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On the regularity of local minimizers

of decomposable variational integrals on domains in R
2

M. Bildhauer, M. Fuchs

Abstract. We consider local minimizers u : R
2 ⊃ Ω → R

N of variational integrals likeR
Ω
[(1 + |∂1u|2)p/2 + (1 + |∂2u|2)q/2] dx or its degenerate variant

R
Ω
[|∂1u|p + |∂2u|q] dx

with exponents 2 ≤ p < q < ∞ which do not fall completely in the category studied
in Bildhauer M., Fuchs M., Calc. Var. 16 (2003), 177–186. We prove interior C1,α-
respectively C1-regularity of u under the condition that q < 2p. For decomposable
variational integrals of arbitrary order a similar result is established by the way extending
the work Bildhauer M., Fuchs M., Ann. Acad. Sci. Fenn. Math. 31 (2006), 349–362.

Keywords: non-standard growth, vector case, local minimizers, interior regularity, prob-
lems of higher order

Classification: 49N60, 35J50, 35J35

1. Introduction

This paper is devoted to the study of the interior regularity of local minimizers
u : R2 ⊃ Ω→ R

N of anisotropic variational integrals of the form

(1.1) J [u,Ω] =

∫

Ω
f(∇u) dx,

where Ω denotes a bounded open set in the plane and where the energy density
f : R2N → R satisfies the estimate

(1.2) a|Z|p − b ≤ f(Z) ≤ A|Z|q +B for all Z ∈ R
2N

with exponents 2 ≤ p ≤ q < ∞ and constants a, A > 0, b, B ≥ 0. Due to (1.2) it
is natural to discuss J on the local Sobolev space W 1

p,loc(Ω;R
N ) (see, e.g., [Ad]

for a definition of these spaces) and to call a function u from this class a local

J-minimizer iff J [u,Ω′] < ∞ and J [u,Ω′] ≤ J [v,Ω′] for all v ∈ W 1
p,loc(Ω;R

N )

such that spt(u− v) ⊂ Ω′, where Ω′ is any subdomain of Ω with compact closure
in Ω. As a matter of fact, (1.2) is not sufficient for building up a regularity theory
for locally J-minimizing functions, in place of (1.2) a suitable ellipticity condition
is needed: for example, the validity of

(1.3) λ(1 + |X |2)
p−2
2 |Y |2 ≤ D2f(X)(Y, Y ) ≤ Λ(1 + |X |2)

q−2
2 |Y |2
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for all X, Y ∈ R
2N with constants λ, Λ > 0 guarantees the strict convexity of f

and clearly implies (1.2). Then, if u is a local J-minimizer and if for the moment
Ω is a domain in some R

n, n ≥ 2, (1.3) ensures the following regularity results:
(i) (full interior regularity in the scalar case) If N = 1, then u is of class

C1,α(Ω) for any α < 1.
(ii) (partial regularity in the vector case) If N > 1, then there is an open

subset Ω0 of Ω such that u ∈ C1,α(Ω0;R
N ) for any 0 < α < 1. Moreover,

Ω− Ω0 is of Lebesgue measure 0.
We refer the reader, for instance, to the papers of Marcellini [Ma1]–[Ma3], of
Esposito, Leonetti and Mingione [ELM1]–[ELM3], of Acerbi and Fusco [AF], of
Fusco and Sbordone [FS] and of the authors [BF1]. We also mention the mono-
graph [Bi], where one can find further references. We wish to emphasize that all
these results are valid either under a condition of the form

(1.4) q < c(n)p, c(n)→ 1 as n → ∞,

or they require bounds like

(1.5) q < p+ 2

together with the assumption u ∈ L∞
loc(Ω;R

N ) and with additional structural
hypothesis imposed on f . It is also important to remark that counterexamples
of Giaquinta [Gi2] and (later) Hong [Ho] show that the smoothness of local min-
imizers can only be expected if q and p are not too far apart, i.e. some variant
of (1.4) is necessary for local regularity. Of course the “two-dimensional vector
case” (i.e. n = 2, N > 1) is included in (ii) but for this particular situation we
proved in [BF2].

(iii) If n = 2 and N ≥ 1, then (1.3) together with q < 2p implies u ∈
C1,α(Ω;RN ), 0 < α < 1.

The counterexamples of Giaquinta [Gi2] and Hong [Ho] as well as the papers of
Acerbi and Fusco [AF] and of Fusco and Sbordone [FS] also suggest to study
classes of anisotropic integrands, which are in some sense decomposable, which
means that in our two-dimensional case we have f(∇u) = F (∂1u) + G(∂2u) for

functions F, G : RN → R of class C2 which satisfy separately the isotropic ellip-
ticity conditions

λ(1 + |X |2)
p−2
2 |Y |2 ≤ D2F (X)(Y, Y ) ≤ Λ(1 + |X |2)

p−2
2 |Y |2,(1.6)

λ(1 + |X |2)
q−2
2 |Y |2 ≤ D2G(X)(Y, Y ) ≤ Λ(1 + |X |2)

q−2
2 |Y |2(1.7)

for all X, Y ∈ R
N . Note that (1.6) and (1.7) imply the (p, q)-growth of f stated in

(1.2). Clearly (1.3) does not give (1.6), (1.7), we just get the anisotropic versions
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of (1.6), (1.7) with exponent p on the l.h. sides and exponent q the r.h. sides. If
we start from (1.6) and (1.7), then we arrive at (1.3) but with exponent 2 instead
of p on the l.h.s., and (iii) implies the weak result:

(iv) If (1.6), (1.7) hold with exponents 2 ≤ p ≤ q < 4, then any local minimizer
has Hölder continuous first derivatives in the interior of Ω.

