An interesting class of ideals in subalgebras of C(X) containing $C^*(X)$

Sudip Kumar Acharyya, Dibyendu De

Abstract. In the present paper we give a duality between a special type of ideals of subalgebras of C(X) containing $C^*(X)$ and z-filters of βX by generalization of the notion z-ideal of C(X). We also use it to establish some intersecting properties of prime ideals lying between $C^*(X)$ and C(X). For instance we may mention that such an ideal becomes prime if and only if it contains a prime ideal. Another interesting one is that for such an ideal the residue class ring is totally ordered if and only if it is prime.

Keywords: Stone-Čech compactification, rings of continuous functions, maximal ideals, $z_A^{\mathcal{A}}\text{-ideals}$

Classification: 54D35

1. Introduction

Throughout the paper all topological spaces are assumed to be Tychonoff. For a space X, C(X) stands for the ring of all real valued continuous functions on X, $C^*(X)$ is the subring of C(X) consisting of all bounded functions and $\Sigma(X)$ will denote the collection of all subalgebras of C(X) containing $C^*(X)$.

It is a fascinating fact in the theory of rings of continuous functions that for a space X the structure spaces of both C(X) and $C^*(X)$ produce the Stone-Čech compactification βX of that space. Plank [7] has proved that the structure space of any subalgebra of C(X) containing $C^*(X)$ also produces the Stone-Čech compactification βX of X in an analogous manner. In this course an analogous study of arbitrary subalgebra of C(X) containing $C^*(X)$ becomes important. The study of ideals in C(X) depends strongly on the fact that if I is a proper ideal in C(X) then $Z(I) = \{Z(f) : f \in I\}$ becomes a z-filter on X. But in case of an arbitrary $A(X) \in \Sigma(X)$ the analogous statement is not necessarily true. H.L. Byun and S. Watson [2] introduced a method for studying ideals in arbitrary $A(X) \in \Sigma(X)$. For each ideal I in A(X), they associated a family of subsets of X given by $\mathcal{Z}_A[I] = \bigcup \{\mathcal{Z}_A(f) : f \in I\}$, where for each $f \in A(X)$, $\mathcal{Z}_A(f) = \{E \in Z(X) : \exists g \in A(X) \text{ with } f \cdot g|_{X-E} = 1\}$, which latter turned out to be a z-filter on X. Further they called an ideal I in A(X) to z-filters on X, lacks the sensitivity for distinguishing prime ideals. In fact even in case of
$$\begin{split} A(X) &= C(X) \text{ also, it follows that } \mathcal{Z}_C[O_C^p] &= \mathcal{Z}_C[M_C^p] \text{ for all } p \in \beta X, \text{ where } O_C^p &= \{f \in C(X) : p \in \operatorname{int}_{\beta X}\{\operatorname{cl}_{\beta X} Z(f)\}\}. \text{ More generally, if } P \text{ is a prime ideal contained in a maximal ideal } M_A^p \text{ in } A(X) \text{ then } \mathcal{Z}_A[P] &= \mathcal{Z}_A[M_A^p]. \text{ So by this definition of } \mathcal{B}\text{-ideal there does not exist any non-maximal prime } \mathcal{B}\text{-ideal. In this article we introduce a new type of ideals in } A(X) \text{ called } z_A^\beta\text{-ideals, and a correspondence } z_A^\beta \text{ from the set of all ideals in } A(X) \text{ to the set of a special type of filters in } \beta X \text{ in such a way that the correspondence } z_A^\beta\text{ retains the sensitivity of distinguishing prime ideals to some extent. In fact we shall show that there exists a non-maximal prime <math>z_A^\beta\text{-ideal in } A(X).$$
 Following Plank [7], for any $f \in A(X)$ we denote $\{p \in \beta X : (f \cdot g)^*(p) = 0 \text{ for all } g \in A(X)\}$ as $S_A(f)$ and $Z_A^\beta[I] = \{S_A(f) : f \in I\}.$ Throughout this article we shall call $S_A(f)$ an $A\text{-zeroset in } \beta X,$ and the set $\{S_A(f) : f \in A(X)\}$ will be denoted by $Z_A^\beta[X]. \end{split}$

2. z_A^β -filter on βX

Like z-filters in X, we define z_A^β -filters in βX in the following way.

