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Covering Σ
0
ξ-generated ideals by Π

0
ξ sets

Tamás Mátrai

Abstract. We develop the theory of topological Hurewicz test pairs: a concept which
allows us to distinguish the classes of the Borel hierarchy by Baire category in a suitable
topology. As an application we show that for every Π0

ξ
and not Σ0

ξ
subset P of a Polish

space X there is a σ-ideal I ⊆ 2X such that P /∈ I but for every Σ0
ξ
set B ⊆ P there

is a Π0
ξ
set B′ ⊆ P satisfying B ⊆ B′ ∈ I. We also discuss several other results and

problems related to ideal generation and Hurewicz test pairs.
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1. Introduction

Let (X, τ) be an uncountable Polish space. For every 0 < ξ < ω1 and P ⊆ X
let S0ξ (P ) and P

0
ξ (P ) denote the collections of Σ

0
ξ(τ) and Π

0
ξ(τ) subsets of P . In

this paper we prove in particular the following result.

Theorem 1. Let ξ be a successor ordinal such that 1 < ξ < ω1. Let (X, τ) be an
uncountable Polish space and P ⊆ X be a Π0ξ(τ) and not Σ

0
ξ(τ) set. Then there

is a mapping Φ:S0ξ (P )→ P0ξ (P ) such that for every B, Bi ∈ S0ξ (P ) (i < ω),

B ⊆ Φ(B) and P \
⋃

i<ω

Φ(Bi) 6= ∅.

At first sight this result may seem not to be informative so we discuss why the
effort is made for it. Our first motivation is the effort itself: the proof is based
on the concept of topological Hurewicz test pairs . The main innovation in this
method is that for every (nice) Π0ξ(τ) set P ⊆ X we are able to construct a Polish

topology τP on X such that it is true in particular that every Σ0ξ(τ) subset of

P is meager in the relative topology τP |P (compare to a result of S. Solecki [8,
Theorem 2.2, p. 526]). Thus Theorem 1 is plausible in the sense that every Σ0ξ(τ)

The research was partially supported by the OTKA grants F 43620, T 49786, T 37758 and
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subset of P , i.e. the kind of subsets B of P that we intend to cover with Φ(B),
are small in Baire category relatively to P . In this paper we develop the theory
of topological Hurewicz test pairs; Theorem 1 will be a nontrivial application of
this technique.
The second motivation for Theorem 1 is that we think that it is the best result

one can obtain in ZFC: we conjecture that it is independent whether Theorem 1
fails for limit ordinals or not and that it is also independent whether Φ(B) can
be chosen to be Π0ϑ(τ) for ϑ < ξ or not. We will discuss the problem of limit
ordinals at the end of the paper after the proof of Theorem 1. Here we only argue
for the independence of the problem arising from the quest for the optimal Borel
class for Φ(B). First we give a definition and two results.

Definition 2. Let I be a σ-ideal and F ⊆ I. We say that I is generated by F if
for every G ∈ I there exist Fi ∈ F (i < ω) such that G ⊆

⋃

i<ω Fi. We say that
F is cofinal in I if for every G ∈ I there is an F ∈ F such that G ⊆ F .

S. Solecki proved the following result (see [7, Theorem 1, p. 1023]).

Theorem 3 (S. Solecki). In the Polish space (X, τ) let I ⊆ 2X be a σ-ideal
generated by its Π01(τ) members. Let A ⊆ X be a Σ11(τ) set. Then either A ∈ I

or there is a Π02(τ) set G ⊆ A such that G /∈ I, moreover F ∩ G is relatively
τ |G-meager in G for every F ∈ I.

It is natural to ask whether the same result holds for higher Borel classes (see
[6, Question 1.9]).

Question 4 (A. Miller). Let (X, τ) be a Polish space and fix an ordinal ξ satis-

fying 2 ≤ ξ < ω1. Let I ⊆ 2X be a σ-ideal which is generated by its Π0ξ members.

Is it true that for every analytic set A ⊆ X , either A ∈ I or there is a Π0ξ+1 set

B ⊆ A such that B /∈ I?

Before all further comments it is important to point out that this question is
already refuted by the following unpublished result of A. Kechris and M. Zelený.

Theorem 5 (A. Kechris-M. Zelený). Assume V = L. Then there is an analytic

set A ⊆ 2ω and a σ-ideal I ⊆ 22
ω
such that A /∈ I but I contains every Borel

subset of A and the Π02(τ2ω ) members of I are cofinal in I.

That is the answer to Question 4 is consistently negative. Moreover, in The-
orem 5 instead of the condition V = L it is enough to assume the Continuum
Hypothesis, which is a consequence of V = L (see e.g. [1]), and for a consistent
counterexample we do not need one special analytic set (see [5, Theorem 6]).

Theorem 6. Let (X, τ) be a Polish space and P ⊆ X be a Borel and not Σ03(τ)
set. By assuming the Continuum Hypothesis there is a σ-ideal I such that

1. the Π02(τ) members of I are cofinal in I;
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2. S03 (P ) ⊆ I;
3. P /∈ I.