The first goal of our paper is to improve (iv) in the spirit of (iii), i.e. we like to
show that even under the new hypothesis on f the condition q < 2p gives the
regularity of local minimizers, more precisely:

Theorem 1.1. Suppose that u ∈ W 1
p,loc(Ω;R

N ) locally minimizes the energy J

defined in (1.1) (with Ω ⊂ R
2) and let

f(X1X2) = F (X1) +G(X2), X1, X2 ∈ R
N ,

with functions F and G satisfying (1.6) and (1.7). Then, if 2 ≤ p ≤ q < ∞ and
if in addition

(1.8) q < 2p

holds, we have u ∈ C1,α(Ω;RN ) for all 0 < α < 1.

Remark 1.1. In [BFZ2] we recently showed that this result holds in the scalar
case even if q = 2p, and that the statement also can be extended to domains
Ω ⊂ R

n, n ≥ 3, provided we know u ∈ L∞
loc(Ω). Earlier results in this spirit are

due to Ural’tseva and Urdaletova [UU].

Remark 1.2. It is not hard to prove Theorem 1.1 in the subquadratic case, we
leave the details to the reader.

Remark 1.3. Of course it would also be possible to replace (1.6) as well as (1.7)
by anisotropic conditions with exponents p1 < q1 in (1.6) and p2 < q2 in (1.7).
Then appropriate relations between pi and qi will imply regularity.

Remark 1.4. In [Ma1, Theorem A] Marcellini considers a class of decomposable
integrals defined for scalar functions. Then, if p = 2 and Ω ⊂ R

2, he obtains
regularity without any restriction on q. It would be interesting to see if this result
can be extended to two-dimensional vector problems.

Next we formulate an extension of Theorem 1.1 to the higher order case, i.e.
we replace (1.1) by the functional

(1.9) J̃ [u,Ω] :=

∫

Ω
f̃(∇ku) dx

for functions u: R
2 ⊃ Ω→ R

N . Here k ≥ 2 is a fixed integer and ∇ku denotes the
tensor of all weak partial derivatives of order k. In [BF3] we showed: if f̃ satisfies
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an ellipticity condition analogous to (1.3) and if u is a local J̃-minimizer (from

the natural class W k
p,loc(Ω;R

N )), then we have u ∈ Ck,α(Ω;RN ) for all α ∈ (0, 1)
provided

(1.10) q < min{p+ 2, 2p}.

As in [BF3] it is easy to check that it is sufficient to study the case k = 2 together
with N = 1. Then ∇2u(x) can be seen as an element of R

4, and we will select l

fixed entries, 1 ≤ l ≤ 3, of E ∈ R
4 and denote this vector in R

l by EI , whereas
EII ∈ R

4−l denotes the vector of the remaining components. Then we assume
that

(1.11) f̃(E) = F̃ (EI) + G̃(EII ), E ∈ R
4,

with functions F̃ : Rl → R, G̃ : R4−l → R of class C2 satisfying

(1.12) λ(1 + |X |2)
p−2
2 |Y |2 ≤ D2F̃ (X)(Y, Y ) ≤ Λ(1 + |X |2)

p−2
2 |Y |2,

(1.13) λ(1 + |U |2)
q−2
2 |V |2 ≤ D2G̃(U)(V, V ) ≤ Λ(1 + |U |2)

q−2
2 |V |2

for all X, Y ∈ R
l, U, V ∈ R

4−l with constants λ, Λ > 0.

Theorem 1.2. Suppose that f̃ satisfies (1.11)–(1.13) for exponents 2 ≤ p ≤ q <

∞, and let u ∈ W 2
p,loc(Ω) denote a local J̃-minimizer. Then u is of class C2,α(Ω)

for any α ∈ (0, 1) provided

(1.14) q < 2p.

Remark 1.5. If k ≥ 2, then under comparable conditions on the decomposition
of f̃ , we get u ∈ Ck,α(Ω) if again (1.14) is satisfied.

Remark 1.6. In contrast to (1.10), (1.14) does not require the additional bound
q < p+ 2.

Remark 1.7. According to the notation fixed before Theorem 1.2 we do not
require a strict decomposition which means that for the case EII = ∂1∂2u(x)
this derivative also occurs in the part EI of the matrix E. Of course this can be
excluded by viewing∇2u(x) as an element of R3. On the other hand, Theorem 1.1
remains valid if F depends in addition on X2.

Our paper is organized as follows: in Section 2 we introduce a suitable local
regularization and recall some results on uniform local higher integrability and
higher weak differentiability, where we can follow the lines of, e.g., [BF1], [BF2]
with minor modifications. Then it is no longer possible to benefit from the paper
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[BF2]: the approach towards regularity based on techniques introduced by Frehse
and Seregin [FrS], which was carried out in [BF2], does not work if (1.3) is replaced
by (1.6) and (1.7). In Section 3 we apply a new tool, namely a lemma on the
higher integrability of functions established in [BFZ1], to overcome this difficulty
and to complete the proof of Theorem 1.1. In Section 4 we briefly indicate how
to adjust the foregoing arguments in order to handle the situation described in
Theorem 1.2, and in Section 5 we give some comments concerning the degenerate
case. In Section 6 we study the non-autonomous case, i.e. we prove Theorem 1.1
for energies of the form

∫
Ω f(·,∇u) dx with f(x, Z) = F (x, Z1)+G(x, Z2). In the

appendix we state the above mentioned (Gehring-type) lemma in a form valid for
any dimension.

2. Preparations for the proof of Theorem 1.1

Suppose that the assumptions of Theorem 1.1 are satisfied and consider a local
J-minimizer u. Fix two subdomains Ω1, Ω2 s.t. Ω1 ⋐ Ω2 ⋐ Ω, and denote by um,
m ∈ N, the mollification of u with radius 1/m, in particular ‖um −u‖W 1

p (Ω2)
→ 0

as m → ∞. We let

ρm := ‖um − u‖W 1
p (Ω2)

[∫

Ω2

(1 + |∇um|2)q/2 dx

]−1

and introduce the functional

Jm[w,Ω2] := ρm

∫

Ω2

(1 + |∇w|2)q/2 dx+ J [w,Ω2].