Definition 2.1. A non empty subset F of $Z_A^{\beta}[X]$ is called a z_A^{β} -filter on βX provided that

- (1) $\varphi \notin F$,
- (2) if Z_1, Z_2 are in \digamma then $Z_1 \cap Z_2 \in \digamma$,
- (3) if Z is in F and $Z' \in Z_A^\beta[X]$ with $Z' \supset Z$ then $Z' \in F$.

Now we can easily see that if f is a unit of A(X) then $\frac{1}{f} \in A(X)$ so that $(f \cdot \frac{1}{f})^*(p) = 1$ for all $p \in \beta X$ and therefore $S_A(f) = \varphi$. Again for each $p \in \beta X$ there exists $g_p \in A(X)$ such that $(f \cdot g_p)^*(p) \neq 0$. This means that f is missed by every maximal ideal in A(X), so that f is not a unit of A(X). Therefore we have the following lemma.

Lemma 2.2. Suppose $A(X) \in \Sigma(X)$. Then for any $f \in A(X)$, $S_A(f) = \varphi$ if and only if f is a unit of A(X).

The above lemma discovers the duality existing between the ideals of A(X) and z_A^{β} -filters on βX .

Theorem 2.3. For any $A(X) \in \Sigma(X)$ the following holds.

- (1) If I is an ideal in A(X) then the family $Z_A^{\beta}[I] = \{S_A(f) : f \in I\}$ is a z_A^{β} -filter on βX .
- (2) If F is a z_A^{β} -filter on βX then the family $Z_A^{\beta-1}[F]$ given as $\{f \in A(X) : S_A(f) \in F\}$ is an ideal in A(X).

Before talking about the duality between maximal ideals in A(X) and maximal z_A^{β} -filter in βX we simply write down the following results, whose proofs can also be given by using the well-known routine arguments. First we introduce the following notion.

Definition 2.4. A z_A^{β} -ultrafilter on βX is a z_A^{β} -filter on βX which is not contained in any other z_A^{β} -filter on βX .

Theorem 2.5. For any $A(X) \in \Sigma(X)$ the followings are equivalent.

- (1) Every z_A^{β} -filter on βX can be extended to a z_A^{β} -ultrafilter on βX .
- (2) Every subfamily of $Z_A^{\beta}[X]$ with finite intersection property can be extended to a z_A^{β} -ultrafilter on βX and therefore a z_A^{β} -ultrafilter on βX is a subfamily of $Z_A^{\beta}[X]$ which is maximal with respect to having finite in-tersection property. Conversely a subfamily \digamma of $Z_A^{\beta}[X]$ enjoying finite intersection property and maximal with respect to this property is necessary a z_{Λ}^{β} -ultrafilter on βX .
- (3) A z_A^{β} -filter F on βX is a z_A^{β} -ultrafilter on βX if and only if for any $Z \in$ $Z^{\beta}_{A}[X], Z \cap Z' \neq \varphi$ for any $Z' \in F$, implies that $Z \in F$.

As a straightforward consequence of the above theorem, taking into account the maximality of M and F, we have the following theorem.

Theorem 2.6. Suppose $A(X) \in \Sigma(X)$. Then

- if M is a maximal ideal in A(X) then Z^β_A[M] is a z^β_A-ultrafilter on βX,
 if ℑ is a z^β_A-ultrafilter on βX then Z^{β-1}_A[ℑ] is a maximal ideal in A(X).

Using the duality between maximal ideals in A(X) and ultrafilters in βX we have the following theorem.

Theorem 2.7. Let $A(X) \in \Sigma(X)$ and $f \in A(X)$. If M is a maximal ideal in A(X) and $S_A(f)$ meets every member of $Z_A^\beta[M]$ then $f \in M$.

3. z_{A}^{β} -ideals in A(X) and its properties

For any $A(X) \in \Sigma(X)$ and for any z_A^β -filter \Im on βX , it is obvious that $\Im = Z_A^{\beta}[Z_A^{\beta-1}[\Im]];$ therefore Z_A^{β} can be considered to be a mapping from the set of all ideals in A(X) onto the set of all z_A^{β} -filters on βX . Furthermore, for any ideal I in A(X), we have $I \subset Z_A^{\beta-1}[Z_A^{\beta}[I]]$. The inclusion in the above relation may be proper. In fact in the ring $C(\mathbb{R})$ if we consider the ideal $I = \langle i \rangle$, the smallest ideal in $C(\mathbb{R})$ generated by the identity mapping i, we can easily observe that the mapping $i^{1/3}$ is in $Z_C^{\beta-1}[Z_C^{\beta}[I]]$ but it does not belong to I. This motivates to introduce the following definition.

