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Club-guessing, good points and diamond

PIERRE MATET

Abstract. Shelah’s club-guessing and good points are used to show that the two-cardinal
diamond principle ¢, holds for various values of x and A.
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Let x be a regular cardinal greater than or equal to wy, and )\ be a
cardinal greater than x. In [4] Jech introduced the following notions. Py (\)
denotes the collection of all subsets of A of size less than x. A subset C of P, (\)
is closed unbounded if (a) it is cofinal in the partially ordered set (P ()), C), and
(b) for any infinite ordinal § < x and any sequence (aq : @ < §) of elements of
C such that ag C aq whenever § < o < 0, Jyg@a € C. A subset S of Pg(N)
is stationary if SN C # () for every closed unbounded subset C' of P;(\). The
principle ¢, ) asserts the existence of a sequence (sq : a € Pi(\)) with s4 C a
such that for any X C A\ {a: sq = X Na} is a stationary subset of P (\). Jech
showed that O, y could be introduced by forcing. Moreover, he proved that ¢ )
holds in the constructible universe L. It was shown in [2] that if 2<% < A then
O, holds. In this paper we show that if 2<F < pt for some cardinal u such
that w < cf(p) < k < p < A, then Oy y holds. So if either 2<% = X and X is
the successor of a cardinal of uncountable cofinality less than , or 2<% = AT
and w < cf(\) < &, then O, ) holds (and hence the nonstationary ideal on P ()
is not 2>‘—saturated). Our result is proved by modifying the argument used by
Foreman and Magidor in [3] to show that if cf(\) < &, then there is a family of
AT stationary subsets of P, (\) such that any two of them have nonstationary
intersection.

We need a few lemmas.

Lemma 1 (Solovay [9]). Let p be a regular uncountable cardinal. Then every
stationary subset of p is the union of p disjoint stationary sets.

Given two regular infinite cardinals 8 < p, Eg denotes the set of all infinite
limit ordinals o < p such that cf(a) = 6.
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Lemma 2 (Shelah see [5]). Let p > wy be a regular cardinal, and S be a station-
ary subset of Ef. Then one can find a cofinal, order-type w subset cy of v for
each v € S so that {y € S : ¢y C C} is stationary in p for any closed unbounded
subset C' of p.

Our source for the following notions and facts is [1]. Let p > k be a singular
cardinal of uncountable cofinality v < k. Suppose (u; : i < v) is an increasing
sequence of regular cardinals such that k < pg and sup{y; : ¢ < v} = u. Given
fr9 € Tlicy pis f <* g means that [{i : f(i) > (i)}| < v. Similarly, f <* g means
that [{i @ f(i) > g(i)}] < v. By a scale of length &, & an ordinal, we mean a
sequence (fq : a < §) of elements of []; ., p; such that (a) fg <* fo whenever
B < a<g and (b) for every g € [[;,, 1, there is a <  with g <* f,. Shelah
proved that the u; can be chosen so that there exists a scale of length uT. Let
(fa : @ < pT) be such a scale. Given an infinite limit ordinal o < pT, an ezact
upper bound for the sequence (fg: < ) is an element g of [[;_,, y; such that
(i) fg <* g for any B < «, and (ii) for every h € [],_, p; with h <* g, there is
B < a with h <* fg. By a good point, an infinite limit ordinal a < u™ is meant
such that cf(a) > v and there exists an exact upper bound g, for (fg : 3 < @)
with the property that for any ¢ < v, go(4) is an infinite limit ordinal of cofinality
cf(a). Letting S denote the set of good points a such that cf(a) = &, S is
stationary in pu*. Now consider the sequence (hq : o < uT) defined by: ho = fo
if « ¢ 9, and hq = go otherwise. Then (hq : a < pu™) is a scale. Moreover, for
each a € S, hq is an exact upper bound for (hg: 3 < o). Let us sum it up all in
the following.

Lemma 3 (Shelah see [1]). Let u > x be a singular cardinal of uncountable
cofinality v < k. Then one can find sequences (y; : i < v) and (hy : @ < p+) and
a set S such that (a) (u; : i < v) is an increasing sequence of regular cardinals
such that k < pg and sup{p; : i < v} = p, (b) (ha : @ < u™) is a scale of length

ptin TTic, pi, (c) S is a stationary subset of Eﬁ+, and (d) for each a € S,
ran(hq) C E,Qﬁ and hq, is an exact upper bound for (hg: 3 < a).

