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Quasi-concave copulas, asymmetry and transformations

ELISABETTA ALVONI, PIER LUIGI PAPINI

Abstract. In this paper we consider a class of copulas, called quasi-concave; we compare
them with other classes of copulas and we study conditions implying symmetry for them.

Recently, a measure of asymmetry for copulas has been introduced and the maxi-
mum degree of asymmetry for them in this sense has been computed: see Nelsen R.B.,
Extremes of nonexchangeability, Statist. Papers 48 (2007), 329-336; Klement E.P.,
Mesiar R., How non-symmetric can a copula be?, Comment. Math. Univ. Carolin. 47
(2006), 141-148. Here we compute the maximum degree of asymmetry that quasi-
concave copulas can have; we prove that the supremum of {|C(z,y) — C(y,z)|;z,y in

[0,1]; C is quasi-concave} is % Also, we show by suitable examples that such supremum

is a maximum and we indicate copulas for which the maximum is achieved.
Moreover, we show that the class of quasi-concave copulas is preserved by simple
transformations, often considered in the literature.
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1. Copulas and asymmetry

As known, copulas link the joint distribution function of a random vector to
the corresponding marginal distribution functions. Moreover, from some years,
in Finance, Statistics and Probability there is a growing interest on nonexchange-
ability of random variables, and this can be studied in terms of non-symmetric
copulas.

We recall some definitions.

A (bivariate) copula is a function C: [0,1]? — [0, 1] satisfying:

(1) C(ly) =y, C(a,1) =a, for 0 <z, y <1,
(2) C(',y) - C(z,y) > C(@,y) = C(z,y) for 0 <z <2’ <1, 0<y <y < 1.

In particular, condition (2), usually called 2-increasingness, together with (1)
implies:

3) C(z,y) is increasing in each variable
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and

(4) C0,y) =0, C(x,0) =0, for 0<z, y<1.
Also, we obtain from (2) (set ¢/ =1 or 2’ = 1):

(5) C(x,y) is 1-Lipschitz in each variable.

A copula is the restriction to the unit square of a distribution function with
uniform marginals on [0,1]. We refer to [5] for general results on copulas.

A copula C(z,y) is commutative or symmetric, if
(6) C(z,y) = C(y,z) for all z, y in [0,1].

If a copula is not commutative, it can be interesting to know how large the
difference between C(z,y) and C(y,x) can be.
According to [6], we set, for a copula C:

(7) Bc = sup{|C(z,y) — C(y,2)]; =,y € [0,1]}.

As proved in [6, Theorem 2.2] and in [3], we have:

(8) sup{fBc; C is a copula} = % ;
due to this fact, it was suggested to use 33¢ as a normalized measure of asymmetry
for copulas.

Moreover, the supremum is achieved: the set of copulas for which such value
is attained, was characterized in [6]; their elements were called mazimally nonez-
changeable copulas. These and other results on asymmetry have been considered
also in [3].

To see how and where the interest in asymmetry can arise, we recall that for
example in [2] it was explained why it can be suitable to change symmetric copulas
into asymmetric ones.

2. Quasi-concave copulas, symmetry and other related classes of
copulas

We define a class of copulas, described in [5, Section 3.4.3].

Definition 1. We say that a copula is quasi-concave if for all (x,y), (z/,v') in
[0,1]% and all X € [0, 1], we have:

(9) CAx+ (1 =Nz, Ay +(1—=N)y) >min{C(z,y), C(z',y)}.

Another, more popular, class of copulas can be described in the following way
(see for example [5, Definition 3.4.6]):
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Definition 2. We say that a copula is Schur-concave if for all z,y, A in [0, 1], we
have:

(10) C(z,y) <CAx+ (1 =Ny, Ay + (1 —N)x).

It is clear that a copula satisfying (10) is commutative.

A weakening of condition (10) has been considered, mainly in a context different
from that of copulas (see [4, (4.1)]):

rT+y rT+y

(1) ot

) > C(x,y) forall z,y € [0,1].

