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Baire-one mappings contained in a usco map

Ondřej F.K. Kalenda

Abstract. We investigate Baire-one functions whose graph is contained in the graph of
a usco mapping. We prove in particular that such a function defined on a metric space

with values in R
d is the pointwise limit of a sequence of continuous functions with graphs

contained in the graph of a common usco map.

Keywords: Baire-one function, usco map, usco-bounded sequence of continuous func-
tions

Classification: 54C60, 54E45, 26A21

1. Introduction

We study the following question:

Let X be a metric space, Y a convex subset of a normed linear space and
f : X → Y a Baire-one function whose graph is contained in the graph of a usco
mapping. Is there a sequence of continuous functions fn : X → Y pointwise
converging to f such that the graphs of all the fn’s are contained in a usco map
ϕ : X → Y ?

This question appeared in the joint research of R. Anguelov and the author
— see [1]. In the quoted paper a natural convergence structure on the space of
minimal usco maps is introduced and studied. The question we address here is
closely related to the possibility to approximate minimal usco maps by continuous
functions. Namely, ifX is a Baire space and the answer to our question is positive,
then continuous functions form a dense subset in the convergence space of minimal
usco maps from X to Y .
Moreover, this question is also natural and interesting in itself as there are

several theorems on the existence of Baire-one selections of multivalued (in par-
ticular usco) maps — see e.g. [4], [5], [7]. In particular, every usco map from a
metric space into a normed linear space admits a Baire-one selection; therefore
Baire-one functions whose graph is contained in the graph of a usco mapping are
quite common.

The work is a part of the research project MSM 0021620839 financed by MŠMT and partly
supported by the research grant GAČR 201/06/0018 and by Universidad Politécnica de Valencia.
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We do not know the full answer to our question but we prove some partial
results. One of them is that the answer is positive if Y is a closed convex subset
of a finite-dimensional space. This is used in [1] to show that if X is a Baire

metric space then continuous functions from X to R
d form a dense subset of the

convergence space of minimal usco maps.
Let us start by recalling and introducing some notions.
A nonempty-valued mapping ϕ : X → Y is called upper semi-continuous

compact valued (shortly usco) if ϕ(x) is a (nonempty) compact subset of Y for
each x ∈ X and {x ∈ X : ϕ(x) ⊂ U} is open in X for each U ⊂ Y open.
A function f : X → Y is called Baire-one if it is the pointwise limit of a

sequence of continuous functions.
We say that a family of functions (defined on X with values in Y ) is usco-

bounded if there is a usco map ϕ : X → Y whose graph, i.e. the set

{(x, y) ∈ X × Y : y ∈ ϕ(x)}

contains the graphs of all the functions from the family. We will use this termi-
nology for single functions and for sequences of functions.

2. Basic facts and examples

An important role is played by the following characterization of usco maps and
maps whose graph is contained in the graph of a usco map.

Lemma 2.1. Let X and Y be metric spaces and ϕ : X → Y a nonempty-valued
set-valued mapping.

(i) The mapping ϕ is usco if and only if whenever xn is a sequence in X
converging to some x ∈ X and yn ∈ ϕ(xn) for each n ∈ N, there is a
subsequence of yn converging to an element of ϕ(x).

(ii) There is a usco map ψ : X → Y with ϕ ⊂ ψ (in the sense of inclusion of
graphs) if and only if whenever xn is a sequence in X converging to some
x ∈ X and yn ∈ ϕ(xn) for each n ∈ N, there is a convergent subsequence
of yn.