Observe that by Theorem 1 for ξ = 3 we have in particular that for every
Π03(τ) and not Σ

0
3(τ) set P ⊆ X the σ-ideal

I =

{

A ⊆ X : ∃Bi ∈ S03 (P ) (i < ω)

(

A ⊆
⋃

i<ω

Φ(Bi)

)}

satisfies P /∈ I but for every B ∈ S03 (P ) there is a B′ ∈ P03 (P ) ∩ I satisfying

B ⊆ B′. So Theorem 6 strengthens this by providing a σ-ideal with cofinal Π02
members instead of a Π03-generated one. We think that it is consistently true for

every 1 < ξ < ω1 that in Theorem 1, Φ(B) can be taken in Π
0
2(τ) (B ∈ S0ξ (P )).

Moreover, for this only Theorem 6 should be established for 3 < ξ < ω1; that
is for every Borel and not Σ0ξ(τ) set P ⊆ X we need to construct a σ-ideal I

with cofinal Π02 members such that S
0
ξ (P ) ⊆ I but P /∈ I. On the other hand, a

consistently positive answer to Question 4 could give that Φ(B) cannot be taken
in Π0ϑ(τ) for ϑ < ξ, that is Φ(B) ∈ P0ξ (P ) is optimal (B ∈ S0ξ (P )). However, up

to our knowledge these problems are open.
The paper is structured as follows. In Section 2 we recall and introduce some

key notions related to the refinement of topologies in Polish spaces. Next, in
Section 3, we prove Theorem 1 for ξ = 2; this case is treated separately because
no Hurewicz tests appear in the proof, moreover the argument which covers the
3 ≤ ξ < ω1 case is not applicable for ξ = 2. We define our topological Hurewicz
test pairs and discuss their basic properties in Section 3. In Section 4 we obtain
sufficient criteria for sets to be in a topological Hurewicz test pair and we prove
Proposition 34, which is the main lemma toward Theorem 1 but might be inter-
esting on its own right. In Section 5 we construct Hurewicz test pairs, we prove
Theorem 1 for 3 ≤ ξ < ω1 and we close the paper with a short analysis of the
proof.

2. Preliminaries

Our terminology and notation follow [2]. As usual, Π0ξ(τ) and Σ
0
ξ(τ) (0 < ξ <

ω1) stand for the ξth multiplicative and additive Borel class in the Polish space
(X, τ), starting with Π01(τ) = closed sets, Σ

0
1(τ) = open sets. A set is called

proper Π0ξ(τ) if it is Π
0
ξ(τ) and not Σ

0
ξ(τ) (0 < ξ < ω1).

Let (C, τC ) denote the Polish space 2
ω with its usual product topology. For

two finite sequences s, t ∈ ω<ω, we write s ⊆ t and s ⊂ t if t is an extension
of s and if t is a proper extension of s. The length of s is denoted by |s|. If
s = (s0s1 . . . sn−1) and i < ω, then s⌢i stands for the sequence (s0s1 . . . sn−1i).
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If T ⊆ ω<ω is a subtree and s ∈ ω<ω we set Ts = {t ∈ ω<ω: s⌢t ∈ T }. The
terminal nodes of T are denoted by T(T ).
Let ξ, ϑi (i < ω) be ordinals. We write ϑi ։ ξ if ξ is successor and ϑi + 1 = ξ

(i < ω) or if ξ is limit, ϑi ≤ ϑj (i ≤ j < ω) and supi<ω ϑi = ξ.
For every ordinal ξ < ω1 we fix once and for all a sequence (ϑi)i<ω such that

ϑi ։ ξ. To avoid complicated notations, we do not indicate the dependence of the
sequence (ϑi)i<ω on ξ, it will be always clear which pair of ordinal and sequence
is considered.
In this note we will notoriously refine Polish topologies by turning countably

many closed sets into open sets. We do this as described in [2], that is the open
sets of the ancient topology together with their portions on the members of our
collection of closed sets serve as a subbase of the new, finer topology. We will use
that the topology obtained in this way is also Polish.

Definition 7. Let (X, τ) be a Polish space, P = {Pi: i < ω} be a countable
collection of Π01(τ) sets. Then τ [P ] denotes that Polish topology refining τ where
each Pi (i < ω) is turned successively into an open set. For the precise procedure
we refer to [2, (13.2) Lemma and (13.3) Lemma, p. 82].

It is easy to see that the resulting finer topology τ [P ] is independent from the
enumeration of P . This will be clear shortly when we fix a base of τ [P ]. We also
use the notation τ [P ] when the countable collection of not necessarily Π01(τ) sets

P can be enumerated on such a way that Pn is Π
0
1(τ [{Pi: i < n}]).

Definition 8. If τn (n < ω) is a Polish topology on some base set X then
∨

n<ω τn denotes the coarsest topology on X which refines each τn (n < ω).

The resulting topology is also Polish and we will shortly fix a countable base
for it. Before doing this we need a precise notion of basic open sets in our spaces.