For copulas, an “asymmetric” version of (11) was considered in [1].

The meaning of (11) and, respectively, (10), is the following. Consider the
values of C along the line segment z + y = 2a (0 < o < 1); if (11) holds, then
C(z,y) takes the maximum value at the point (o, a); if (10) holds, then C(x,y)
is also increasing in the upper part of the line x + y = 2« from the border of the
unit square to the diagonal, and decreasing along the lower part (from («a, @) to
the border).

We recall (see [5, p.104]) that quasi-concave copulas are also Schur-concave if
they are symmetric (but not in general).

Now we prove that also quasi-concavity together with (11) implies Schur-
concavity. Thus we obtain a description of symmetric quasi-concave copulas.

Theorem 1. If a quasi-concave copula satisfies (11), then it is Schur-concave.

PRrROOF: Let C(z,y) be quasi-concave and satisfy (11); assume, by contradiction
that C is not Schur-concave, and let be (z,y), (z’,9’) points along the segment
x+y=2a (0<a<1)such that:

(%) 0<z<a < x—;—y; C(z,y) > C(2',y).
Since, according to (11):
rt+y T+y
C( ) ) = C(z,y),
2 2
the quasi-concavity of C' implies
Cla',y') 2 min{Cla,y), (1L, T2Y)} = C(ay),

against (x); so we have a contradiction.
Analogously, we obtain a contradiction starting from xT"'y <z <2’ <1. This
concludes the proof of the theorem. (I

We have immediately the following consequence.
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Corollary. For a quasi-concave copula C' the following are equivalent:
(i) C is symmetric,
(ii) C satisfies (11),
(iii) C is Schur-concave.

Remark. For an example of a (symmetric) Schur-concave copula which is not
quasi-concave see [5, Example 3.28(a)]; so condition (11) does not imply quasi-
concavity. Example 2 in [1] describes a symmetric copula satisfying (11), which
is not Schur-concave (so neither quasi-concave).

We can ask for some other condition implying the quasi-concavity of a copula.
We give below one possible answer.

We consider another class of copulas, satisfying a condition which also has a
statistical meaning (see [5, Definition 5.2.9 and Corollary 5.2.11]).

Definition 3. We say that a copula is stochastically increasing in x and y, (SI)
for short, if it is concave in each variable; namely:

1 C(z,y) is a concave function of y for any fixed x,
(12) and a concave function of x for any fixed y (z,y € [0,1]).

We have the following result.
Theorem 2. (SI) copulas are quasi-concave.

PRrROOF: We recall that, since we are dealing with continuous functions, quasi-
concavity for copulas is equivalent to Jensen (midpoint) quasi-concavity, that is
to

x—l—x/ y—|—y/

©) o5

) > min{C(z,y), C(z',y")}.

We prove now a simple claim.

Claim. If a copula C(z,y) is not quasi-concave, then (9') is violated by a pair of
points (z,y), (2/,%') such that the line joining them has a negative slope.

PROOF OF THE CLAIM: Let C(x,%) be a copula. Let the points (z,y), (2/,y) be
such that the line joining them has a non-negative slope; if z < 2/ and y < 3/,
then (3) implies: min{C(z,y),C(2’,y")} = C(z,y) < C(z',y'); moreover C(\z +
(1=XN)z', Ay+ (L —=Ny'), A € ]0,1], is an increasing function of \.

