ(X), Tτ (X) and D(X) the set of all two-valued measures,
two-valued σ-additive measures, two-valued τ -additive measures and Dirac mea-
sures on X respectively. It is not difficult to see that for any space X we have:

Tτ (X) = D(X) ⊂ Tσ(X) ⊂ T(X).

Let µ be a measure on X . Then by the support of µ we mean the set

S(µ) =
⋂

{Z ∈ Z(X) : µ(Z) = µ(X)} = X \
⋃

{U ∈ C(X) : µ(U) = 0}.

Two-valued measures are known to be in one-to-one correspondence with ma-
ximal zero filters. Indeed, if F is a maximal zero filter of a space X , then the
map µ : A(X)→ {0, 1} defined by µ(B) = 1 if and only if there exists Z ∈ Z(X)
with Z ⊂ B, is an element of T(X). Moreover, if F has the countable intersection
property (c.i.p.) then µ is an element of Tσ(X). Conversely, if µ : A(X)→ {0, 1}
is an element of T(X), then the collection F = {Z ∈ Z(X) : µ(Z) = 1} defines a
maximal zero filter of the space X . Moreover, if µ is an element of Tσ(X), then
F has c.i.p. One can consult [5] or [16] for a proof.
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3. Locally realcompact spaces and HN-complete spaces

We begin this section by giving the definition of HN-complete spaces.

Definition 3.1. A space X is said to be Hewitt-Nachbin complete (HN-complete
for short) if there is a sequence U = {Un : n ∈ N} of open (cozero) covers of X
such that every maximal zero U-Cauchy filter F with c.i.p. on X converges, where
F is said to be U-Cauchy if for every U ∈ U there exists some U ∈ U such that
F ⊂ U for some F ∈ F .

The notion of U-positive measure for some collection of cozero covers U is given
in [3].

Definition 3.2. Let U be a cozero cover of a space X and µ a measure on X .
Then µ is said to be U-positive if there exists a U ∈ U such that µ(U) > 0.
If U is a collection of cozero covers, then µ is said to be U-positive if µ is

U-positive for every U ∈ U.

Remark 3.1. One can easily see that any τ -additive measure is U-positive for any
cozero cover U of X . Consequently, any Dirac measure is U-positive for any U.

Definition 3.3. For a collection of cozero covers U of X we denote by T(X, U)
(Tσ(X, U)) the set of U-positive measures in T(X) (Tσ(X)).

We can now show that HN-completeness is a measurable property.

Theorem 3.1. The following conditions are equivalent for a space X .

(i) X is HN-complete.
(ii) There exists a sequence of cozero covers U of X such that every U-positive

two-valued σ-additive measure on X has a non empty support.
(iii) There exists a sequence of cozero covers U of X such that

Tσ(X, U) = Tτ (X, U) = D(X).

Proof: (i) =⇒ (ii). Let X be HN-complete and let U = {Ui : i ∈ N} be a
sequence of cozero covers of X such that every maximal zero U-Cauchy filter with
c.i.p. converges. Let µ ∈ Tσ(X, U) and F = {Z ∈ Z(X) : µ(Z) = 1}. Then F is
a maximal zero filter of the space X with c.i.p. and it is not difficult to see that
it is U-Cauchy and so converges to some point x ∈ X . Then, for every U ∈ C(X)
with x ∈ U , we have µ(U) = 1 so that µ has a non empty support.
(ii) =⇒ (iii). Let there exist a sequence of cozero covers U of X such that the

trivial measure 0 is the only U-positive two-valued σ-additive measure on X with
an empty support. Assume that there is a measure µ ∈ Tσ(X, U) which is not in
Tτ (X, U). Then, there exists a cozero cover V of X such that µ(

⋃n
i=1 Vi) = 0 for

every finite subcollection V1, . . . , Vn of V . In particular, we have that µ(V ) = 0
for every V ∈ V and therefore µ has an empty support, so that µ = 0.
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(iii) =⇒ (i). Let U = {Ui : i ∈ N} be a sequence of cozero covers of X such
that Tσ(X, U) = D(X). We show that U satisfies the conditions in Definition 3.1.
Consider a maximal zero U-Cauchy filter F with c.i.p. Construct µ ∈ T(X) by
µ(Y ) = 1 if and only if there exists F ∈ F with F ⊂ Y . Then µ is σ-additive and
since F is U-Cauchy, µ is also U-positive. By (iii), µ ∈ D(X) and therefore there
exists some x ∈ X such that µ = δx. It is not difficult to see that this implies
that F converges to x as required. �

The definition of HN-complete spaces can be restated in terms of ideals. An
ideal I is said to have the countable union property (c.u.p.) if

⋃

n∈N
Un 6= X

for every countable collection Un ∈ I. We will consider ideals of cozero sets,
i.e. cz-ideals. A cozero set C is said to be a co-neighborhood of a point x in X
if X \ C is a zero neighborhood of x. A cz-ideal I is said to co-converge to a
point x if it contains all the cozero co-neighborhoods of x. A maximal cz-ideal
co-converges if

⋃

I 6= X . In this case
⋃

I = X \ {x}, where I co-converges
to x. One can see from Definition 3.1 that a space X is HN-complete if there is a
sequence U = {Un : n ∈ N} of cozero covers of X such that every maximal cozero
U-Cauchy ideal I with c.u.p. on X co-converges, where I is said to be U-Cauchy
if for every U ∈ U there exists some U ∈ U such that X \ U ⊂ C for some C ∈ I.
We now give an external characterization of HN-complete spaces. One can com-

pare this to the external and internal characterizations of Čech-complete spaces
[1], [4], [8]. In the proof we use the well-known fact (see for example [11]), that
for any countable family of cozero sets Cn in X ,

(∗)
⋃

n∈N

intνX(Cn ∪ (νX \ X)) = intνX

(

⋃

n∈N

Cn ∪ (νX \ X)

)

.

Theorem 3.2. A space X is HN-complete if and only if it is a Gδ set in its

Hewitt-Nachbin realcompactification νX .

Proof: Let X be a HN-complete space and let U = {Un : n ∈ N} be a sequence
of cozero covers of X having the property in Definition 3.1. For every n ∈ N and
every U ∈ Un take a cozero set V (U) in νX such that V (U) ∩ X = U . Evidently
we have the following subset inclusion

X ⊂
⋂

n∈N

⋃

U∈Un

V (U)

and we need to show that equality holds.
Consider any x ∈

⋂

n∈N

⋃

U∈Un
V (U) and denote by Ix the ideal of cozero

co-neighborhoods of x in νX . Evidently, Ix has c.u.p. Now Ix ∩ X is a cz-ideal
in X and by complete regularity, it is U-Cauchy. Using equation (∗) one can show
that it has c.u.p. Indeed, say there exists a countable collection Cn in Ix ∩ X
such that

⋃

n∈N
Cn = X . Then

⋃

n∈N
intνX(Cn ∪ (νX \X)) = νX . In particular,
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x ∈ intνX(Cn ∪ (νX \ X)) for some Cn. But Cn = C′
n ∩ X , where C′

n is a
cozero co-neighborhood of x in νX , which evidently cannot be. Now let Jx be a
maximal cz-ideal in X containing the ideal Ix ∩X . Then Jx is U-Cauchy and we
only need to show that it has c.u.p. Again this is done by using (∗). Indeed, say
there exists some countable collection Cn ∈ Jx such that

⋃

Cn = X . Then, there
exists some n ∈ N such that x ∈ intνX(Cn ∪ (νX \X)) and therefore, there exists
some zero neighborhood Z of x satisfying Z ⊂ Cn ∪ (νX \ X). Consequently,
C = νX \ Z ∈ Ix and C ∪ (Cn ∪ (νX \ X)) = νX . Thus, D = (C ∩ X) ∈ Ix ∩ X
and D ∪ Cn = X , a contradiction. We thus proved that Jx has c.u.p. and since
it is maximal and U-Cauchy it converges in X . Say

⋃

Jx = X \ {z}. It is now
not difficult to see that x = z ∈ X as required to proof.
Conversely, say X =