Proof: The point (i) is an analogue of [2, Lemma 3.1.1]. The assertion of the
quoted lemma is the same — only X and Y are arbitrary topological spaces and
nets are used instead of sequences. As we are now dealing with metric spaces,
sequences are enough and the same proof works.
Let us show the point (ii). The ‘only if’ part follows immediately from (i). It

remains to prove the ‘if’ part. Let ψ be the multivalued mapping whose graph is
the closure in X × Y of the graph of ϕ. We will show that ψ is usco using (i).
Denote by d and ρ the metrics of X and Y , respectively.
Let xn be a sequence in X converging to x ∈ X and yn ∈ ψ(xn) for each

n ∈ N. Then each pair (xn, yn) belongs to the graph of ψ. As the graph of ϕ
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is dense in the graph of ψ, there are pairs (x′n, y
′
n) in the graph of ϕ such that

d(x′n, xn) <
1
n and ρ(y

′
n, yn) <

1
n for each n ∈ N. Then x′n → x, and hence there

is a subsequence y′nk
converging to some y ∈ Y . Then ynk

converge to y as well.
Hence (xnk

, ynk
) converges to (x, y). As the graph of ψ is closed, we get y ∈ ψ(x).

This completes the proof. �

An important subclass of Baire-one functions consists of so-called simple func-
tions. We recall the definition.
Let X and Y be metric spaces and f : X → Y be a function. The function f

is called simple if there is a σ-discrete partition of X into Fσ sets such that f is
constant on each element of the partition.
Recall that a family of subsets of X is discrete if each point of X has a neigh-

borhood meeting at most one element of the family; and a family is σ-discrete if
it is a countable union of discrete families.
It is easy to check that f is simple if and only if there is a partition Fγ , γ ∈ Γ,

of X such that

• f is constant on each Fγ ;
• each Fγ can be expressed as an increasing union of closed sets F

n
γ such

that the family Fn
γ , γ ∈ Γ, is discrete for each n ∈ N.

If Y is a convex subset of a normed linear space (or more generally if Y is an
arcwise connected metric space), then any simple function with values in Y is
Baire-one (see e.g. [6, Lemma 2.13]).

Moreover, we need the following well-known approximation result.

Lemma 2.2. Let X and Y be metric spaces. Then any Baire-one function f :
X → Y is the uniform limit of a sequence of simple functions.

Proof: It follows from [3, Lemmata 1.1 and 1.4] that f has a σ-discrete function
base consisting of closed sets (i.e., a σ-discrete family B of closed subsets of X
such that f−1(U) is the union of a subfamily of B for each U ⊂ Y open). The
assertion then follows by using Lemma 2.7 of [6]. �

Now we are going to give some examples of Baire-one mappings which are
usco-bounded and some which are not. The first one is trivial. It follows from
the fact that the closed bounded sets in R

n are compact.

Example 2.3. Any bounded (Baire-one) function f : X → R
n is usco-bounded.

Also the second example is trivial:

Example 2.4. (i) The function f : R → R defined by

f(x) =

{ 1
x , x 6= 0,

0, x = 0,
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is a Baire-one function which is not usco-bounded.
(ii) The function f : R → R defined by f(x) = x is usco-bounded (it is

continuous) although it is not bounded.

We continue by two more general statements.

Example 2.5. Let Y be an infinite dimensional normed space. Then there is a
bounded Baire-one function f : R → Y which is not usco-bounded.

Proof: Let yn be a sequence in the unit ball of Y which has no convergent
subsequence (as Y is infinite-dimensional, the unit ball is not compact and hence
such a sequence exists). Define the function f by the formula

f(x) =

{

0, x ∈ (−∞, 0] ∪ (1,+∞),

yn, x ∈ ( 1n+1 ,
1
n ], n ∈ N.

Then f is bounded, it is easily seen to be simple, and hence Baire-one. However,
it is not usco-bounded due to Lemma 2.1. Indeed, 1n → 0 and the sequence

f( 1n ) = yn has no convergent subsequence. �

Example 2.6. Let Y be a non-complete metric space. Then there is a sequence
of simple functions fn : R → Y which uniformly converges to a simple function
f : R → Y such that each fn is usco-bounded but f is not.

Proof: Let yn be a Cauchy sequence in Y which is not convergent. Define the
functions fn by the formula:

fn(x) =











0, x ∈ (−∞, 0] ∪ (1,+∞),

yn, x ∈ (0, 1n ],

yk, x ∈ ( 1
k+1 ,

1
k
], 1 ≤ k < n.