Definition 9. Let (Xi, τi) (i ∈ I) be Polish spaces; if a basis Gi is fixed in the
spaces (Xi, τi) (i ∈ I), which are meant to be the basic open sets in (Xi, τi), then
the basic open sets of (

∏

i∈I Xi,
∏

i∈I τi) are the open sets of the form

∏

i∈J

Gi ×
∏

i∈I\J

Xi,

where J ⊆ I is finite and Gi ∈ Gi for every i ∈ J .
If the family G basic open sets is fixed in the Polish space (X, τ) and τ [P ]

makes sense for a countable collection P of subsets of X , then the basic open sets
of τ [P ] are of the form G ∩ F0 ∩ · · · ∩ Fn−1 or G with G ∈ G, Fi ∈ P (i < n); a
basic τ [P ]-open set is said to be proper if it is not τ -open.
If the basic open sets Gn are fixed for the Polish topologies τn (n < ω) then the

basic open sets for
∨

n<ω τn are the sets of the form
⋂

i<m Gni where Gni ∈ Gni

(m < ω, ni < ω (i < m)).
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Observe that the basic open sets defined on this way form a basis of
∏

i∈I τi,
τ [P ] and

∨

n<ω τn, respectively. From now on whenever a Polish space (X, τ)
appears we assume that a countable basis comprised of basic τ -open sets is fixed;
and this is done with respect to the convention of Definition 9 if it is applicable.
We take X to be basic τ -open. Basic open sets are assumed to be regular open.
In zero dimensional spaces we assume that our basic τ -open sets are Π01(τ); note
that our procedure of refinement results a zero dimensional space from a zero
dimensional one with Π01(τ [P ]) basic τ [P ]-open sets. If two Polish topologies τ
and τ ′ are given on the same base set and τ ′ is finer than τ we assume that the
basic τ -open and the basic τ ′-open sets are fixed such that the every basic τ -open
set is also basic τ ′-open.
The closure of a set A ⊆ (X, τ) is denoted by clτ (A). We will never have to

fix a special compatible metric on our Polish spaces but we will condition on the
diameter of sets. In this case diamτ denotes the diameter in an arbitrary fixed
metric generating τ . We assume that diamτ (X) ≤ 1.
We recall that a Π02(τ) subset G of the Polish space (X, τ) is itself a Polish

space with the restricted topology τ |G (see e.g. [2, (3.11) Theorem]). In particular,
the notions related to category in the topology τ make sense relative to G.
We will have to return to the topologies on the coordinates in product spaces.

If (X, σ), (Y, τ) are arbitrary topological spaces and (X ,S) = (X × Y, σ × τ),
then we define PrX(S) = σ. The projection of product sets in product spaces is
defined analogously. If GX ⊆ X and GY ⊆ Y , we say that the set of product
form G = GX × GY ⊆ X is nontrivial on the X coordinate if GX 6= X .
Finally we recall a result which was the strongest motivation for the topolo-

gization of Hurewicz tests and will be used in the proof of Theorem 1 (see [3]).

Theorem 10 (A. Louveau, J. Saint Raymond). Let 3 ≤ ξ < ω1 and (X, τ) be a
Polish space. If Pξ ⊆ C is proper Π0ξ(τC ) and A0, A1 ⊆ X is any pair of disjoint

analytic sets, then either A0 can be separated from A1 by a Σ
0
ξ(τ) set or there is a

continuous one-to-one map ϕ: (C, τC )→ X with ϕ(Pξ) ⊆ A0 and ϕ(2ω\Pξ) ⊆ A1.
The same conclusion holds for ξ = 2 if P2 ⊆ C is the complement of a dense

countable set.

3. The ξ = 2 case

From now on (X, τ) denotes a Polish space. In this section we prove Theorem 1
for ξ = 2. The proof does not use topological Hurewicz test pairs; instead, it is
based on a compactness argument which was pointed out to the author by Zoltán
Szentmiklóssy. The fact that this argument, which brakes down for ξ > 2, can be
substituted by a reasoning based on topological Hurewicz test pairs may motivate
other applications of the topological Hurewicz test pairs.
In this section (N , τN ) stands for ωω with its usual product topology. For

f, g ∈ N we write f ≺ g if the set {n < ω: f(n) ≥ g(n)} is finite. We will use the
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following well-known results (see e.g. [2, (7.7) Theorem, p. 37], [2, (4.11) Excercise,
p. 20] and [1, Lemma 29.6, p. 575]).

Proposition 11. Let N ⊆ C be the complement of a dense countable set. Then
(N, τC |N ) is homeomorphic to (N , τN ).

Proposition 12. Let K ⊆ N be a Π01(τN ) set. Then K is compact if and only
if K is dominated, i.e. there exists f :ω → ω such that for every g ∈ K we have
g(n) ≤ f(n) (n < ω).

Proposition 13. Let (fi)i<ω ⊆ N be arbitrary. Then there exists an f ∈ N
satisfying fi ≺ f (i < ω).