⋂

n∈N
Gn, where Gn are open in νX . For every x ∈ X

and every n ∈ N choose cozero sets Un(x) and Zn(x) in νX such that x ∈ Un(x) ⊂
Zn(x) ⊂ Gn. Let Un = {X ∩ Un(x) : x ∈ X}, for every n ∈ N, and we show that
the sequence of cozero covers U = {Un : n ∈ N} has the required property. Take
any maximal U-Cauchy z-filter F with c.i.p. in X . For every F ∈ F there exists
some zero set F ′ in νX such that F ′ ∩X = F . Let F ′ be the collection of all zero
sets in νX such that if Z ∈ F ′, then Z ∩ X = F for some F ∈ F . Then F ′ is a
filter with c.i.p. We now show that it is prime. Let Z1 and Z2 be two zero sets in
νX such that Z1∪Z2 ∈ F ′. If Z1 or Z2 does not intersect X then there is nothing
to prove, indeed if say Z2∩X = ∅ then (Z1∪Z2)∩X = Z1∩X ∈ F and therefore,
Z1 ∈ F ′. If both Z1 and Z2 intersect X then (Z1 ∩X)∪ (Z2 ∩X) ∈ F . But F is
maximal and therefore prime. Hence, either (Z1 ∩ X) or (Z2 ∩ X) must be in F
and consequently, either Z1 or Z2 must be in F ′. We have just shown that F ′ is
a prime z-filter with c.i.p. in νX and so converges to some point x ∈ νX . Thus
x ∈ Zn(xn) for some xn for every n ∈ N, so that

x ∈
⋂

n∈N

Zn(xn) ⊂
⋂

n∈N

Gn = X,

showing that x ∈ X . Consequently, F converges as required to prove. �

We next give the definition of locally realcompact spaces and show that local
realcompactness is also a measurable property.

Definition 3.4. A space X is said to be locally realcompact if every x ∈ X has
a neighborhood Ux such that Ux is realcompact. Equivalently, X is said to be
locally realcompact if every x ∈ X has a cozero realcompact neighborhood Ux.

Theorem 3.3. The following conditions are equivalent for a space X .

(i) X is locally realcompact.
(ii) There exists a cozero cover U of X such that

Tσ(X,U) = Tτ (X,U) = D(X).
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(iii) There exists a cozero cover U of X such that every U-positive two-valued
σ-additive measure on X has a non empty support.

Proof: (i) =⇒ (ii). Let X be locally realcompact. For every x ∈ X there exists a
cozero realcompact neighborhood Ux of x. Since Ux is cozero,A(X)∩Ux = A(Ux).
Let U = {Ux : x ∈ X} and let µ ∈ Tσ(X,U). There exists some y ∈ X such
that µ(Uy) = 1 and therefore, µ(A) = µ(A ∩ Uy) for every A ∈ A(X). Define
µy ∈ T(Uy) by µy(A) = µ(B) for every A ∈ A(Uy), where B is any element in
A(X) such that A = B ∩ Uy. Then µy is well defined and since µ is σ-additive,
so is µy, that is µy ∈ Tσ(Uy). Since Uy is realcompact, µy ∈ D(Uy) and there
exists an x ∈ Uy such that µy = δx(Uy). Thus µ = δx(X) = δx and consequently,
µ ∈ D(X) as required.
(ii) =⇒ (iii). Let there exist a cozero cover U of X such that Tσ(X,U) = D(X)

and let µ ∈ Tσ(X,U). There exists some x ∈ X such that µ = δx and therefore,
µ(V ) = 1 for every cozero V containing x showing that µ has a non empty support.
(iii) =⇒ (i). Let U be a cozero cover of X such that every U-positive two-

valued σ-additive measure on X has a non empty support. For every x ∈ X there
exists a U ∈ U such that x ∈ U and also a cozero set Vx and a zero set Zx such
that x ∈ Vx ⊂ Vx ⊂ Zx ⊂ U . Let V = {Vx : x ∈ X} and we prove that Vx

is realcompact for all x ∈ X by showing that Zx is realcompact for all x ∈ X .
Indeed, say there is an x ∈ X such that Zx is not realcompact. Then there is a
measure µ ∈ Tσ(Zx) which is not in D(Zx). Consider the extension µ̃ of µ defined
by µ̃(A) = µ(A ∩ Zx) for A ∈ A(X). Then µ̃ ∈ Tσ(X) and since Zx ∈ A(X)
we have µ̃(Zx) = 1 which shows that µ̃ ∈ Tσ(X,U). By (iii), µ̃ has a non empty
support and so there exists some y ∈ X such that µ̃(V ) = 1 for every cozero
V containing y. Since µ̃(Zx) = 1 we have that y ∈ Zx. We finally show that
µ = δy(Zx) leading to a contradiction. Indeed, take any W ∈ C(Zx) with y ∈ W .
There exists some open G ⊂ X such that W = G ∩ Zx and some cozero in X set
Oy such that y ∈ Oy ⊂ G. Then Oy ∩Zx is a cozero in Zx set containing y. Now
µ̃(Oy) = 1 and therefore, µ(Oy ∩ Zx) = 1 which gives µ(W ) = 1. Consequently,
since µ is regular, we have just proved that µ(B) = 1 for every B ∈ A(Zx) with
x ∈ B. Also, if B ∈ A(Zx) with x /∈ B then µ(B) = 0 and thus, µ = δy(Zx). �

The following external characterization of locally realcompact spaces is proved
in [15].