Then each fn is easily seen to be a usco-bounded simple function. Moreover,
as the sequence yn is Cauchy, the sequence fn uniformly converges to the function
f defined by the formula

f(x) =

{

0, x ∈ (−∞, 0] ∪ (1,+∞),

yn, x ∈ ( 1n+1 ,
1
n ], n ∈ N.

This function is simple and is not usco-bounded. This can be proved by the
argument used in the previous example (note that yn is a non-converging Cauchy
sequence and hence has no convergent subsequence). �

3. Main results

In this section we show some partial positive answers to the question from the
introduction. The first result shows that the answer is positive if f is a simple
function.
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Theorem 3.1. Let X be a metric space, Y a convex subset of a normed linear
space and f : X → Y be a usco-bounded simple function. Then there is a usco-
bounded sequence of continuous functions fn : X → Y which pointwise converges
to f .

Proof: We will imitate the proof of the fact that simple functions are Baire-one
in [6, Lemmata 2.12 and 2.13]. Without loss of generality suppose that 0 ∈ Y .
Fix a partition Fγ , γ ∈ Γ, of X such that

• f is constant on each Fγ ;
• each Fγ can be expressed as an increasing union of closed sets F

n
γ such

that the family Fn
γ , γ ∈ Γ, is discrete for each n ∈ N.

For n ∈ N and γ ∈ Γ we define the following functions:

dn(x) = dist(x,
⋃

γ∈Γ

Fn
γ ),

dn
γ (x) = dist(x, F

n
γ ),

enγ (x) = dist(x,
⋃

δ∈Γ\{γ}

Fn
δ ).

All these functions are continuous and hence the set

Gn
γ = {x ∈ X : dn

γ (x) <
1
3e

n
γ (x)}

is open for each n and γ. Moreover, as the family Fn
γ , γ ∈ Γ, is discrete, we get

Fn
γ ⊂ Gn

γ . It is proved in [6, pp. 34–35] that the family G
n
γ , γ ∈ Γ, is discrete for

each n ∈ N, too.
Denote by yγ the value of f on Fγ and define the functions fn as follows:

fn(x) =







0, x ∈ X \
⋃

γ∈ΓG
n
γ ,

(

1−
4dn

γ (x)

dn
γ (x)+en

γ (x)

)

yγ , x ∈ Gn
γ .

The function fn is continuous (see [6, pp. 35–36]) and fn(x) = yγ for x ∈ Fn
γ .

Hence clearly fn pointwise converges to f .
It remains to show that the sequence fn is usco-bounded. To see this we will

use Lemma 2.1. Fix a sequence xn converging to x ∈ X and a sequence kn of
natural numbers. We will be done if we show that the sequence fkn

(xn) has a
converging subsequence.
Up to passing to a subsequence we can suppose that the sequence kn is either

constant or increasing. If kn = k for each n, then fkn
(xn) = fk(xn) converges to

fk(x) due to the continuity of fk.
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Hence suppose that kn is increasing. If xn ∈ X \
⋃

γ∈ΓG
kn
γ for infinitely

many n’s, then fkn
(xn) = 0 for infinitely many n’s and hence we have converging

subsequence.
Thus suppose that for each n ∈ N there is some γn ∈ Γ with xn ∈ Gkn

γn
. By

the definition of the set Gkn
γn
there is some zn ∈ F kn

γn
with ρ(xn, zn) <

1
3e

kn
γn
(xn).

We have fkn
(xn) = cnyγn for some cn ∈ [0, 1]. Without loss of generality we may

suppose that the sequence cn converges to some c ∈ [0, 1].
Let α ∈ Γ be such that x ∈ Fα. If γn = α for infinitely many n’s, then there

is a subsequence of fkn
(xn) converging to cyα.