Definition 3.1. An ideal I in $A(X) \in \Sigma(X)$ is said to be a z_A^{β} -ideal if for any $f \in A(X), S_A(f) \in Z_A^{\beta}[I]$ implies that $f \in I$, that is, $I = Z_A^{\beta-1}[Z_A^{\beta}[I]]$.

Clearly if F is a z_A^{β} -filter on βX then $I = Z_A^{\beta-1}[\Im]$ is a z_A^{β} -ideal in A(X), in fact $\Im = Z_A^{\beta}[Z_A^{\beta-1}[\Im]]$. Further for any $p \in \beta X$, $O_A^p = \{f \in A(X) : p \in \operatorname{int}_{\beta X} S_A(f)\}$ is a z_A^{β} -ideal. It is also evident that the intersection of any nonempty collection of z_A^{β} -ideals in A(X) is again a z_A^{β} -ideal. Again from Theorem 2.7 we can prove that for any maximal ideal M in A(X), $M = Z_A^{\beta-1}[Z_A^{\beta}[M]]$. Thus we have the following theorem.

Theorem 3.2. Suppose $A(X) \in \Sigma(X)$. Then every maximal ideal in A(X) is a z_A^{β} -ideal in A(X).

The following theorem shows that like maximal prime ideals, i.e. maximal ideals, minimal prime ideals in A(X) are also z_A^β -ideals.

Theorem 3.3. If I is a z_A^{β} -ideal in A(X) and P is minimal in the class of prime ideals containing I, then P is a z_A^{β} -ideal.

PROOF: Let J be a prime ideal containing I which is not a z_A^β -ideal. Then to prove the theorem it is sufficient to show that J is not minimal in the class of prime ideals containing I. Since J is not a z_A^β -ideal there exists an $f \in J$ and a $g \in A(X)$ with $g \notin J$ such that $S_A(f) = S_A(g)$. Now consider the set $S = (A(X) - J) \cup \{hf^n : h \notin J, n \in \mathbb{N}\}$. Since J is a prime ideal, S is closed under multiplication. Furthermore S does not meet I. In fact $hf^n \in I$ for some $h \in J$, $n \in \mathbb{N}$ implies that $h \cdot g \in J$, which contradicts that J is a prime ideal. Hence there exists a prime ideal containing I and disjoint from S and, hence, contained in J properly. Therefore J is not minimal.

Remark 3.4. Since the ideal $\langle 0 \rangle$ in any A(X) is a z_A^{β} -ideal, every minimal prime ideal in an arbitrary A(X) is a z_A^{β} -ideal.

It is well known that every z-ideal in C(X) is the intersection of all prime ideals containing it. The basic fact behind the result is that $Z(f^n) = Z(f)$ for all $n \in \mathbb{N}$. In our setting of A(X) we also see that $S_A(f^n) = S_A(f)$ for all $n \in \mathbb{N}$ and therefore we get the following theorem.

Theorem 3.5. Every z_A^{β} -ideal in A(X) is the intersection of all prime ideals in A(X) containing it.

Remark 3.6. Using Theorem 3.3 and Theorem 3.5 it is easy to observe that every z_A^{β} -ideal in A(X) is the intersection of all minimal prime ideals containing it.

The following theorem shows that z_A^{β} -ideals in A(X) are actually A-analogues of z-ideals in C(X).

Theorem 3.7. In C(X), an ideal I is a z-ideal if and only if it is a z_C^{β} -ideal.

PROOF: Let I be a z-ideal in C(X) and $f \in C(X)$ be such that $S_C(f) \in Z_C^\beta[I]$. Then there exists $g \in I$ such that $S_C(f) = S_C(g)$. Since it is well known that for any $f \in C(X)$, $S_C(f) = \operatorname{cl}_{\beta X} Z(f)$ and $\operatorname{cl}_{\beta X} Z(f) \cap X = Z(f)$, the above relation implies that $Z(f) = Z(g) \in Z[I]$. Hence $f \in I$, as I is a z-ideal. Therefore every z-ideal in C(X) is also a z_C^β -ideal.