Theorem 3.4. A space X is locally realcompact if and only if it is open in its
Hewitt-Nachbin realcompactification νX .

It is clear from the definitions that we have the following implications,

realcompact −→ locally realcompact −→ HN-complete.

We have examples to show that none of the above implications is reversible. In-
deed, the space [0, ω1[ is a locally realcompact space (in fact it is locally compact)
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but is not realcompact. From Theorems 4.2 and 4.4 below we get that the space
[0, ω1[

ω0 is HN-complete but is not locally realcompact.
It is also evident that every locally compact space is locally realcompact and

that every Čech-complete space is HN-complete. On the other hand both the
Sorgenfrey line S and the set of rationals Q (as a subspace of R) are realcompact
but S is not locally compact while Q is not Čech-complete.

4. Subspaces and products of locally realcompact and HN-complete

spaces

The next result is that both HN-completeness and local realcompactness are
invariant with respect to both closed and Baire subsets and also to finite products.
The proof is given for HN-complete spaces, the proof for locally realcompact
spaces is simpler.

Theorem 4.1.

(I) A closed subset of a locally realcompact (HN-complete) space is locally
realcompact (HN-complete).

(II) A Baire subset of a locally realcompact (HN-complete) space is locally
realcompact (HN-complete).

(III) A finite product of locally realcompact (HN-complete) spaces is locally
realcompact (HN-complete).

Proof: (I) and (II). Let X be a subspace of a HN-complete space Y and let
U = {Ui : i ∈ N} be a sequence of cozero covers of Y such that Tσ(Y, U) = D(Y ).
Let Vi = {U ∩ X : U ∈ Ui} and let V = {Vi : i ∈ N}. Let µ ∈ Tσ(X, V). Then
µ̃ ∈ Tσ(Y ), where µ̃(B) = µ(B ∩ X) for every B ∈ A(Y ). For every i ∈ N there
exists a V = U ∩ X ∈ Vi such that µ(V ) = 1 so that µ̃(U) = 1 and µ̃ ∈ Tσ(Y, U).
Since Y is HN-complete (with respect to U) there exists some y ∈ Y such that
µ̃ = δy.
To prove (I), let X be closed in Y and let U ∈ C(Y ) contain y. Then µ(U∩X) =

µ̃(U) = 1 and hence, U ∩ X 6= ∅. This implies that y is an element of X . Next,
let U ∈ C(X) contain y. Since Y is Tychonoff, there exists a U ′ ∈ C(Y ) such that
y ∈ U ′ ∩X ⊂ U . Since µ̃ = δy we have that µ̃(U ′) = 1 and hence, µ(U) = 1. This
implies that µ∗({y}) = 1 and consequently we have that µ ∈ T(X) ∩ Mt(X) =
D(X).
To prove (II), let X be a Baire subset of Y . Since µ̃ is σ-additive we may

assume that µ̃ is defined on B(Y ). X is in B(Y ) and therefore µ̃(X) = 1. Since
µ̃ = δy this implies that y ∈ X . From this we may conclude that µ ∈ D(X).
(III). Let {Xi : i = 1, . . . , n} be a finite collection of HN-complete spaces. Let

Ui = {U i
k : k ∈ N} be a sequence of cozero covers of Xi such that Tσ(Xi, U

i) =
D(Xi) for i = 1, . . . , n. Consider the sequence of cozero covers U = {Uk : k ∈ N}
of

∏n
i=1Xi, where Uk = {U1 × · · · × Un : Ui ∈ U i

k for i = 1, . . . , n}.



114 D.Buhagiar, E. Chetcuti

Let µ be an element of Tσ(
∏n

i=1Xi, U). If πi denotes the projection from
∏n

j=1Xj onto Xi and µi is defined by

µi(B) = µ(π−1
i [B]) for every B ∈ A(Xi),

then µi is an element of Tσ(Xi).