Finally, suppose that γn 6= α for each n. Then we have

ρ(xn, zn) <
1

3
ekn
γn
(xn) ≤

1

3
ekn
γn
(x) +

1

3
ρ(xn, x)

for n ∈ N. As there is some n0 such that x ∈ Fn0
α , e

kn
γn
(x) = 0 for n sufficiently

large. Therefore ρ(xn, zn) converges to 0 and thus zn converges to x. As f is
usco-bounded we get (by Lemma 2.1) a converging subsequence of f(zn) = yγn .
Then fkn

(xn) = cnyγn has a converging subsequence as well. �

The next result is an analogue of the standard fact that Baire-one functions
are preserved by the uniform limits. Note, that the assumption that the range is
complete is necessary, while in the standard setting completeness is not needed.

Theorem 3.2. Let X be a metric space and Y be a convex subset of a normed
linear space which is complete in the norm metric. Let fn : X → Y be a sequence
of mappings which uniformly converges to a mapping f : X → Y . If each fn is
the pointwise limit of a usco-bounded sequence of continuous functions, then f
has the same property.
The completeness assumption on Y cannot be omitted.

Proof: We will imitate the proof of the fact that Baire-one functions are pre-
served by uniform limits given in [6, Lemma 2.14]. As the quoted proof contains
a large number of misprints, we give a complete proof.
Denote by Z the normed space which contains Y . Without loss of generality

suppose that ‖fm(x)− f(x)‖ < 2−m for each x ∈ X and m ∈ N. For each m ∈ N

let (fm,n : n ∈ N) be a usco-bounded sequence pointwise converging to fm.
We define continuous functions gm,n : X → Y as follows:

g1,n = f1,n for n ∈ N,

gm+1,n(x) =



















fm+1,n(x), ‖fm+1,n(x)− gm,n(x)‖ ≤ 2−m+1,

gm,n(x) + 2
−m+1 fm+1,n(x)−gm,n(x)

‖fm+1,n(x)−gm,n(x)‖
,

‖fm+1,n(x)− gm,n(x)‖ > 2−m+1.
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We have

∀x ∈ X ∀m ∈ N ∃n0 ∈ N ∀n ≥ n0 : gm,n(x) = fm,n(x).

Indeed, let x ∈ X be arbitrary. As g1,n = f1,n for all n, the assertion is true for
m = 1. Suppose it is true for some m. As

‖fm(x)− fm+1(x)‖ ≤ ‖fm(x)− f(x)‖ + ‖f(x)− fm+1(x)‖

< 2−m + 2−m−1 < 2−m+1,

we have ‖fm,n(x)−fm+1,n(x)‖ < 2
−m+1 for n large enough. Now using the induc-

tion hypothesis and the definition of gm+1,n(x), we get gm+1,n(x) = fm+1,n(x)
for n large enough.
Set hn = gn,n for n ∈ N. Then the sequence hn pointwise converges to f and,

moreover, is usco-bounded.
Let us show the first assertion. Let x ∈ X and ε > 0 be arbitrary. Choose

m ∈ N such that 2−m+4 < ε. Fix n0 ∈ N such that gm,n(x) = fm,n(x) and
‖fm,n(x) − gm(x)‖ <

ε
2 for n ≥ n0. Then for n ≥ n0 we have

‖hn(x)− f(x)‖ ≤ ‖gn,n(x)− gm,n(x)‖ + ‖gm,n(x)− fm(x)‖ + ‖fm(x) − f(x)‖

≤ 2−m+1 + · · ·+ 2−n+1 + ‖fm,n(x) − fm(x)‖ + 2
−m

< 2−m+3 +
ε

2
< ε.