Finally, we consider the sequence um ∈ W 1
q (Ω2;R

N ) of solutions of the minimiza-
tion problem

Jm[·,Ω2]→ min in um +
◦
W 1

q(Ω2;R
N ).

The following facts have been established for example in [BF1]–[BF3]:

Lemma 2.1. We have as m → ∞:
(i) um ⇁ u in W 1

p (Ω2;R
N ),

(ii) ρm

∫

Ω2

(1 + |∇um|2)q/2 dx → 0,

(iii)

∫

Ω2

f(∇um) dx →
∫

Ω2

f(∇u) dx.

From [BF1, Lemma 2.3], we deduce:
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Lemma 2.2. Let P ∈ R
2N and define u∗m(x) := um(x) − Px. Then, for any

η ∈ C∞
0 (Ω2) and for γ = 1, 2, it holds that

(2.1)

∫

Ω2

D2fm(∇um)(∂γ∇um, ∂γ∇um)η
2 dx

≤ c

∫

Ω2

D2fm(∇um)(∇η ⊗ ∂γu∗m,∇η ⊗ ∂γu∗m) dx,

c being a positive constant independent of m.

In (2.1) ⊗ denotes the tensor product of vectors. We use (2.1) to prove
Lemma 2.3. For any finite t we have that∇um ∈ Lt

loc(Ω2;R
2N ) uniformly w.r.t.

to m.

Proof: We use the interpolation and hole-filling trick originating in [ELM1]. Let

h̃1,m := (1 + |∂1um|2)p/4, h̃2,m := (1 + |∂2um|2)q/4, fix a disc B2R = B2R(x0) ⋐

Ω2, select radii r ∈ (R, 32R), ρ ∈ (0, R/2) and choose η ∈ C∞
0 (Br+ρ/2), η ≡ 1

on Br, |∇η| ≤ c/ρ, 0 ≤ η ≤ 1. Finally, we let α := p
2χ with χ sufficiently large.

Then, if we take the sum w.r.t. γ in (2.1) and choose P = 0, we get (by Sobolev’s

inequality with t ∈ (1, 2) defined through 2χ = 2t
2−t )

∫

Br

(1 + |∂1um|2)α dx+

∫

Br

(1 + |∂2um|2)α dx

≤
∫

B2R

(ηh̃1,m)
2χ dx +

∫

B2R

(ηh̃2,m)
2χ dx

≤ c

[( ∫

B2R

|∇(ηh̃1,m)|t dx

) 2χ
t

+

( ∫

B2R

|∇(ηh̃2,m)|t dx

) 2χ
t

]

≤ c

[ ∫

B2R

|∇(ηh̃1,m)|2 dx+

∫

B2R

|∇(ηh̃2,m)|2 dx

]χ

≤ c

[ ∫

B2R

|∇η|2h̃21,m dx+

∫

B2R

|∇η|2h̃22,m dx

+

∫

B2R

η2|∇h̃1,m|2 dx +

∫

B2R

η2|∇h̃2,m|2 dx

]χ

≤ c

[
1

ρ2

∫

B2R

(h̃21,m + h̃22,m) dx

+

∫

Br+ρ−Br

|D2fm(∇um)(∇η ⊗ ∂γum,∇η ⊗ ∂γum)| dx

]χ

.

If we estimate
∫
Br+ρ−Bρ

. . . roughly through 1
ρ2

∫
Br+ρ−Br

(1+|∇um|2)q/2 dx, then
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we have shown that

(2.2)

∫

Br

(1 + |∇um|2)α dx

≤ c

[
1

ρ2

∫

B2R

(h̃21,m + h̃22,m) dx +
1

ρ2

∫

Br+ρ−Br

(1 + |∇um|2)q/2 dx

]χ

.

By Lemma 2.1 the first integral on the r.h.s. of (2.2) can be estimated by a local
constant independent of m. If we choose χ to satisfy pχ > q, then with Θ ∈ (0, 1)
we can write 1q =

Θ
p +

1−Θ
pχ , hence

‖∇um‖Lq ≤ ‖∇um‖ΘLp‖∇um‖1−ΘLpχ ,

where the norms are calculated w.r.t. Tr,ρ := Br+ρ − Br, and therefore
(2.3)

1

ρ2

∫

Tr,ρ

|∇um|q dx ≤ 1

ρ2

(∫

Tr,ρ

|∇um|p dx

)Θq/p( ∫

Tr,ρ

|∇um|pχ dx

)(1−Θ) q
pχ

.

Now from (1.8) it follows that (1−Θ) qp < 1, provided we choose χ > p
/
(2p− q).

Then we can apply Young’s inequality on the r.h.s. of (2.3) with the result (s1, s2
denoting positive exponents)
(2.4)

1

ρ2

∫

Tr,ρ

|∇um|q dx ≤ cρ−s1

[∫

B2R

|∇um|p dx

]s2

+ c

[ ∫

Tr,ρ

|∇um|pχ dx

]1/χ

.

Using (2.4) in inequality (2.2) and “filling the hole”, it follows that ∇um ∈
L2αloc(Ω2;R

2N ) uniformly in m. But α can be chosen arbitrary large, and
Lemma 2.3 is established. �

From Lemma 2.3 combined with (2.1) (and the choice P = 0) we immediately
deduce that

(2.5) h̃1,m, h̃2,m ∈ W 1
2,loc(Ω2) uniformly w.r.t. m,

since by (2.1)

∫

Ω2

η2
[
|∇h̃1,m|2 + |∇h̃2,m|2

]
dx

≤ c‖∇η‖2∞
[
ρm

∫

Ω2

(1 + |∇um|2)
q
2 dx+

∫

spt η
|D2F (∂1um)||∇um|2 dx

+

∫

spt η
|D2G(∂2um)| |∇um|2 dx

]
≤ c(η) < ∞.
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Clearly the same argument gives in addition to (2.5)

(2.6) ρ
1
2
m(1 + |∇um|2)

q
4 =: h̃3,m ∈ W 1

2,loc(Ω2) uniformly w.r.t. m.