For every k ∈ N there exists a U ∈ Uk such that µ(U) = 1. Let U = U1× · · · ×
Un, then

µi(Ui) = µ(π−1
i [Ui]) = µ(X1 × · · · × Ui × · · · × Xn) = 1,

so that µi ∈ Tσ(Xi, U
i).

Hence there exists an xi ∈ Xi satisfying µi = δxi
. Define x = (x1, . . . , xn) ∈

∏n
i=1Xi and let U be an arbitrary element of C(

∏n
i=1Xi) that contains x. Then

there exist sets Ui ∈ C(Xi), such that xi ∈ Ui, for every i = 1, . . . , n, and

U1 × · · · × Un ⊂ U . Since µi = δxi
we have that µ(π−1

i [Ui]) = µi(Ui) = 1

for every i = 1, . . . , n, and hence µ(U) > µ(
⋂n

i=1 π−1
i [Ui]) = 1. This implies

that µ∗({x}) = 1, where µ∗ is the outer measure defined by µ, and therefore,
µ ∈ D(

∏n
i=1Xi). �

Our next aim is to improve on the results of Theorem 4.1(III).

Theorem 4.2. The product
∏

α∈κ Xα, where Xα 6= ∅ for all α ∈ κ, is locally
realcompact if and only if all spaces Xα are locally realcompact and there exists

a finite subset κ0 ⊂ κ such that Xα is realcompact for all α ∈ κ \ κ0.

Proof: Since any product of realcompact spaces is realcompact, sufficiency fol-
lows from Theorem 4.1(III).

To prove necessity, let
∏

α∈κ Xα be a non-empty locally realcompact space.
Take any β ∈ κ and a point x ∈ Xβ ; we show that x has a cozero realcompact
neighborhood W in Xβ . Let xα be an arbitrary point of Xα for α 6= β and
let xβ = x. The point x = (xα)α∈κ ∈

∏

α∈κ Xα has a cozero realcompact
neighborhood U . There exists a member

∏

α∈κ Wα of the canonical base for
∏

α∈κ Xα such that (xα)α∈κ ∈
∏

α∈κ Wα ⊂ U and Wα = Xα for α ∈ κ \ κ0,
where |κ0| < ℵ0. One can assume that each Wα is cozero in Xα and therefore,
∏

α∈κ Wα is also cozero (being a finite intersection of cozero sets) and hence is
realcompact. Consequently, Wα is realcompact for every α ∈ κ. �

Theorem 4.3. The product of countably many HN-complete spaces is HN-

complete.

Proof: Let {Xi : i ∈ N} be a sequence of HN-complete spaces. Let Ui = {U i
k :

k ∈ N} be a sequence of cozero covers of Xi such that Tσ(Xi, U
i) = D(Xi) for
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every i ∈ N. Consider the sequence of cozero covers U = {Ukn : k, n ∈ N} of
∏

i∈N
Xi, where

Ukn =

{

∏

i∈N

Wi :Wi = Xi for i 6= k and Wk ∈ Uk
n

}

.

Let µ be an element of Tσ(
∏

i∈N
Xi, U). If πi denotes the projection from

∏

j∈N
Xj onto Xi and µi is defined by

µi(B) = µ(π−1
i [B]) for every B ∈ A(Xi),

then µi is an element of Tσ(Xi).
For every n ∈ N there exists a U ∈ Uin such that µ(U) = 1. Let U =

∏

i∈N
Wi,

where Wj = Xj for j 6= i and Wi ∈ U i
n; then

µi(Wi) = µ(π−1
i [Wi]) = µ

(

∏

i∈N

Wi

)

= µ(U) = 1,

so that µi ∈ Tσ(Xi, U
i).