This shows that hn(x) converges to f(x).
Now we are going to prove that the sequence hn is usco-bounded. So take

an arbitrary sequence xn ∈ X converging to some x ∈ X and a sequence kn of
natural numbers. We need to show that the sequence hkn

(xn) has a converging
subsequence.
If the sequence kn has a constant subsequence, we are done (as xn → x and

each fk is continuous). Otherwise we can without loss of generality suppose that
the sequence kn is increasing.
Now, as (fm,n : n ∈ N) is usco-bounded for eachm ∈ N, the sequence fm,kn

(xn)
has a converging subsequence for each m ∈ N. Thus, we can suppose without loss
of generality that, for each m ∈ N the sequence fm,kn

(xn) converges to some
ym ∈ Y .
Further, for each n ∈ N we have

hkn
(xn) = f1,kn

(xn) +

kn−1
∑

j=1

cnj
fj+1,kn

(xn)− gj,kn
(xn)

‖fj+1,kn
(xn)− gj,kn

(xn)‖
,

where cnj ∈ [0, 2−j+1] for n ∈ N and j = 1, . . . , kn−1. (If fj+1,kn
(xn) = gj,kn

(xn),

we set cnj = 0 and suppose the fraction equals some unit vector.)



142 O.F.K.Kalenda

We can consider sequences (cnj : j = 1, . . . , kn − 1) as elements of the set

C = {(tj : j ∈ N) : ∀ j ∈ N : tj ∈ [0, 2−j+1]}.

The embedding is done by completing the finite sequence by zeros since the kn-
th place. The set C is a compact subset of the Banach space ℓ1, hence we can
suppose without loss of generality that the sequences (cnj ) converge (for n→ ∞)

in the ℓ1-norm to a sequence (cj : j ∈ N) ∈ C.
Observe that for each j ∈ N the sequence gj,kn

(xn) converges in Y . Indeed, for
j = 1 we have g1,kn

(xn) = f1,kn
(xn) which converges to y1. Suppose now that

j ∈ N is such that gj,kn
(xn) converges in Y . Then

gj+1,kn
(xn) = gj,kn

(xn) + c
n
j

fj+1,kn
(xn)− gj,kn

(xn)

‖fj+1,kn
(xn)− gj,kn

(xn)‖
,

and hence it converges in Z due to the assumption that fj+1,kn
(xn) converges to

yj+1 and that c
n
j converges to cj . (If fj+1,kn

(xn) = gj,kn
(xn) only for a finite

number of n’s, the conclusion is clear. If the equality holds for infinitely many n’s
then by the above convention cnj = 0 for infinitely many n’s, and hence cj = 0.

So cnj → 0 and hence the limit of gj+1,kn
(xn) is the same as that of gj,kn

(xn).)

Moreover, as Y is complete and the values of each gm,n are in Y , we get that the
limit belongs to Y .

Finally, we have that for each j ∈ N the sequence cnj
fj+1,kn (xn)−gj,kn (xn)

‖fj+1,kn (xn)−gj,kn (xn)‖

converges for n → ∞ to some zj ∈ Z. As ‖zj‖ ≤ 2−j+1, the sequence (y1 +
∑N−1

j=1 zj : N ∈ N) is Cauchy. Moreover, y1 +
∑N−1

j=1 zj ∈ Y for each N ∈ N, as

it is equal to

lim
n→∞



f1,kn
(xn) +

N−1
∑

j=1

cnj
fj+1,kn

(xn)− gj,kn
(xn)

‖fj+1,kn
(xn)− gj,kn

(xn)‖



 = lim
n→∞

gN,kn
(xn),

which belongs to Y as Y is complete and gN,kn
(xn) ∈ Y for each N and n. Hence

the above sequence converges in Y to y1+
∑∞

j=1 zj . Now it is clear that hkn
(xn)

converges to y1 +
∑∞

j=1 zj , which completes the proof of the positive part.

If Y is not complete, Example 2.6 shows that the assertion is not true. Indeed,
there are usco-bounded simple functions fn : R → Y uniformly converging to a
function f which is not usco-bounded. Each fn is the pointwise limit of a usco-
bounded sequence of continuous function by Theorem 3.1. On the other hand, f
cannot be expressed as such a limit as in such a case it would be usco-bounded.

�

Finally, we give the result for the case when Y is finite-dimensional.
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Theorem 3.3. Let X be a metric space, Y a closed convex subset of R
d and

f : X → Y be a usco-bounded Baire-one function. Then f is the pointwise limit
of a usco-bounded sequence of continuous functions.

In the proof we will need two simple lemmata.