Since we assume p ≥ 2, the ellipticity estimates (1.6) and (1.7) imply that
λ

∫
Ω2

η2(|∇∂1um|2 + |∇∂2um|2) dx is bounded from above by the l.h.s. of (2.1),

thus with a repetition of the above argument we get as a further consequence
of (2.1)

(2.7) um ∈ W 2
2,loc(Ω2;R

N ) uniformly w.r.t. m.

Since we already know um ⇁ u in W 1
p (Ω2;R

N ), we may pass to a subsequence

to deduce from (2.7)

(2.8) ∇um → ∇u a.e. on Ω2.

We wish to remark that (2.8) extends to the case that p < 2. The reader will find
the necessary adjustments in [BF1].

3. Proof of Theorem 1.1

We continue to use the notation introduced in the previous section and recall
from [BF1] the inequality

(3.1)

∫

Ω2

D2fm(∇um)(∂γ∇um, ∂γ∇um)η
2 dx

≤ −2
∫

Ω2

ηD2fm(∇um)(∂γ∇um, ∂γu∗m ⊗∇η) dx, η ∈ C∞
0 (Ω2),

where from now on summation w.r.t. to γ is used. Note that (3.1) implies (2.1)
with the help of the Cauchy-Schwarz inequality applied to the bilinear form
D2fm(∇um). Let B2R = B2R(x0) ⋐ Ω2 and choose η ∈ C∞

0 (B2R) according
to η ≡ 1 on BR, |∇η| ≤ c/R, 0 ≤ η ≤ 1. We further introduce the following
auxiliary functions:

H2m := D2fm(∇um)(∂γ∇um, ∂γ∇um)

= ρmD2g(∇um)(∂γ∇um, ∂γ∇um) +D2F (∂1um)(∂γ∂1um, ∂γ∂1um)

+D2G(∂2um)(∂γ∂2um, ∂γ∂2um),

where g(Z) := (1 + |Z|2)q/2 for Z ∈ R
2N , moreover

h1,m := (1 + |∂1um|2)
p−2
4 ,

h2,m := (1 + |∂2um|2)
q−2
4 ,

h3,m := (1 + |∇um|2)
q−2
4

√
ρm.
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Recalling (2.1) and Lemma 2.3 again, we get

(3.2) Hm ∈ L2loc(Ω2) uniform w.r.t. m,

moreover, the ellipticity estimates (1.6) and (1.7) show that

(3.3)

c1

[
ρm(1 + |∇um|2)

q−2
2 |∇2um|2 + (1 + |∂1um|2)

p−2
2 |∇∂1um|2

+ (1 + |∂2um|2)
q−2
2 |∇∂2um|2

]
≤ H2m ≤ c2[. . . ]

holds with constants c1, c2 > 0 being independent of m. With this observation
we deduce from (3.1)

(3.4)

∫

BR

H2m dx ≤ −2
∫

B2R

η
[
ρmD2g(∇um)(∂γ∇um, ∂γu∗m ⊗∇η)

+D2F (∂1um)(∂γ∂1um, ∂1η∂γu∗m)

+D2G(∂2um)(∂γ∂2um, ∂2η∂γu∗m)
]
dx

≤ c

R

∫

B2R

[
ρm(1 + |∇um|2)

q−2
2 |∇2um||∇um − P |

+ (1 + |∂1um|2)
p−2
2 |∇∂1um||∇um − P |

+ (1 + |∂2um|2)
q−2
2 |∇∂2um||∇um − P |

]
dx

≤
(3.3)

c

R

∫

B2R

Hm|∇um − P |{h1,m + h2,m + h3,m} dx

≤ c

R

∫

B2R

Hmhm|∇um − P | dx,

where hm := (h
2
1,m + h22,m+ h23,m)

1/2. Let s = 4/3 and apply Hölder’s inequality

as well as the Sobolev-Poincaré inequality to the last line of (3.4) in order to
deduce from (3.4)

(3.5)

∫

BR

H2m dx ≤ c

[ ∫

B2R

(Hmhm)
s dx

] 1
s
[ ∫

B2R

|∇2um|s dx

] 1
s

.

Here
∫
BR
etc. denotes the mean value, and in (3.4) we take P :=

∫
B2R

∇um dx.

Finally we observe using p ≥ 2 and (3.3)

|∇2um| =
(
|∂1∇um|2 + |∂2∇um|2

)1/2 ≤ cHm ≤ cHmhm,
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thus (3.5) implies

(3.6)

[ ∫

BR

H2m dx

] 1
2

≤ c

[ ∫

B2R

(hmHm)
s dx

] 1
s

,

and if for example we require B2R ⊂ Ω1, then c is uniform in B2R and also in m.
In order to apply Lemma A.1 we let d := 2/s = 3/2, f := Hs

m, g := hs
m in this

lemma, so that (3.6) can be rewritten as

[ ∫

BR

f
d
dx

]1/d

≤ c

∫

B2R

fg dx.