Hence there exists an xi ∈ Xi satisfying µi = δxi
. Define x = (xi)i∈N ∈

∏

i∈N
Xi and let U be an arbitrary element of C(

∏

i∈N
Xi) that contains x. Then

there exist a finite subset N0 of N and sets Ui ∈ C(Xi) for every i ∈ N0, such
that xi ∈ Ui, for every i ∈ N0, and

∏

i∈N
Vi ⊂ U , where Vi = Ui for every i ∈ N0

and Vi = Xi for every i ∈ N \ N0. Since µi = δxi
we have that µ(π−1

i [Vi]) =

µi(Vi) = 1 for every i ∈ N, and hence µ(U) > µ(
⋂

i∈N
π−1

i [Vi]) = 1. This implies
that µ∗({x}) = 1, where µ∗ is the outer measure defined by µ, and therefore,
µ ∈ D(

∏

i∈N
Xi). �

Theorem 4.4. The product
∏

α∈κ Xα, where Xα 6= ∅ for α ∈ κ, is HN-complete
if and only if all spaces Xα are HN-complete and there exists a countable set

κ0 ⊂ κ such that Xα is realcompact for α ∈ κ \ κ0.

Proof: Since any product of realcompact spaces is realcompact, sufficiency fol-
lows from Theorem 4.3.
To prove necessity, let

∏

α∈κ Xα be a non-empty HN-complete space. Let
U = {Un : n ∈ N} be a sequence cozero covers of

∏

α∈κ Xα such that every prime
zero U-Cauchy filter F with c.i.p. on

∏

α∈κ Xα is fixed.
Fix a point x = (xα)α∈κ ∈

∏

α∈κ Xα and any Ui ∈ Ui such that x ∈ Ui for all

i ∈ N. There exists a member
∏

α∈κ W i
α of the canonical base for

∏

α∈κ Xα such

that x ∈
∏

α∈κ W i
α ⊂ Ui and W i

α = Xα for α ∈ κ \ κi, where |κi| < ℵ0. One can

assume that each W i
α is cozero in Xα. Let κ0 =

⋃

i∈N
κi, so that κ0 is countable.
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Take an β ∈ κ \ κ0 and let Fβ be a prime zero filter with c.i.p.; we show that
Fβ is fixed in Xβ . Let

Nα = {A ∈ Z(Xα) : xα ∈ A}

be the maximal zero filter fixed at xα in Xα and consider the filter base F in
∏

α∈κ Xα given by

{

∏

α∈κ

Fα : Fα = {xα} for every α 6= β and Fβ ∈ Fβ

}

and let G be the zero filter in
∏

α∈κ Xα given by

{

G : G ∈ Z

(

∏

α∈κ

Xα

)

, F ⊂ G for some F ∈ F

}

.

Evidently, G has c.i.p. and sets of the form

{

∏

α∈κ

Fα : Fα ∈ Nα for every α ∈ κ0, Fα = Xα for every

α ∈ κ \ (κ0 ∪ {β}) and Fβ ∈ Fβ

}

are in G and therefore G is U-Cauchy. We now show that G is prime.
Let G1, G2 ∈ Z(

∏

α∈κ Xα) such that G1 ∪ G2 ∈ G. By definition, there exists
F ∈ F such that F ⊂ G1 ∪ G2. Let F =

∏

α∈κ Fα where Fα = {xα} for every

α 6= β and Fβ ∈ Fβ . Let us denote by Zβ the subspace
∏

α∈κ Aα of
∏

α∈κ Xα,

whereAα = {xα} for every α 6= β and Aβ = Xβ . Then Zβ is homeomorphic toXβ

where as a homeomorphism f : Zβ → Xβ one can take the map f [(xα)α∈κ] = xβ ,

that is the restriction of the projection πβ on Zβ. Since F ⊂ G1 ∪ G2 we have

that H = (G1 ∪ G2) ∩ Zβ 6= ∅ and H is a zero set in Zβ. Thus f(H) ∈ Z(Xβ)

and Fβ ⊂ f(H). This shows that f(H) ∈ Fβ and therefore, either f(G1 ∩ Zβ)

or f(G2 ∩ Zβ) is in Fβ . Consequently we have that either G1 or G2 is in G as
required.
By assumption we get that G is fixed, that is

⋂

G 6= ∅. Say y = (yα)α∈κ ∈
⋂

G,
then yβ ∈

⋂

Fβ . Indeed, if there exists some H ∈ Fβ not containing yβ , then
G =

∏

α∈κ Fα, where Fα = Xα for every α 6= β and Fβ = H , is in G but y /∈ G.
Thus we proved that Fβ is fixed as required.
Finally, using the same notation as above, if a countable product

∏

i∈N
Xi is

HN-complete then Xi is HN-complete for all i ∈ N since it is homeomorphic to
the closed subspace Zi. �
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