Lemma 3.1. Let X be a metric space, f and g two functions defined on X with
values in R

d such that f − g is bounded. If f is usco-bounded, then so is g.

Proof: Let xn be a sequence in X converging to some x ∈ X . As f is usco-
bounded, we can suppose that the sequence f(xn) converges. Further, the se-
quence g(xn) − f(xn) is bounded, and hence has a convergent subsequence. It
follows that g(xn) has a convergent subsequence. This shows that g is usco-
bounded. �

Lemma 3.2. Let X be a metric space, Y be a closed convex subset of R
d and

f : X → Y be a usco-bounded Baire-one function. Then f is a uniform limit of a
sequence of usco-bounded simple functions.

Proof: Fix ε > 0. By Lemma 2.2 there is a simple function g with ‖f(x) −
g(x)‖ < ε for all x ∈ X . By Lemma 3.1 the function g is usco-bounded. This
completes the proof. �

Proof of Theorem 3.3: Let f : X → Y be a usco-bounded Baire-one func-
tion. By Lemma 3.2 it is the uniform limit of a usco-bounded sequence of simple
functions. Now the result follows from Theorems 3.1 and 3.2. �

4. Final remarks and open questions

Of course, the main problem is whether the answer to the question from the
introduction is positive in general. However, let us formulate some more questions.

Question 4.1. Let X and Y be metric spaces and f : X → Y a usco-bounded
Baire-one function. Is there a sequence of usco-bounded simple functions uni-
formly converging to f?

The positive answer to this question would imply (using Theorem 3.2) the
positive answer to our main problem under the assumption that Y is complete.
Due to Example 2.6 it would not help to solve the general case.

By Lemma 3.2 the answer to the above question is positive if Y is a closed
convex subset of R

d. Moreover, the answer is positive if f is continuous (and X ,
Y are general metric spaces). Let us sketch the proof of this (although it yields
nothing new with respect to our main problem).

Let f : X → Y be continuous and ε > 0. Then for each x ∈ X there is
an open neighborhood Ux of x with diam f(Ux) < ε. Let V be a locally finite
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open refinement of the open cover {Ux : x ∈ X} of X . Let {Vα : α < κ} be an
enumeration of V by ordinal numbers. Set

Wα = Vα \
⋃

β<α

Vβ

for each α < κ. If Wα 6= ∅ choose yα ∈ f(Wα). Define the function g : X → Y

by setting g(x) = yα for x ∈Wα. It is clear that the distance of f(x) and g(x) is
less than ε for each x ∈ X . Further, it is easy to see that g is a simple function.
Finally, as the partition {Wα : α < κ} is locally finite, the function g is easily
seen to be usco-bounded (using Lemma 2.1).
Another question concerns possible modification of Theorem 3.2.

Question 4.2. Let X be a metric space and Y a convex subset of a normed
linear space. Suppose that the sequence of functions fn : X → Y is usco-bounded
and uniformly converges to a function f . Suppose, moreover, that each fn is the
pointwise limit of a usco-bounded sequence of continuous functions. Is the same
true for f?

If Y is complete, the answer is positive (even without the assumption of the
usco-boundedness of the sequence) by Theorem 3.2. Note that the sequence from
Example 2.6 is not usco-bounded.
The positive answer to this question would help to solve the problem if the

following strengthening of the first question has positive answer.

Question 4.3. Let X and Y be metric spaces and f : X → Y a usco-bounded
Baire-one function. Is there a usco-bounded sequence of simple functions uni-
formly converging to f?

Note, that the answer is positive if Y is a closed convex subset of R
d. This

follows easily from the proofs of Lemmata 3.1 and 3.2. (Note that if f is usco-
bounded and Y is a closed subset of R

n, then the graph of the set-valued map
x 7→ B(f(x), ε) is contained in the graph of a usco map — we can use Lemma 2.1.)

Added in proof.

Question 4.1 was recently answered in the positive by J. Spurný. Therefore the
answer to our main question is positive provided the range space Y is complete.
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