From (3.2) we get f ∈ Ld
loc(Ω2), and it remains to check if exp(βgd) ∈ L1loc(Ω2)

for arbitrary β > 0, i.e. if

(3.7) exp(βh2m) ∈ L1loc(Ω2)

(of course everything is meant uniform in m). To prove (3.7) we let h̃m :=

(h̃21,m + h̃22,m + h̃23,m)
1/2 and observe that

|∇h̃m| ≤ 1

h̃m

(
h̃1,m|∇h̃1,m|+ h̃2,m|∇h̃2,m|+ h̃3,m|∇h̃3,m|

)

≤ |∇h̃1,m|+ |∇h̃2,m|+ |∇h̃3,m|,

and (2.5), (2.6) give |∇h̃m| ∈ L2loc(Ω2) uniformly w.r.t. m. This implies by
Trudinger’s inequality (see [GT, Theorem 7.15])

(3.8)

∫

Bρ

exp
(
β0h̃

2
m

)
dx ≤ c(ρ) < ∞

for disks Bρ ⋐ Ω2 with β0 depending on the W 1
2 (Bρ)-norm of h̃m. From the

definition of the function hm it is immediate that

h2m ≤ c h̃
2(1−2/q)
m ,

so that by (3.8) for any β > 0

∫

Bρ

exp(βh2m) dx ≤
∫

Bρ

exp
(
cβh̃

2(1−2/q)
m

)
dx

≤
∫

Bρ

exp
(
β0h̃

2
m + c(β)

)
dx < ∞,
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and (3.7) follows. Lemma A.1 implies

(3.9)

∫

Bρ

H2m log
c0β(e+Hm) dx ≤ c(β, ρ).

Let σ1,m := DF (∂1um). Then

|∇σ1,m|2 = ∂γ
(
DF (∂1um)

)
· ∂γσ1,m

= D2F (∂1um)(∂γ∂1um, ∂γσ1,m)

≤ c(1 + |∂1um|2)
p−2
2 |∇∂1um| |∇σ1,m|

≤ c Hmh1,m|∇σ1,m|,

and we get |∇σ1,m| ≤ cHmh1,m ≤ cHmhm. But as demonstrated in [BFZ1]
(compare the calculations after inequality (2.11)) the latter estimate together
with (3.9) and the inequality

∫
Bρ
exp(βh2m) dx ≤ c(β, ρ) implies

(3.10)

∫

Bρ

|∇σ1,m|2 logα
(
e+ |∇σ1,m|

)
dx ≤ c(α, ρ),

and (3.10) also holds with σ1,m replaced by σ2,m := DG(∂2um), where α is
arbitrarily large. If α > 1, (3.10) shows that the vectors σ1,m, σ2,m are continuous
uniformly w.r.t. m, see, e.g., [KKM, Example 5.3]. Alternatively, we may use
Lemma A.2 (choose E as a disc of radius ρ and apply a scaled version of (A3))
combined with the variant of the Dirichlet-growth theorem given by Frehse [Fr,
p. 287] to deduce the uniform continuity of σ1,m and σ2,m. Since DF and DG are

isomorphisms R
N → R

N , we get the uniform continuity of ∂1um, ∂2um, hence
the sequence {∇um} is uniformly continuous. Recalling (2.8) and using Arcela’s
theorem, we have shown that u is in the space C1(Ω2;R

N ). If we let u = ∂γu,
γ = 1, 2, then

0 =

∫

Ω
D2f(∇u)(∇u,∇ϕ) dx for all ϕ ∈ C∞

0 (Ω;R
N )

is an elliptic system for u with coefficients D2f(∇u) of class C0, thus u ∈
C0,α(Ω;RN ), 0 < α < 1, follows from classical results (see e.g. [Gi1]). �

4. Proof of Theorem 1.2

In accordance with [BF3] we now let

ρm := ‖um − u‖W 2
p (Ω2)

[∫

Ω2

(
1 + |∇2um|2

)q/2
]−1

,

J̃m[w,Ω2] := ρm

∫

Ω2

(
1 + |∇2w|2

) q
2 dx+ J̃ [w,Ω2]
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for functions w ∈ W 2
q (Ω2), and denote by um the J̃m[·,Ω2]-minimizer in um +

◦
W 2

q(Ω2), where um is defined as in Section 2. Lemma 2.1 remains valid with

obvious modifications and as a substitute for (2.1) we get (compare the inequality
stated in Step 4 of Section 2 of [BF3])

(4.1)

∫

Ω2

η6D2f̃m(∇2um)(∂γ∇2um, ∂γ∇2um) dx

≤ −
∫

Ω2

D2f̃m(∇2um)
(
∂γ∇2um,∇2η6∂γu∗m + 2∇η6 ⊗∇∂γu∗m

)
.

Here η ∈ C∞
0 (Ω2) is arbitrary and u∗m(x) := um(x) − k(x), where k(x) is any

polynomial of degree ≤ 2. Choosing k = 0 in (2.1) we can adjust Step 3 in Sec-
tion 2 of [BF3] along the lines of Section 2 to deduce ∇2um ∈ Lt

loc(Ω2) uniformly
w.r.t. m for any t < ∞. During this procedure the quantities ∂1um, ∂2um have
to be replaced by (∇2um)I , (∇2um)II , respectively, for example we now have

h̃1,m = (1 + |(∇2um)I |2)p/4, etc. In the same spirit we deduce (2.5) and (2.6),

(2.7) has to be replaced by um ∈ W 3
2,loc(Ω2) uniformly w.r.t. to m, and (2.8) now

reads ∇2um → ∇2u a.e. on Ω2. In Section 3 we replace the old function Hm by

H2m := D2f̃m(∇2um)(∂γ∇2um, ∂γ∇2um),

and get from (4.1) (with an obvious new meaning of h1,m, h2,m, h3,m, hm)

(4.2)

∫

BR

H2m dx ≤ c

∫

B2R

Hmhm
[
|∇2η6||∇um−∇k|+ |∇η6| |∇2um−∇2k|

]
dx.

This is exactly (2.18) in [BF3], and with the same calculations as in this paper we
get from (4.2) after appropriate choice of k the validity of (3.6). The hypothesis
of Lemma A.1 are still valid, so that we can deduce (3.9). Next we let σI,m :=

DF̃
(
(∇2um)I

)
, σII,m := DG̃

(
(∇2um)II

)
and get the uniform continuity of σI,m,

σII,m, from which now the continuity of ∇2u follows. For the higher regularity
of u we can quote Section 2, Step 5, of [BF3].