Conversely, let I be a z_C^{β} -ideal in C(X) and $f \in C(X)$ with $Z(f) \in Z[I]$. Then there exists an element g of I such that Z(f) = Z(g), so that $cl_{\beta X} Z(f) = cl_{\beta X} Z(g) \in Z_C^{\beta}[I]$. Since I is a z_C^{β} -ideal, it follows that $f \in I$, proving that I is a z-ideal in C(X).

It is known that in case of C(X), an intersection of prime ideals need not be a z-ideal, see Example 2G.1 of [5]. So Theorem 3.7 shows that the converse of Theorem 3.5 is not valid. But like z-ideals in C(X), a z_A^{β} -ideal in an arbitrary $A(X) \in \Sigma(X)$ can also be described as a purely algebraic object.

Theorem 3.8. An ideal I in $A(X) \in \Sigma(X)$ is a z_A^β -ideal if and only if given $f \in A(X)$ there exists $g \in I$ such that whenever f belongs to every maximal ideal in A(X) containing g, then $f \in I$.

PROOF: Let I be a z_A^{β} -ideal in A(X) and $f \in A(X)$. Again let $g \in I$ be such that f belongs to every maximal ideal in A(X) containing g. Then $S_A(g) \subset S_A(f)$ so that $S_A(f) \in Z_A^{\beta}[I]$. Since I is a z_A^{β} -ideal in A(X), we have $f \in I$. For the converse, let us assume that the given condition holds and $S_A(f) \in Z_A^{\beta}(f) \in I$.

For the converse, let us assume that the given condition holds and $S_A(f) \in Z_A^\beta[I]$ for some $f \in A(X)$. Taking f = g we see that f belongs to every maximal ideal in A(X) that contains g. Hence $f \in I$ so that I is a z_A^β -ideal.

Now we present an example which shows that the notion of \mathcal{B} -ideal in A(X) [2], already described in Introduction, does not coincide with the notion of z_A^β -ideal even with the choice A(X) = C(X).

Example. Let us consider the z-ideal $O_0 = \{f \in C(X) : 0 \in \operatorname{int}_X Z(f)\}$. Then the z-filter $\mathcal{Z}_C(i) = \{Z \in Z(\mathbb{R}) : \exists g \in C(\mathbb{R}) \text{ with } i \cdot g|_{\mathbb{R}-Z} = 1\} \subset \mathcal{Z}_C[O_0]$. In fact if $Z \in \mathcal{Z}_C(i)$ then there exists $g \in C(\mathbb{R})$ such that $i \cdot g|_{\mathbb{R}-Z} = 1$, which implies that $i \cdot g(\operatorname{cl}_{\mathbb{R}}(\mathbb{R}-Z)) = \{1\}$. It then clearly follows that $0 \notin \operatorname{cl}_{\mathbb{R}}(\mathbb{R}-Z)$. Therefore there exists a $\delta > 0$ such that $(\mathbb{R}-Z) \cap (-\delta, \delta) = \emptyset$. We define $h \in C(\mathbb{R})$ as follows: if $|x| \leq \frac{\delta}{2}$ then h(x) = 0, if $\frac{\delta}{2} \leq x \leq \delta$ then $h(x) = \frac{g(\delta)}{\delta}(2x - \delta)$, if $|x| \geq \delta$ then h(x) = g(x), and if $-\delta \leq x \leq -\frac{\delta}{2}$ then $h(x) = \frac{g(-\delta)}{-\delta}(2x + \delta)$. Then clearly $h \in O_0$ and $i \cdot h|_{\mathbb{R}-Z} = 1$, so that $Z \in \mathcal{Z}_C(h)$. Hence $Z \in \mathcal{Z}_C[O_0]$. But as $i \notin O_0$, O_0 cannot be an \mathcal{B} -ideal in $C(\mathbb{R})$.

Next we recall the definition of e-ideal [5]. An ideal I in $C^*(X)$ is called an e-ideal if $E_{\epsilon}(f) \in E(I) = \bigcup_{\epsilon} E_{\epsilon}(f)$ for all $\epsilon > 0$ implies that $f \in I$, where

 $E_{\epsilon}(f) = f^{-1}[(-\epsilon, \epsilon)]$. But the following example shows that the notion of *e*-ideal in $C^*(X)$ does not coincide with the notion of $z_{C^*}^{\beta}$ -ideal.