Suppose p is a cardinal greater than x. For n < w, let RY be the set of all

increasing functions from n to E,éﬁ. Let 7, be the collection of all nonempty
subsets T of |J,, ., Rf, such that for any n < w and any t € TN Ry, {t [ £: (<
n} CT and {a € E,’.CLJr :tU{n,a} € T} is stationary in pT.
Lemma 4 (Shioya [8]). Suppose that p > k is a cardinal, T € T,,n < w and
¢ TN (Up<gew RY) — p™ is such that for every t € dom(yp), (a) ¢(t) € t(n),
and (b) ¢(t | q) < ¢(t) for n < ¢ < dom(t). Then one can find T' € T, N P(T)
and v : TN Ry — uT so that (i) T" N Ry, = T N R} and (ii) (t) < (¢t | n) for
any t € T' N (Up<qew BY)-
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For A C Pg(A),G, A(A) denotes the following two-person game lasting w
moves. Player I makes the first move. I and II alternately pick members of Py (),
thus building a sequence (a, : n < w) with the condition that ag C a; C ... II
wins the game just in case | J,, ., an € A. Let NG, ) be the set of all B C P(\)
such that IT has a winning strategy in G, \(Px(A) \ B).

Lemma 5 (Matet [6]). NG, ) is a normal ideal on Pg()).

Proposition 6. Suppose 2<% < u™ for some cardinal j such that k < pu < X
and w < cf(pu) < k. Then there is a sequence (Sq : a € Pr(\)) with sq C a such
that for any X C \,{a:sq =X Na} € NG:)\.

PROOF: Let p be a fixed cardinal such that w < cf(u) < x < p < Aand 2<F < pT.

Fix a stationary subset H of Eﬂ+. Using Lemma 2, select an increasing function
7 from w into v for each v € H so that ran(¥) is cofinal in v for every v € H,
and {y € H : ran(y) C C} is stationary in uT for any closed unbounded subset
C of u™.

Set v = cf(u) and let (p; : i < v), (ho : @ < p*) and S be as in the statement
of Lemma 3. For o < ™, set ¢o = ran(hy). For b € P(u), define g, € [T, pi
by gp(i) = sup(bn p;). Define p : Py(u) — uT by p(b) = the least B < u™
such that g, <* hg. For a € S and b € Pq(u), define g € [[;, ha(i) by
gy (i) = sup(b N ha(i)). For a € S, define po @ Pg(p) — a by pa(b) = the least
B < pt such that g@ <* hg. Note that given any sequence (b, : n < w) of
elements of Py (1), p(U,, <y bn) = sup{p(bn) : n < w}. Moreover, for every a € S,
pOé(Un<w bn) = Sup{pa(bn) n < w}'

We will prove that there is a sequence (sq : a € P, (X)) such that for any X C A,

{a:p(pna)e H and sa:Xﬂa}ENG:’X

For n < wand 0 < ¢ < &, let Fé be the set of all (n + 1)-tuples (fo,. .., fn) of
functions from ¢ to 2. By Lemma 1, S can be partitioned into disjoint stationary
subsets Z,, n < w. Again by Lemma 1, for each n, Z, can be decomposed into
disjoint stationary subsets Z(fo,..., fn), (fo;---,fn) € U0<g‘<n Fg

For b C A, let e(b) : o.t. (b) — b be the function that enumerates the elements
of b in increasing order. For a,b € P () with a C b, let x(a,b) : 0.t.(b) — 2 be
defined by (x(a,b))(d) =1 if and only if (e(b))(d) € a.

The proof will go as follows. Given A € N G:, y and X C A, we will construct
an, and ay, for n < w, f fori <n < w, and a and v so that (a) ag, a1, ... € Ps(\)
and a9 € a1 C ..., (b) fi = x(as,an) for i < n and f7 = (X N an,an),
(€) a = Upewan,a € Aand v = p(anp), (d) apy1r = the least o such that
F(n) < a < pt and ran(hy) C a, and (e) any1 € Z(f0, fL,..., f1).
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The guessing sequence (sq : @ € Pg(\)) is now defined in the obvious way.
Given a € Pi(A), put & = o.t.(a) and v = p(a N p). Let (%) assert that v € H
and there exist ¢, and ay11 for n < w and f for i < n < w such that (0)
0 < (n < K, (1) f is a function from (,, to 2, (2) aup1 = the least a < pt such
that o > F(n) and ran(ha) C a, and (3) ant1 € Z(f9, fr, ..., f). 84 can be any
subset of a if (*) does not hold. Now suppose that () holds. By induction on 6,
define ag for 0 < £ and n < w as follows. Put ag = ¢ for every n < w. If 6 is
an infinite limit ordinal, set af = UT7 <gan for all n < w. Assuming a¥ has been