Thus in this case (9') is satisfied; this proves the claim. (]

PROOF OF THEOREM 2: We deal with Jensen concavity. Let C(x,y) be an (SI)
copula; assume, by contradiction, that C'(z,y) is not quasi-concave: according to
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the claim, there are two points (z,y), (2/,3) such that the line joining them has
a negative slope and moreover:

/

z+x y+uy

min{C(z,y), C(z',y")} > C(—5—, =)

Assume that, for example, z < 2’ and y > 3 (a similar reasoning applies in the
case x > 2’ and y < ¢/).
According to (12), we have

vral yty

1
0(2’2—5 2 2

therefore:

S, PE) o, Vo) < min{C(n,y), C6 9}

< 3(Cla.y) + Ol )

'y - o, L) < o 28y — ol ),
we obtain
c ) - 6 LY < Cay) - 0w, UEY)
or
C(x, Ll _; y,) +C(2,y) < Oz, y) + C(, %@/)
The last inequality contradicts 2-increasingness. This completes the proof of
the theorem. O

Remark 1. Following the lines of the now given proof, also the following fact
can be proved:

If a copula is (SI), then it is also concave along lines with a negative slope.

Recall that (SI) does not imply concavity of a copula (the definition of concavity
being the usual one, which implies (SI)): in fact, there exists a unique concave
copula (which is the greatest copula: see [5, Example 3.26.(a)]). Also: Schur
concavity and concavity are independent notions for functions (see [7, p.258]);
but the unique concave copula is Schur-concave.

Remark 2. Note that in general (SI) copulas are not symmetric (or equivalently,
according to Theorem 2 and the Corollary to Theorem 1, they do not satisfy (10)
or (11)). An example of an asymmetric, (SI) copula, is the following:
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Example 1. Consider the following copula:

o) 2y3/4 itz < yl/2
x,y) =
Y y:vl/2 if > yl/z.

Remark 3. It is also possible to see that symmetric, quasi-concave copulas (see
the Corollary) are not in general (SI) copulas: consider for example as C(z,y)
a copula whose level lines, which are broken lines, join (22,1), (x,z), (1,22),
z €10,1].

Remark 4. Recall that a copula is associative if for all x,y, z € [0, 1] we have:

C(C(z,y),2) = C(x,C(y, z)) forall z,y,z € [0,1].

The following copula is (SI), symmetric but not associative:

c( ){x\/ﬂ if <y,
YT \evE iz

to see this, it is enough to consider for example in the above definition x = y =
1., _ 1
23 z = 1

3. Quasi-concave copulas and asymmetry

In this section we want to study the quantity

(13) B(Q) = sup{fBc; C is a quasi-concave copula}.

We recall the following result (see [6, Lemma 2.1]).

Lemma. For any copula C and any z,y € [0,1] we have:

(14) |C(z,y) — C(y,z)| < min{z,y,1 —z,1 —y, |z —y|}.

Now we prove the main result of this section.

Theorem 3. We have:
(15) B(Q) =1/5.

PrROOF: Let B(C) = 8 > 0 for some quasi-concave copula C and let 5 = C(x,y) —
C(y,x) for a pair z,y. It is not a restriction to assume = < y (otherwise, by
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symmetry, we may construct a copula C’, with same asymmetry, for which this
holds true).

Let C(y,z) = @ and C(z,y) = o + . According to the Lemma, P = (,y)
belongs to the triangle T : {(x,y); * > 3; y<1-70; y > x + 3}

The points (1, + ), (a + §,1), (x,y) all belong to the level sets L =
{(u,v); Clu,v) =a+ 5}

Recall that C(y,z) = «; let (y, z) be the lower point of abscissa y that belongs
to L, and (y, z’) the point of abscissa y that belongs to the segment of extremes
(z,y), (1,z) (z > a+p3). Considering that segment, if we write y = }_;gac—i— 1,

we see that 1
— -

/:_yy+y
1—=z

Now the quasi-concavity of C' implies C(y,2') > a + 3, so 2’ > z > x, and then
(by using (5)) 2/ —x > 2 —x > C(y,z) — C(y,z) = 3; then

z T

1—a"

1—y Yy—x
1—xy+1—:v

y—y +tyr—ax
11—z

x —x > (; equivalently

> p.

—y?+y(lta)—=

Now consider the function f(z,y) = in the triangle T'; simple

1—x
computations show that it attains its maximum at the point (0, #) So we
have 15
4 > [, which is equivalent to 5 < 1/5.