Proof of Theorem 1 for ξ = 2: Take N ⊆ C to be the complement of a dense
countable set. Then by Proposition 11, (N, τC |N ) is homeomorphic to (N , τN ) so
in the sequel, with a little abuse of notation we identify (N, τC |N ) with (N , τN ).
We apply Theorem 10 for ξ = 2 with P2 = N ⊆ C in (X, τ) for the Π02(τ) and

not Σ02(τ) set P . We get a continuous one-to-one map ϕ: (C, τC ) → (X, τ) such

that ϕ−1(P ) = N .
We define Φ:S02 (P )→ P02 (P ) as follows. For every B ∈ S02 (P ) fix a decompo-

sition B =
⋃

j<ω Bj where Bj is Π
0
1(τ) (j < ω). Then ϕ−1(Bj) ⊆ C is Π01(τC )

hence compact (j < ω). Since Bj ⊆ P and ϕ−1(P ) = N , we obtained that

ϕ−1(Bj) ⊆ N is a compact set (j < ω). By Proposition 13, for every j < ω there

is a function fj :ω → ω such that for every g ∈ ϕ−1(Bj) we have g(n) ≤ fj(n)
(n < ω). Let fB:ω → ω be such that fj ≺ fB (j < ω) and set

F (B) = {g ∈ N : ∀N < ω ∃n > N (g(n) ≤ fB(n))}.

We define Φ(B) = (P \ ϕ(N )) ∪ ϕ(F (B)).
Clearly, P \ ϕ(N ) = P \ ϕ(C) is a Π02(τ) set. Since F (B) is Π02(τN ) and

homeomorphisms keep the Borel class of sets we have that Φ(B) ∈ P02 (P ). We
show that B ⊆ Φ(B); take g ∈ B. If x ∈ B \ ϕ(N ) then x ∈ P \ ϕ(N ) ⊆ Φ(B).
If x ∈ B ∩ ϕ(N ), say x ∈ Bj ∩ ϕ(N ) then [ϕ−1(x)](n) ≤ fj(n) (n < ω) hence

ϕ−1(x) ∈ F (B) so again x ∈ Φ(B).
Finally, for i < ω let Bi ∈ S02 (P ) with its decomposition Bi =

⋃

j<ω Bi
j ,

eventual dominator fBi and covering set F (Bi). Take g:ω → ω such that fBi ≺ g

(i < ω). Then g /∈ F (Bi) (i < ω) hence ϕ(g) ∈ ϕ(N ) \
⋃

i<ω ϕ(F (Bi)), that is

ϕ(g) ∈ P \
⋃

i<ω Φ(B
i). This completes the proof. �

4. Topological Hurewicz test pairs

In this section we construct our Hurewicz test pairs. In order to produce
a sufficiently big family of test pairs we need a machinery which allows us to
condition on the construction of a given Borel set from simpler sets. For this,
we handle a Π0ξ(τ) set by coding its construction from closed sets in a tree. The

following inductive definition makes this concrete.
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Definition 14. Let 0 < ξ < ω1 and ϑi ։ ξ. For ξ = 1, [P, (P∅)] is called a Π
0
1(τ)

set with presentation if P = P∅ is a Π
0
1(τ) set.

Suppose that the Π0ϑ(τ) sets with presentation are defined for ϑ < ξ. Then

[P, (Pt)t∈T ] is a Π
0
ξ(τ) set with presentation if T ⊆ ω<ω is a subtree such that

{(i): i < ω} ⊆ T , P = X \
⋃

i<ω P(i) and [P(i), (Pi⌢t)t∈T(i) ] is a Π
0
ϑi
(τ) set with

presentation (i < ω).

It is important to note that a Π0ξ(τ) set with presentation is not necessarily a

proper Π0ξ(τ) set. For example such a set can easily be empty.

Next we define the test sets and the corresponding topologies.

Definition 15. Let 0 < ξ < ω1 and P ⊆ X . We call the pair {P, τP } a Π0ξ(τ)

topological Hurewicz test pair in (X, τ) if

1. P is a Π0ξ(τ) set;

2. τP is a Polish topology on X refining τ ;
3. P is a τP -nowhere dense Π

0
1(τP ) set;

4. (a) ξ = 1: if for a τ -open set A ⊆ X and a basic τP -open set G with
G ∩ P 6= ∅ we have A ∩ P is τP |P -residual in G ∩ P then A is τP -
residual in a τP -open set G′ ⊆ G such that G ∩ P ⊆ clτP

(G′ ∩ P ).

(b) 1 < ξ is a successor ordinal: if for a ϑ < ξ, a Π0ϑ(τ) set A ⊆ X and
a basic τP -open set G with G ∩ P 6= ∅ we have A ∩ P is τP |P -residual
in G ∩ P then A is τP -residual in G.

(c) 1 < ξ is a limit ordinal: for every ϑ < ξ there is a τP -open set HX,P (ϑ)

such that P ⊆ HX,P (ϑ
′) ⊆ HX,P (ϑ) (ϑ ≤ ϑ′ < ξ) and if for a

ϑ < ξ, a Π0ϑ(τ) set A ⊆ X and a basic τP -open set G with G ∩ P 6= ∅
we have A ∩ P is τP |P -residual in G ∩ P then A is τP -residual in
G ∩HX,P (ϑ).