Example. In the ring $C^*(\mathbb{R})$ let us consider the ideal $O_0 = \{f \in C^*(\mathbb{R}) : 0 \in int_{\beta\mathbb{R}} Z(f^{\beta})\}$. Since $Z(f^{\beta}) = S_{C^*}(f)$ for any $f \in C^*(\mathbb{R})$, it is easy to see that O_0 is a $z_{C^*}^{\beta}$ -ideal in $C^*(\mathbb{R})$. Now taking $f = (i \vee -1) \wedge 1$ we see that $E_{\epsilon}(f) \in E(O_0)$ for all $\epsilon > 0$, but $f \notin O_0$. Hence O_0 is not an e-ideal.

In case of C(X) it is well known that a z-ideal need not be prime. In fact if X is not an F-space then there exists some $p \in \beta X$ such that O_C^p is not a prime ideal. But O_C^p is a z-ideal for every $p \in \beta X$, i.e. a z_C^β -ideal. The following theorem tells us that if a z_A^β -ideal contains a prime ideal then it becomes prime.

Theorem 3.9. Suppose $A(X) \in \Sigma(X)$ and let I be a z_A^{β} -ideal in A(X). Then the following statements are equivalent.

- (1) I is a prime ideal in A(X).
- (2) I contains a prime ideal in A(X).
- (3) For all g, h in A(X), $g \cdot h = 0$ implies that $g \in I$ or $h \in I$.
- (4) For every $f \in A(X)$ there exists an A-zero set Z in $Z_A^{\beta}[I]$ such that either

 $M^p_{\mathcal{A}}(f) \ge 0 \ \forall p \in \mathbb{Z} \text{ or } M^p_{\mathcal{A}}(f) \le 0 \ \forall p \in \mathbb{Z}.$

PROOF: $(1) \Rightarrow (2)$ is trivial.

 $(2) \Rightarrow (3)$ Let us assume that P is a prime ideal in A(X) contained in I. Now for any two g, h in A(X) if $g \cdot h = 0$ then $g \cdot h \in P$. So either $g \in P$ or $h \in P$, that is, either $g \in I$ or $h \in I$.

 $(3) \Rightarrow (4)$ For any given $f \in A(X)$, $(f \vee 0) \cdot (f \wedge 0) = 0$. Hence from (3) it follows that $f \vee 0 \in I$ or $f \wedge 0 \in I$. If $f \vee 0 \in I$ then $S_A(f \vee 0) \in Z_A^\beta[I]$. In this case for any $p \in S_A(f \vee 0)$, we have $f \vee 0 \in M_A^p$, that is, $M_A^p(f) \vee 0 = 0$. Clearly this implies that $M_A^p(f) \leq 0$ for all $p \in S_A(f \vee 0) \in Z_A^\beta[I]$. Similarly in case $f \wedge 0 \in I$ we have $M_A^p(f) \geq 0$ for all $p \in S_A(f \wedge 0) \in Z_A^\beta[I]$.

 $(4) \Rightarrow (1)$ Let us assume $g \cdot h \in I$, $g, h \in A(X)$, and consider the function |g| - |h| in A(X). Then there exists an A-zeroset Z such that $M_A^p(|g| - |h|) \ge 0$ for all $p \in Z$, say for definiteness. Then clearly

$$M^p_A(|g|) \ge [M^p_A(|h|) \text{ for all } p \in Z.$$

Now we claim that $Z \cap S_A(g \cdot h) = Z \cap S_A(h) \subset S_A(h)$. In fact, by the above relation, $p \in S_A(g) \cap Z$ implies that $p \in S_A(h) \cap Z$, here we use the absolute convexity of maximal ideals in A(X). Now because $S_A(f \cdot g) \in Z_A^\beta[I]$, it follows that $S_A(h) \in Z_A^\beta[I]$. Therefore I is a z_A^β -ideal and we have $h \in I$. Analogously, if $M_A^p(|g| - |h|) \ge 0$ for all $p \in \mathbb{Z}$, then we would have obtained $g \in I$. Hence I is a prime ideal in A(X).

In [6] we have observed that in any uniformly closed ϕ -algebra every prime ideal can be extended to a unique maximal ideal, where by a ϕ -algebra we mean an archimedean lattice ordered algebra over the real field \mathbb{R} which has an identity element 1 that is a weak order unit (i.e. $x \wedge 0$ implies x = 0) and it is called uniformly closed if every Cauchy sequence of its elements converges in it. Here we present a different proof of the above result for arbitrary $A(X) \in \Sigma(X)$. We recall that in any commutative ring if I and J are two prime ideals neither containing the other then $I \cap J$ is not a prime ideal. Therefore in arbitrary $A(X) \in \Sigma(X)$ if two distinct maximal ideals contain a single prime ideal we get a contradiction as intersection of two maximal ideals is a z_A^{β} -ideal in A(X) and by the above theorem any z_A^{β} -ideal containing a prime ideal is prime. This gives an alternative proof of the following theorem.