We have proved that 1/5 is an upper bound for 3(Q). To conclude the proof
we must produce an example of a quasi-concave copula C' such that

B = sup{|C(z,y) — C(y,z)|; =,y €[0,1]} =1/5.
This is done by the example below.

Example 2. The above proof shows that the value 1/5 for asymmetry can only
be attained, in the upper triangle y > x of the unit square, at the point (%, %)

Note that the copulas we are considering are related to examples in Section 3.2.1
of [5].
We define a copula Cq(z,y), whose asymmetry is 1/5, in the following way:

- +1
max{y + (z —1)/2,0} if 0<y< &=,
z if wTJ"l<y§1.

Cl(l’,y) = {

The copula C is quasi-concave (the upper boundary of level sets are convex: see
[5, Theorem 3.4.5]). The support of C; consists of the two line segments in I?:

14+z

(el y="2 Uiy e’ y=—2"

— b
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We can also consider a copula C2, with the same asymmetry, whose support
is distributed along some line segments: weight 4/5 spread along the line joining
(1/5, 1) and (1, 1/5); weight 1/5 along the segment joining (0, 3/5) and (1/5,
2/5); weight 2/5 along the segment joining (1/5, 2/5) and (1, 0); finally, negative
weight 2/5 spread along the segment of extremes (1/5, 3/5) and (1, 1/5).

The copulas C'; and Cs seem to be, respectively, the largest and the smallest
quasi-concave copulas among of all quasi-concave copulas such that C(3/5,1/5) =
0, C(1/5,3/5)=1/5.

Analogously we can construct, by symmetry, another pair of copulas Cg and
C4 so that, by using these 4 copulas, we can indicate all quasi-concave copulas
attaining the largest values for asymmetry. All of this can be done following the
scheme of [6]. O

Remark. Our last result also says how far a quasi-concave copula can be from
being Schur-concave. For example, given any quasi-concave copula C(x,y), the
copula C'(z,y) = %(C’(x, y) + C(y,x)) is a symmetric copula such that

|C(z,y) — C'(z,y)| < liO for all x,y.

But we can observe that in this way the copula we obtain is not in general a
quasi-concave copula. This can be seen by starting, for example, from the copula
in Exercise 3.8 in [5], with o = % and 8 = %

4. Quasi-concave copulas and transformations

The following transformations have often been considered for aggregation op-
erators, in particular for copulas.
Let ¢ be a strictly increasing bijection of [0,1].
Set
-1
Colz,y) = ¢ (Cle(x), ©(y))).

It is well known that only if ¢ is concave, Cy, is a copula whenever C'is a copula.
Now we prove that if ¢ is concave, then also quasi-concavity of copulas is
preserved.

Theorem 4. If C is a quasi-concave copula and ¢ is concave, then Cy, is a
quasi-concave copula.

PRrROOF: We already know that under our assumptions, Cy, is a copula. Assume,
by contradiction, that C, is not quasi-concave. This means that there exist two
pairs (x1,y1) and (z2,y2) and some A € [0,1] such that for the point (xy,¥)),
where 2y = Ax1 + (1 — Nz2; yy = Ay1 + (1 — A)y2, we have:

C<P($)\7y)\) < CQD(‘Tl?yl); CSD(:I‘.)\vy)\) < CSD(‘/I;QuyZ);
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since ¢ is increasing, these are equivalent to

Cle(zy), o(yr) < Cle(z1), (y1)); Cle(zy), v(yn)) < Cle(z2), (y2)).

Now set, for A € [0, 1]:

!

2y = Mp(a1) + (1= Ne(@2); yy = Ap(y1) + (1 = Ne(y2).

The fact that ¢ is concave implies

p(ry) > xy, P(Yn) > Yy

therefore we obtain:

’ ’

C(xy,yy) < Cle(xr), o(yr) < Cle(r1), (y1)),

and similarly,
C(:E)\a y)\) < C(‘P(xQ)a Sp(y2))7
against the quasi-concavity of C. This contradiction proves the theorem. (I
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