Notice the paradox behavior of a test pair {P, τP }. Even if P is a τP -nowhere
dense Π01(τP ) set, that is it is negligible in the sense of Baire category, from the
information that a set A has a Borel class lower than the Borel class of P and
A∩P is big in category relative to P we conclude that A is big in the whole space
X , that is A is of τP -second category.
Observe also the following fact.

Lemma 16. Let (X, τ ′) be a Polish space and τ be a Polish refinement of τ ′.
Let {P, τP } be a Π0ξ(τ) topological Hurewicz test pair in (X, τ). If P is also a

Π0ξ(τ
′) set then {P, τP } is a Π0ξ(τ

′) topological Hurewicz test pair in (X, τ ′).

Proof: Since every Σ01(τ
′) set is Σ01(τ) and every Π

0
ϑ(τ

′) set is Π0ϑ(τ) (ϑ < ξ)
the statement follows. �

We associate topologies τ<
P and τP toΠ

0
ξ(τ) sets with presentation [P, (Pt)t∈T ].
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Definition 17. Consider a Π0ξ(τ) set with presentation [P, (Pt)t∈T ]. For ξ = 1

we define τ<
P = τP = τ . If 1 < ξ < ω1 and τQ is defined for Π

0
ϑ(τ) sets Q with

presentation for ϑ < ξ, set

P =

{

P(n) ∩
⋂

i<n

(X \ P(i)):n < ω

}

.

We define τ<
P =

∨

i<ω τP(i) and τP = τ<
P [P ].

Note that the topologies τ<
P and τP depend on the presentation of P . However,

we do not indicate this in the notation, the presentation will always be fixed in
advance. Observe also that P is disjoint to the members of P and that the sets
in P are pairwise disjoint.
Next we prove an auxiliary claim on how P is related to the topologies τ<

P , τP .
For its proof we will need the Kuratowski-Ulam Theorem in the following form
(see [2, (8.41) Theorem]).

Theorem 18 (Kuratowski-Ulam). Let (X, τ) and (Y, σ) be Polish spaces, let
G = GX × GY be a basic τ × σ-open set in X × Y and consider a Borel set
A ⊆ X × Y . Set Ay = {x ∈ X : (x, y) ∈ A}. Then A is τ × σ-residual in G if and
only if

{y ∈ GY :A
y is τ -residual in GX}

is σ-residual in GY .

Proposition 19. With the notation of Definition 17 we have the following.

1. P is Π02(τ
<
P ) and Π

0
1(τP ).

2. If G is basic τP -open and G ∩ P 6= ∅ then G is in fact basic τ<
P -open.

3. The topologies τP |P and τ<
P |P coincide.

4. The topologies

τP |P(n)\
S

i<n P(i)
and τ<

P |P(n)\
S

i<n P(i)
(n < ω)

coincide.

5. If (Y, σ) is any nonempty Polish space and {P, τP } is a Π0ξ(τ) topological

Hurewicz test pair in (X, τ) then {P×Y, τP ×σ} is aΠ0ξ(τ×σ) topological

Hurewicz test pair in (X × Y, τ × σ); and if ξ is a limit ordinal then
HX×Y,P×Y (ϑ) = HX,P (ϑ)× Y fulfills the requirements.

Proof: We prove the first statement by induction on ξ. For ξ = 1 the statement
is obvious. Let now 1 < ξ < ω1 and suppose that the statement holds for ϑ < ξ.
We have

(1) P = X \
⋃

n<ω

P(n) = X \
⋃

n<ω

(

P(n) ∩
⋂

i<n

(X \ P(i))

)

,



CoveringΣ
0

ξ-generated ideals byΠ
0

ξ sets 253

where P(n) is Π
0
1(τ

<
P ) (n < ω) by the inductive hypothesis and P(n) ∩

⋂

i<n(X \

P(i)) is τP -open (n < ω) by definition, so 1 follows.

By Definition 17 proper basic τP -open sets do not intersect P , which shows 2.
This immediately implies 3.
Since the sets in P are pairwise disjoint, if G is a proper basic τP -open set

which intersects P(n) \ (
⋃

i<n P(i)) then G = G′ ∩ P(n) \ (
⋃

i<n P(i)) where G′ is

basic τ<
P -open, so 4 holds.

For 5, let G be a basic τP × σ-open set, say G = GX × GY where GX is basic
τP -open in X and GY is basic σ-open in Y . If ξ = 1, let A be a τ × σ-open set
such that A∩ (P ×Y ) is (τP ×σ)|P×Y -residual in G∩ (P ×Y ) = (GX ∩P )×GY .
Let

G′ =
⋃

{H ⊆ G:H is basic τP × σ-open, A is τP × σ-residual in H}.

Then G′ ⊆ G and A is τP × σ-residual in G′ so it remains to show that

G ∩ (P × Y ) ⊆ clτP×σ(G
′ ∩ (P × Y )).