5. Remarks on the degenerate case

In order to simplify our exposition and to benefit from our earlier work we
have stated our results for the non-degenerate case by the way excluding the
example

∫
Ω[|∂1u|p+ |∂2u|q]dx, 2 ≤ p < q < ∞, or more general densities f(∇u) =

F (∂1u) +G(∂2u) for which

λ|X |p−2|Y |2 ≤ D2F (X)(Y, Y ) ≤ Λ(1 + |X |2)
p−2
2 |Y |2,(5.1)

λ|X |q−2|Y |2 ≤ D2G(X)(Y, Y ) ≤ Λ(1 + |X |2)
q−2
2 |Y |2(5.2)

is true with constants λ, Λ > 0 and for all X , Y ∈ R
N . Under these assumptions

we have a regularity result which is slightly weaker than the conclusion formulated
in Theorem 1.1:



On the regularity of local minimizers of decomposable variational integrals . . . 333

Theorem 5.1. Suppose that u ∈ W 1
p,loc(Ω;R

N ) locally minimizes the energy J

from (1.1) and let f(X1X2) = F (X1) + G(X2), X1, X2 ∈ R
N , with F and G

satisfying (5.1) and (5.2) for exponents 2 ≤ p ≤ q < ∞. Then, if (1.8) holds, u is
continuously differentiable in Ω.

Remark 5.1. Of course, a corresponding version of Theorem 1.2 is valid, if we
replace (1.12) and (1.13) by their degenerate variants.

Sketch of the proof of Theorem 5.1: The following calculations have to
be made precise by approximation, which we leave to the reader. We have (com-
pare (3.1))

(5.3)

∫

Ω
D2f(∇u)(∂γ∇u, ∂γ∇u)η2 dx ≤ −2

∫

Ω
D2f(∇u)(∂γ∇u, ∂γu∗ ⊗∇η) dx

for any η ∈ C∞
0 (Ω). Again we use summation w.r.t. γ. In (5.3) u∗ denotes the

function u − Px for a matrix P ∈ R
2N . We let

H2 := D2f(∇u)(∂γ∇u, ∂γ∇u),

h1 := (1 + |∂1u|2)
p−2
4 ,

h2 := (1 + |∂2u|2)
q−2
4 ,

h := (h21 + h22)
1
2

and get from (5.3), if η ≡ 1 on a disc BR = BR(x0), η ≡ 0 outside of B2R ⋐ Ω,
0 ≤ η ≤ 1 and |∇η| ≤ c/R (see (3.4))

(5.4)

∫

BR

H2 dx ≤ c

R

∫

B2R

Hh|∇u − P | dx.

Clearly (5.4) implies the “starting inequality” (compare (3.6))

(5.5)

[∫

BR

H2 dx

] 1
2

≤ c

[∫

B2R

(hH)
4
3 dx

] 3
4

,

and in order to combine (5.5) with the lemma from the appendix we have to check

the validity of (3.7) for the function h in place of hm. Introducing h̃1 := |∂1u|p/2,

h̃2 := |∂2u|q/2 and h̃ := (h̃21+ h̃22)
1/2 we have as before |∇h̃| ≤ |∇h̃1|+ |∇h̃2|, and

since the functions h̃1, h̃2 are of classW 1
2,loc, we arrive at (3.8) for the function h̃,

which implies (3.7) with minor changes in the calculation. The same arguments
as used in Section 3 then give continuity of ∂1u and ∂2u, so that we deduce
u ∈ C1(Ω;RN ). �

Remark 5.2. Due to the degeneracy of the problem we cannot use the hole-
filling argument originating in [FrS] and successfully applied in [BF4] in order to

deduce from ∇u ∈ C0(Ω;R2N ) the local Hölder continuity of the gradient for
some exponent 0 < α < 1.
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6. Comments on non-autonomous problems

In this section we discuss a variant of Theorem 1.1 for energy densities depend-
ing additionally on x ∈ Ω ⊂ R

2. To be precise we consider an integrand

f = f(x, X1X2), x ∈ Ω, X1, X2 ∈ R
N

of splitting type
f(x, X1X2) = F (x, X1) +G(x, X2)

with functions F, G : Ω×R
N → R for which the following hypotheses are satisfied

with exponents 2 ≤ p ≤ q < ∞ and with constants λ, Λ, c1, c2 > 0

λ(1 + |Z|2)
p−2
2 |Y |2 ≤ D2ZF (x, Z)(Y, Y ) ≤ Λ(1 + |Z|2)

p−2
2 |Y |2,(6.1)

|DxDZF (x, Z)| ≤ c1(1 + |Z|2)
p−1
2 ,(6.2)

λ(1 + |Z|2)
q−2
2 |Y |2 ≤ D2ZG(x, Z)(Y, Y ) ≤ Λ(1 + |Z|2)

q−2
2 |Y |2,(6.3)

|DxDZG(x, Z)| ≤ c2(1 + |Z|2)
q−1
2 .(6.4)

Here x ∈ Ω and Z, Y ∈ R
N are arbitrary, and we require that D2ZF , D2ZG,

DxDZF , DxDZG are at least continuous on Ω× R
N . Note that (6.1) and (6.3)

imply the estimate (1.2) with f(x, Z) in place of f(Z) so that the definition of a

local minimizer u : Ω→ R
N of the functional

∫
Ω f(x,∇u(x)) dx is the same as in

Section 1. The growth conditions (6.2) and (6.4) are motivated by the examples

F0(x, Z) := a(x)(1 + |Z|2)
p
2 , G0(x, Z) := b(x)(1 + |Z|2)

q
2

for which (6.2) and (6.4) hold provided that the first derivatives of a(x) and b(x)
are bounded functions. We have the following result:

Theorem 6.1. Suppose that u ∈ W 1
p,loc(Ω;R

N ) locally minimizes the energy∫
Ω f(x,∇u(x)) dx under the conditions (6.1)–(6.4). Then, if 2 ≤ p ≤ q < ∞
satisfy the relation