Theorem 3.10. Every prime ideal in an $A(X) \in \Sigma(X)$ can be extended to a unique maximal ideal.

To end this article we are interested in knowing when a partially ordered residue class ring modulo a z_A^{β} -ideal is *totally ordered*. The following theorem shows that these are only when z_A^{β} -ideals are prime. We recall that every prime ideal in arbitrary $A(X) \in \Sigma(X)$ is absolutely convex. From this it is easy to conclude that every z_A^{β} -ideal is also absolutely convex.

Theorem 3.11. Suppose that $A(X) \in \Sigma(X)$ and that I is a z_A^{β} -ideal in A(X). Then A(X)/I is totally ordered if and only if I is prime.

PROOF: Let A(X)/I be a totally ordered ring and $f \in A(X)$. We assume that $I(f) \geq 0$. Since I is absolutely convex we have $f - |f| \in I$, and therefore $S_A(f) \in Z_A^{\beta}[I]$. Hence for any $p \in S_A(f)$ it follows that $M_A^p(f - |f|) = 0$ that is $M_A^p(f) = M_A^p(|f|)$. This implies that $M_A^p(f) \geq 0$ for all $p \in Z = S_A(f - |f|) \in Z_A^{\beta}[I]$. Therefore by Theorem 3.9 I becomes a prime ideal.

Conversely let I be a prime ideal in A(X) and $f \in A(X)$. Then again by Theorem 3.9 there exists a $Z \in Z_A^{\beta}[I]$ such that either $M_A^p(f) \ge 0$ for all $p \in Z$ or $M_A^p(f) \le 0$ for all $p \in Z$. Let us assume that $M_A^p(f) \ge 0$ for all $p \in Z$. This implies that $f - |f| \in M_A^p$ so that $M_A^p(f) = M_A^p(|f|)$ for all $p \in Z$. Hence $M_A^p(f - |f|) = 0$ for all $p \in Z$, that is $Z \subset S_A(f - |f|)$. Now as $Z_A^{\beta}[I]$ is a z_A^{β} -filter on βX and I is a z_A^{β} -ideal in A(X) we have $f - |f| \in I$ and hence $I(f) \ge 0$. Similarly $M_A^p(f) \le 0$ for all $p \in Z$ implies that $I(f) \le 0$. Therefore A(X)/Ibecomes totally ordered.

S.K. Acharyya, D. De

References

- Acharyya S.K., Chattopadhyay K.C., Ghosh D.P., A class of subalgebras of C(X) and the associated compactness, Kyungpook Math. J. 41 (2001), no. 2, 323–324.
- [2] Byun H.L., Watson S., Prime and maximal ideals of C(X), Topology Appl. 40 (1991), 45–62.
- [3] De D., Acharyya S.K., Characterization of function rings between C*(X) and C(X), Kyungpook Math. J. 46 (2006), 503-507.
- [4] Dominguege J.M., Gomez J., Mulero M.A., Intermediate algebras between C*(X) and C(X) as rings of fractions of C*(X), Topology Appl. 77 (1997), 115–130.
- [5] Gillman L., Jerison M., Rings of Continuous Functions, Springer, New York, 1976.
- [6] Henriksen M., Johnson D.G., On the structure of a class of archimedean lattice ordered algebras, Fund. Math. 50 (1961), 73–94.
- [7] Plank D., On a class of subalgebras of C(X) with application to $\beta X X$, Fund. Math. **64** (1969), 41–54.
- [8] Redlin L., Watson S., Maximal ideals in subalgebras of C(X), Proc. Amer. Math. Soc. **100** (1987), 763–766.

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF CALCUTTA, 35 BALLYGUNGE CIRCU-LAR ROAD, KOLKATA-700019, INDIA

E-mail: sudipkumaracharyya@yahoo.co.in

DEPARTMENT OF MATHEMATICS, KRISHNAGAR WOMEN'S COLLEGE, KRISHNAGAR, NADIA-741101, INDIA

E-mail: dibyendude@gmail.com

(Received September 10, 2006, revised February 21, 2007)