Suppose that K = KX ×KY ⊆ G is a nonempty basic τP × σ-open set such that

K ∩ (P × Y ) ⊆ G ∩ (P × Y ) \ clτP×σ(G
′ ∩ (P × Y )).

Then A∩ (P ×Y ) is (τP ×σ)|P×Y -residual in (KX ∩P )×KY , so by Theorem 18,

W = {y ∈ KY :A
y ∩ P is τP |P -residual in KX ∩ P}

is σ-residual in KY . Since {P, τP } is a Π01(τ)-topological Hurewicz test pair,
by Definition 15.4(a), for every y ∈ W there is a τP -open set K ′

X(y) ⊆ KX

such that Ay is τP -residual in K ′
X(y) and KX ∩ P ⊆ clτ (K ′

X (y) ∩ P ). Since

(X, τP ) has countable base there is a basic τP -open set K ′
X ⊆ KX such that

{y ∈ KY :K
′
X ⊆ K ′

X(y)} is σ-nonmeager, hence residual in a basic σ-open set

K ′
Y ⊆ KY . Thus we obtained that

{

y ∈ K ′
Y :A

y is τP -residual in K ′
X

}

is σ-residual in K ′
Y . Then by Theorem 18, A is τP ×σ-residual in K ′ = K ′

X ×K ′
Y ,

that is K ′ ⊆ G′, a contradiction.
Let now 1 < ξ < ω1 be a successor ordinal, ϑ < ξ and A be a Π0ϑ(τ × σ) set

such that A∩ (P ×Y ) is (τP ×σ)|P×Y -residual in (GX ∩P )×GY . We show that
A is τP × σ-residual in G. By Theorem 18,

W = {y ∈ GY :A
y ∩ P is τP |P -residual in GX ∩ P}
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is σ-residual in GY . Since {P, τP } is a Π0ξ(τ)-topological Hurewicz test pair, by

Definition 15.4(b), Ay (y ∈ W ) is τP -residual in GX . Then again by Theorem 18,
A is τP × σ-residual in G, as stated.
Let now 1 < ξ < ω1 be a limit ordinal. We show that

HX×Y,P×Y (ϑ) = HX,P (ϑ)× Y (ϑ < ξ)

fulfills the requirements. Let ϑ < ξ and A be aΠ0ϑ(τ×σ) set such that A∩(P×Y )
is (τP × σ)|P×Y -residual in (GX ∩ P )× GY . By Theorem 18,

W = {y ∈ GY :A
y ∩ P is τP |P -residual in GX ∩ P}

is σ-residual in GY . Since {P, τP } is a Π0ξ(τ)-topological Hurewicz test pair, by

Definition 15.4(c), Ay (y ∈ W ) is τP -residual in GX ∩ HX,P (ϑ). Then again by
Theorem 18, A is τP × σ-residual in

G ∩HX×Y,P×Y (ϑ) =
(

GX ∩HX,P (ϑ)
)

× GY ,

as stated. This completes the proof. �

The following claim describes the behavior of a topological test pair with re-
spect to Σ0ξ(τ) sets. Compare it to Definition 15.4(a).

Proposition 20. Let 0 < ξ < ω1 and let {P, τP } be a Π0ξ(τ) topological Hure-

wicz test pair. If for a Σ0ξ(τ) set W and τP -open set G with G ∩ P 6= ∅ we

have W ∩ P is τP |P -residual in G ∩P , then W is τP -residual in a τP -open set H
satisfying that G ∩ P ⊆ clτP

(H ∩ P ).

Proof: For ξ = 1 the statement follows from the definition. Let now 1 < ξ < ω1
and write W =

⋃

i<ω Qi, where Qi is Π
0
ϑi
(τ) and ϑi ։ ξ. If W ∩ G ∩ P is

τP |P -residual in G ∩ P then let Hi denote the maximal τP -open set in which Qi

is τP -residual (i < ω). By Definition 15.4, the τP -open set H =
⋃

i<ω Hi meets
every τP |P -open set intersecting G ∩ P , which proves the statement. �

In the following theorem we give a method allowing to build up inductively a
topological Hurewicz test pair from simpler test sets.

Theorem 21. Let 0 < ξ < ω1, ϑi ։ ξ and let [P, (Pt)t∈T ] be a nonempty
Π0ξ(τ) set with presentation. If ξ = 1 and P is τ -nowhere dense then {P, τP } is

a topological Hurewicz test pair.

For 1 < ξ < ω1 suppose that
⋃

i<ω P(i) is τ<
P -dense in X and {P(i), τ

<
P } is a

Π0ϑi
(τ) topological Hurewicz test pair in (X, τ) (i < ω). Then

1. P is τ<
P -residual;

2. {P, τP } is a Π0ξ(τ) topological Hurewicz test pair.
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Proof: If ξ = 1, G′ = A∩G does the job. Let now 1 < ξ < ω1. Since {P(n), τ
<
P }

(n < ω) is a Π0ϑn
(τ) topological Hurewicz test pair, P(n) (n < ω) is τ<

P -nowhere

dense so statement 1 follows from equation (1).