(6.5) q < 2p,

the function u is of class C1,α(Ω;RN ) for any α ∈ (0, 1).
Remark 6.1. As explained in [ELM3] the relation between the exponents under
which one can expect regularity for anisotropic problems in general becomes more
restrictive if the non-autonomous case is considered. If for example we replace
(6.1) and (6.3) by the non-autonomous variant of (1.3), and if (6.2) and (6.4)

are replaced by |DxDZf(x, Z)| ≤ c3(1 + |Z|2)(q−1)/2, x ∈ Ω, Z ∈ R
2N , then
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in [BF5, Theorem 1.1, ii)] we could only prove the result of Theorem 6.1 under

the additional assumption ∇u ∈ L
q
loc(Ω;R

2N ) together with q < 3p/2 in place
of (6.5). Theorem 6.1 however shows that for decomposable, non-autonomous,
anisotropic energies the higher-integrability assumption is superfluous and that
the natural relation for the exponents is sufficient for regularity.

Proof of Theorem 6.1: As outlined in [ELM3], a Lavrentiev-phenomenon has
to be expected for the general non-autonomous, anisotropic case which might
destroy the convergences stated in Lemma 2.1. But since F is of p-growth and
since G is of growth order q, we may argue as in [BF5, Lemma 2.1] to see that
(as m → ∞)

∫

Ω2

F (·, ∂1um) dx →
∫

Ω2

F (·, ∂1u) dx,

∫

Ω2

G(·, ∂2um) dx →
∫

Ω2

G(·, ∂2u) dx,

which is a consequence of ∂1um → ∂1u in L
p
loc(Ω;R

N ) and ∂2um → ∂2u in

L
q
loc(Ω;R

N ). Thus we still have Lemma 2.1 for the situation at hand. In order to
get a substitute for inequality (2.1) we make use of inequality (2.6) from [BF5] with
the result (after application of the Cauchy-Schwarz and the Young inequality)

(6.6)

∫

Ω2

D2Zfm(·,∇um)(∂γ∇um, ∂γ∇um)η
2 dx

≤ c

[∫

Ω2

D2Zfm(·,∇um)(∇η ⊗ ∂γum,∇η ⊗ ∂γum) dx

+
∣∣∣
∫

Ω2

∂γDZfm(·,∇um) : ∂γum ⊗∇ηη dx
∣∣∣

+
∣∣∣
∫

Ω2

∂γDZfm(·,∇um) : ∂γ∇umη2 dx
∣∣∣
]
,

γ = 1, 2, c > 0 being independent of m. Taking the sum w.r.t. γ and observing
(6.1) as well as (6.3) we get

(6.7)

l.h.s. of (6.6) ≥ λ

[ ∫

Ω2

η2(1 + |∂1um|2)
p−2
2 |∇∂1um|2 dx

+

∫

Ω2

η2(1 + |∂2um|2)
q−2
2 |∇∂2um|2 dx

]
,
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whereas by (6.2) and (6.4) (from now on summation w.r.t. γ)

∣∣∣∣
∫

Ω2

∂γDZfm(·,∇um) : ∂γum ⊗∇ηη dx

∣∣∣∣

≤ c‖∇η‖∞
∫

spt η
|∇um|(1 + |∇um|2)

q−1
2 dx

≤ c‖∇η‖∞
∫

spt η
(1 + |∇um|2)

q
2 dx,

moreover

∣∣∣∣
∫

Ω2

∂γDZfm(·,∇um) : ∂γ∇umη2 dx

∣∣∣∣

≤ c

[∫

Ω2

(1 + |∂1um|2)
p−1
2 |∇∂1um|η2 dx+

∫

Ω2

(1 + |∂2um|2)
q−1
2 |∇∂2um|η2 dx

]

≤ ε

[∫

Ω2

(1 + |∂1um|2)
p−2
2 η2|∇∂1um|2 dx+

∫

Ω2

(1 + |∂2um|2)
q−2
2 η2|∇∂2um|2 dx

]

+c(ε)

∫

Ω2

η2
[
(1 + |∂1um|2)

p
2 + (1 + |∂2um|2)

q
2

]
dx.

For ε small enough the ε-term can be absorbed in the r.h.s. of (6.7), and if we
specify η as in the proof of Lemma 2.3, we get from (6.6), (6.7) and the previous
calculations the estimate

∫

B2R

η2|∇h̃1,m|2 dx+

∫

B2R

η2|∇h̃2,m|2 dx

≤ c

[∫

Br+ρ−Br

|D2Zfm(·,∇um)(∇η ⊗ ∂γum,∇η ⊗ ∂γum)| dx

+ ‖∇η‖∞
∫

spt∇η
(1 + |∇um|2)

q
2 dx

+

∫

B2R

[
(1 + |∂1um|2)

p
2 + (1 + |∂2um|2)

q
2

]
dx

]
.

Assuming R ≤ 1 it is immediate that (6.8) implies inequality (2.2), and as demon-
strated in the proof of Lemma 2.3 we get for any finite t

(6.9) ∇um ∈ Lt
loc(Ω2;R

2N ) uniformly in m.