defined for all n, look for a j < w such that () for j < n < w,o0.t. (a?) € dom(f%)
and fﬂ;(o.t. (@) = 1, and (B) for £ < j < n < w,o.t.(af) € dom(f’) and
fL(o.t. (a)) = 0. If there is no such j, set %t = af for every n < w. If there
is one, it must be unique. Set a%T1 = af for n < j, and a%1 = af U {(e(a))(6)}
for j < n < w. Finally, set s4 = |, 5n, where s, = {(e(an))(n) : n €
dom(f}) No.t.(ay) and fir(n) =1}.

Now fix A € NG y and X C \. We must find a € A such that s, = X N
a. Let 7 be a winnirig strategy for player II in the game G \(A). Define k :
Un<w Bhi1 — Pa()) as follows. Set k(t) = 7(zyq)) for any t € Rf. Given
O<n<wandte Rg_‘_l, define a;, and by, for m < n by: a9 = Ty(0), Am =
bm—1U Zy(y) for m > 0, and by, = 7(ag, .. ,am), and set k(t) = by.

Define W,, for n < w by induction as follows. Set Wy = Rg , Wi = R’f and

Wy = {t e RY :t(1) € Z(x(X Nk(t [ 1),k(t | 1))}

For n > 2, let Wy, 1 be the set of all t € RZ_H such that ¢t [ n € W, and t(n)
belongs to Z(fo, ..., fn—1), where f; = x(k(t | (i+1)),k(t | n)) fori <n—1, and
fn—1 = x(XNk(t [ n)),k(t [ n)). Put Ty = ,,<o, Wn. For 0 <r < w, define ¢, :
ToN(Ur<g<w RY) — ut by or(t) = Py(ry(1NE(t)). Using Lemma 4, select T} € 7y,
and ¥ : T, N RY — ,u"‘ for 0 < r < wsothat T, C T,_1,T- N R: = T,,_1 N RY,
and @r(t) < r(t [ r) for every t € Tp N (U, < g< RY). Set T =, o, Tr.

Let C be the set of all v with x < v < p such that for any r with 0 < r < w,
and any t € T N R} with ran(t) C v, p(p N k(t)) < v,¢r(t) < v and {a < 7 :
tU{(r,a)} € T} is cofinal in . Since C is a closed unbounded subset of 1T, there
is v € H such that ran(y) C C. Pick y : w — puT sothat {y [m:m <w} CT
and y(0) < 7(0) < y(1) < (1) < ... . Set ap = k(y | (n+ 1)) for n < w, and
a = J,<., @n. Then for each m < w,

F(m) <y(m+1) < p(pNami1) <3(m+1)
since Zy(p41) € am+1 and ran(y [ (m +2)) € ¥(m + 1). Hence

plpna) =sup{p(pgNam+t1) : m < w} =1.
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For 0 <r < w,
Py(ry (BN a) = sup{pyy(nNag) i r <qg<w}<F(r—1)

since py(y (L Naq) = ¢r(y I q) < ¢¥r(y | 1) <7F(r — 1) whenever r < ¢ < w.
It follows that y(r) = the least @ < p™ such that a > F(r — 1) and zo C a,
since § < py()(aNp) for any § < y(r) such that x5 C a. Define fi for j <

n < w by fi = x(aj,an) if j < n, and f = x(X Nan,an). Then y(n +1) €

Z(fg,f%, ooy fi) for all n < w. Finally, sq = U, <, {(e(an))(n) : 1 € o.t. (an)
and f}}(n) =1} = U,c,(X Nan) = X Na. O

In the case when « is the successor of a cardinal of cofinality w, the assumption
of Proposition 6 can be weakened.

Let v > 0 be a cardinal. For A C P, ()), the game GY ,(A) is defined similarly
to G, \(A), where now the choices are made from P, ().

Lemma 7 (Matet [7]). Suppose k is the successor of a cardinal v of cofinality w.
Then for any A C Py()\), A € NG, , if and only if II has a winning strategy in

the game G | (A).

It is now straightforward to modify the proof of Proposition 6 so as to get the
following.

Proposition 8. Suppose that k is the successor of a cardinal v of cofinality w,
and 2<V < ut for some cardinal i such that w < cf(u) < kK < u < A\. Then
there is a sequence < $q : a € Pg(\) > with sq C a such that for any X C A,
{a:sq=XNa}e NG:,)\.
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