For 2 we have to check the conditions of Definition 15; 1 holds by the choice
of P , 2 follows from Definition 17.

For 3, by Proposition 19.1 it remains to show that P does not contain any
nonempty basic τP -open set. Suppose that G ⊆ P and G is nonempty basic
τP -open. Then by Proposition 19.2, G is basic τ<

P -open, we have
⋃

i<ω P(i) is

τ<
P -dense hence P(n) ∩ G 6= ∅ for some n < ω, a contradiction.

Let now ϑ < ξ, A ⊆ X be Π0ϑ(τ), G be a basic τP -open set with G∩P 6= ∅ and
suppose that A∩P is τP |P -residual in G∩P . By Proposition 19.2, G is actually
τ<
P -open while by 1 and Proposition 19.3, A is τ<

P -residual in G.

Set G′ = G if ξ is a successor. If ξ is limit let I < ω be minimal such that
ϑ ≤ ϑI , set HX,P (ϑ) =

⋂

i<I X \ P(i) and G′ = G ∩ HX,P (ϑ) = G \
⋃

i<I P(i).
We have

P ⊆ HX,P (ϑ
′) ⊆ HX,P (ϑ) (ϑ ≤ ϑ′ < ξ)

by Definition 14. It remains to show that A is τP -residual in G′. Note that G′ is
τ<
P -open and that A is τ<

P -residual in G′.

Suppose that A is not τP -residual in G′; that is we have a nonempty basic τP -
open set G̃ ⊆ G′ such that A ∩ G̃ is τP -meager in G̃. By passing to a nonempty
basic τP -open subset we can assume that

G̃ = G0 ∩ P(n) ∩
⋂

i<n

(

X \ P(i)
)

= G0 ∩ P(n) \
⋃

i<n

P(i)

where G0 is basic τ<
P -open and n < ω. Note that if ξ is limit then I ≤ n by the

choice of G′. So we can assume G0 ∩
⋂

i<n(X \ P(i)) ⊆ G′.

We obtained that the Σ0ϑ(τ) set X \ A is τP |P(n)\
S

i<n P(i)
-residual in the

τP -open set P(n) ∩ G0 ∩
⋂

i<n X \ P(i). Thus by Proposition 19.4, X \ A is

τ<
P |P(n)\

S
i<n P(i)

-residual in the τ<
P |P(n)-open set P(n) ∩ G0 ∩

⋂

i<n X \ P(i).

Since ϑ ≤ ϑn, we can apply Proposition 20 for the Σ
0
ϑn
(τ) set W = X \ A,

the Π0ϑn
(τ) topological Hurewicz test pair {P(n), τ

<
P } and the τ<

P -open set G =

G0 ∩
⋂

i<n X \ P(i) satisfying G ∩ P(n) 6= ∅. We get X \ A is τ<
P -residual in a

τ<
P -open set H such that G∩P(n) ⊆ clτ<

P
(H∩P(n)), in particular H

′ = H∩G 6= ∅

and H ′ ⊆ G′. Thus both A and X \ A are τ<
P -residual in the nonempty τ<

P -open
set H , a contradiction. This completes the proof. �

Remark 22. It is very important to note that for the topological Hurewicz test
sets P satisfying the conditions of Theorem 21, HX,P (ϑ) (ϑ < ξ) does not depend
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on the topology τ , it is a function of the presentation of P and ϑ. Moreover,
HX,P (ϑ) (ϑ < ξ) is a τ<

P -dense τ<
P -open set.

The conditions of Theorem 21 concern the presentation of the Π0ξ(τ) set P

instead of P itself. This handicap seems to be inevitable. First, because up to
our knowledge there are no results providing some method to build up Σ0ξ(τ) sets

from simpler sets on a canonical way, there is not even a canonical decomposition
ofΣ02(τ) sets intoΠ

0
1(τ) sets. It is easy to see that by taking a wrong presentation

the topology τP becomes wrong either, that is we cannot just condition our test
set to be proper Π0ξ(τ), a suitably chosen, not necessarily natural presentation

must be involved. Second, because the only way to build up a proper Π0ξ(τ)

set for ξ > 4 is to use induction, so in view of our first reason one could hardly
imagine Theorem 21 without some inductive condition on the presentation. Even
if well explained, this handicap remains painful and this is responsible for most of
the complication we have to face later. We close this section with some corollaries
of Theorem 21, and in fact the first four statements can be considered as its
reformulation. The fifth statement points out an obvious fact for every set P of
a topological Hurewicz test pair {P, τP }.

Corollary 23. For a 0 < ξ < ω1, let {P, τP } be a Π0ξ(τ) topological Hurewicz

test pair as in Theorem 21. Let G be a nonempty τ<
P -open set. Then the following

hold.

1. If ϑ < ξ, A ⊆ X is Π0ϑ(τ) and τ<
P -residual in G then A is τP -residual in

G if ξ is a successor, while A is τP -residual in G∩HX,P (ϑ) if ξ is a limit
ordinal.