In order to continue we observe that (2.5)–(2.8) clearly remain valid and that
according to (2.6) from [BF5] inequality (3.1) has to be changed by adding the
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terms

T1 := −2
∫

Ω2

η∂γDZfm(·,∇um) : ∂γu∗m ⊗∇η dx,

T2 := −
∫

Ω2

η2∂γDZfm(·,∇um) : ∂γ∇um dx

on the r.h.s. Thus (3.4) is replaced by
(with H2m := D2Zfm(·,∇um)(∂γ∇um, ∂γ∇um))

(6.10)

∫

B2R

η2H2m dx ≤ c

R

∫

B2R

Hmhm|∇um − P | dx+ |T1|+ |T2|,

and for any ε > 0 we have

|T2| ≤ ε

∫

B2R

η2H2m dx+ c(ε)

∫

B2R

η2h̃2m dx,

whereas

|T1| ≤ c

∫

B2R

η|∇um − P |
[
(1 + |∂1um|2)

p−1
2 + (1 + |∂2um|2)

q−1
2

]
|∇η| dx,

thus for ε small enough we deduce from (6.10)
(6.11)∫

BR

H2m dx ≤ c

R

∫

B2R

Hmhm|∇um − P | dx+ c

∫

B2R

h̃2m dx

+
c

R

∫

B2R

|∇um − P |
[
(1 + |∂1um|2)

p−1
2 + (1 + |∂2um|2)

q−1
2

]
dx.

The first term on the r.h.s. of (6.11) is handled exactly as before (see the calcula-

tions after (3.4)), and by abbreviating Θm := (1+ |∂1um|2)
p−1
2 +(1+ |∂2um|2)

q−1
2

we get from (6.11)
∫

BR

H2m dx ≤ c

[ ∫

B2R

(Hmhm)
s dx

] 2
s

+
c

R3

∫

B2R

|∇um − P |Θm dx

+ c

∫

B2R

h̃2m dx

≤ c

[ ∫

B2R

(Hmhm)
s dx

] 2
s

+
c

R3

[ ∫

B2R

|∇um − P |4 dx

] 1
4
[∫

B2R

Θs
m dx

] 1
s

+ c

∫

B2R

h̃2m dx

≤ c

[ ∫

B2R

(Hmhm)
s dx

] 2
s

+ c

[∫

B2R

|∇2um|s dx

] 1
s
[∫

B2R

Θs
m dx

] 1
s

+ c

∫

B2R

h̃2m dx.
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Using the inequality stated before (3.6) as well as Young’s inequality it is shown
that

∫

BR

H2m dx ≤ c

[∫

B2R

(Hmhm)
s dx

] 2
s

+ c

[ ∫

B2R

Θs
m dx

] 2
s

+ c

∫

B2R

h̃2m dx,

thus

[ ∫

BR

H2m dx

] s
2

≤ c

∫

B2R

Hs
mhs

m dx+ c

∫

B2R

Θs
m dx+ c

[ ∫

B2R

h̃2m dx

] s
2

,

and since ∫

B2R

Θs
m dx ≤ c

[ ∫

B2R

Θ2m dx

] s
2

we finally arrive at

(6.12)

[ ∫

BR

H2m dx

] s
2

≤ c

∫

B2R

Hs
mhs

m dx + c

[∫

B2R

(Θm + h̃m)
2 dx

] s
2

.

Letting h̄ := (Θm + h̃m)
s in Lemma A.1 (all other quantities are as in Section 3)

we deduce from (6.12) the validity of (3.9) by recalling that (6.9) implies all
the required uniform local bounds which are used to carry out the calculations
leading to the conclusion (3.9). In order to continue we proceed similarly to
[BFZ3, Section 3]. Let σ1,m := DZF (·, ∂1um). Then

|∇σ1,m|2 = ∂γ(DZF (·, ∂1um)) · ∂γσ1,m

= D2ZF (·, ∂1um)(∂γ∂1um, ∂γσ1,m) + (∂γDZF )(·, ∂1um) · ∂γσ1,m

≤ c
[
Hmh1,m|∇σ1,m|+ (1 + |∂1um|2)

p−1
2 |∇σ1,m|

]

and in conclusion

|∇σ1,m| ≤ c
[
Hmhm + (1 + |∇um|2)

p−1
2

]
.

In [BFZ3] (compare the calculations after (3.9) in this reference) it is shown how
to combine (3.9) with the latter inequality in order to get (3.10) for σ1,m, and of
course the same inequality is true for σ2,m := DZG(·, ∂2um). Therefore we have
the uniform continuity of σ1,m, σ2,m by using the same argument as done at the
end of Section 3. In order to deduce from this the uniform continuity of ∂1um,
∂2um, we may use the implicit function theorem in the same way as in [BF6]. This

implies u ∈ C1(Ω;RN ), and the degree of regularity of u again can be improved
by applying standard arguments of elliptic regularity theory (see, e.g. [Gi1]) to
the system satisfied by ∂γu, γ = 1, 2. �
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Appendix. A lemma on the higher integrability of functions

The following result has been established in [BFZ, Lemma 1.2].

Lemma A.1. Let d > 1, β > 0 be given numbers. Consider functions f , g, h
from a domain G ⊂ R

n, n ≥ 2, being non-negative and satisfying

f ∈ Ld
loc(G), exp(βgd) ∈ L1loc(G), h ∈ Ld

loc(G).

Suppose further that there is a constant C > 0 such that

(A.1)

[ ∫

BR

f
d
dx

] 1
d

≤ C

∫

B2R

fg dx+ C

[ ∫

B2R

h
d
dx

] 1
d

holds for all balls B2R = B2R(x0) ⋐ G. Then there exists a real number c0 =
c0(n, d, C) as follows: if

(A.2) h
d
logc0β(e+ h) ∈ L1loc(G),

then the same is true for f .

It follows from Lemma A.1 (see Corollary 1.3 in [BFZ1])

Lemma A.2. Suppose that f , g, h are the same as in Lemma A.1, and that
(A.1) is true for all balls B2R = B2R(x0) ⋐ B1(0) ⊂ R

n. Suppose also that

h
d
logc0β(e+ h) ∈ L1loc(B1(0)), where c0 is as in Lemma A.1. Then

(A.3)

∫

E
f

d
dx ≤ c log−c0β

(
e+

1

Ln(E)

)

for all measurable sets E ⊂ B1/2(0), where the constant c depends only on n,

d, C, β, f , g and h but not on the set E, and Ln(E) denotes the n-dimensional
Lebesgue measure of the set E.
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