2. If A ⊆ X is Σ0ξ(τ) and of τ
<
P -second category in G then A is of τP -second

category in G.
3. If ϑ < ξ, A ⊆ X is Σ0ϑ(τ) and of τP -second category in G then A is

of τ<
P -second category in G if ξ is a successor, while A is of τ<

P -second

category in G ∩HX,P (ϑ) if ξ is a limit ordinal.

4. If A ⊆ X is Π0ξ(τ) and τP -residual in G then A is τ<
P -residual in G.

5. P is a proper Π0ξ(τ) set.

Proof: Let A be Π0ϑ(τ) and τ<
P -residual in G. By Theorem 21.1 and Proposi-

tion 19.1, P is a τ<
P -residual Π

0
2(τ

<
P ) set so A ∩ P is τ<

P |P -residual in G ∩ P . By

Proposition 19.3 the topologies τ<
P |P and τP |P coincide so A∩P is τP |P -residual

in G ∩ P . Thus Definition 15.4(b) or Definition 15.4(c) applies and we conclude
that A is τP -residual in G if ξ is a successor while A is τP -residual in G∩HX,P (ϑ)
if ξ is a limit ordinal, which proves 1.

For 2, if ξ = 1 the statement follows from τP = τ<
P = τ . If 1 < ξ < ω1 let

A =
⋃

i<ω Ai with Π
0
ϑi
(τ) set Ai (i < ω) where ϑi ։ ξ. By Theorem 21.1 and
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Proposition 19.1, P is a τ<
P -residual Π

0
2(τ

<
P ) set. If A is of τ

<
P -second category in

G then for an i < ω, Ai ∩ P is τ<
P |P -residual in G′ ∩ P for some basic τ<

P -open

set G′ ⊆ G. Since by Proposition 19.3 the topologies τ<
P |P and τP |P coincide,

we have Ai ∩ P is τP |P -residual in the basic τP -open set G′ with G′ ∩ P 6= ∅ so
by Definition 15.4(b) or Definition 15.4(c), Ai is τP -residual in some nonempty
τP -open set G′′ ⊆ G′ thus A is of τP -second category in G, as required.
Statements 3 and 4 follow from 1 and 2 by taking complements and using that

HX,P (ϑ) (ϑ < ξ) is a τ<
P -dense τ<

P -open set, as pointed out in Remark 22.

For 5, suppose that P is Σ0ξ(τ). From Proposition 20 for W = P we get P

is of τP -second category in X . But by Definition 15.3, P is τP -nowhere dense,
a contradiction. This completes the proof. �

There is an asymmetry in our approach to topological Hurewicz test sets: the
test set is of some multiplicative class and the sets tested are of the dual additive
class. The reason for this is that Σ0ξ is closed under taking countable union while

Π0ξ is not. However, there is a testing theorem like Theorem 21 for special Σ
0
ξ

sets but the statement of this theorem cannot go beyond Corollary 23. So we do
not work for that.

5. Intersection criteria

Toward the proof of Theorem 1 we need to find many topological Hurewicz
test pairs. For this we analyze the conditions of Theorem 21. It turns out that
the conditions of Theorem 21 are combinatorial, they are the same as requiring
that countably many intersections are nonempty. We write up these intersections
in Definition 24. Our purpose is to show in particular that if Theorem 21 proves
that a set P is a topological Hurewicz test set then P remains a test set and
satisfies the conditions of Theorem 21 if the initial topology τ of the Polish space
is changed.

Definition 24. Let 0 < ξ < ω1 and [P, (Pt)t∈T ] be aΠ
0
ξ(τ) set with presentation.

If ξ = 1, set C1(X, τ, P ) = {(X \ P, G): G ∈ τ \ {∅}}. If Cϑ(X
′, τ ′, P ′) is defined

for every ϑ < ξ, Polish space (X ′, τ ′) and Π0ϑ(τ) set with presentation P ′ then
let ϑi ։ ξ and set

Cξ(X, τ, P ) =
{

(X \ P, G):G ∈ τ<
P \ {∅}

}

∪
⋃

i<ω

Cϑi

(

X,
∨

j<ω, j 6=i

τP(j) , P(i)

)

.

We say that [P, (Pt)t∈T ] satisfies ∁ξ in (X, τ) if

∀ (C, G) ∈ Cξ(X, τ, P ) (C ∩ G 6= ∅).
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Proposition 25. Fix an ordinal ξ satisfying 0 < ξ < ω1. If a Π
0
ξ(τ) set with

presentation [P, (Pt)t∈T ] satisfies ∁ξ in (X, τ) then {P, τP } satisfies the conditions

of Theorem 21, so in particular {P, τP } is a Π0ξ(τ) topological Hurewicz test pair.

Proof: We prove the statement by induction on ξ. For ξ = 1, ∁1 means that P
is τ -nowhere dense in X , that is {P, τP } is a Π01(τ) topological Hurewicz test pair
by Theorem 21. Suppose now that the statement holds for ϑ < ξ and let ϑi ։ ξ.
By ∁ξ , X \P =

⋃

i<ω P(i) is τ<
P -dense in X and [P(i), (Pi⌢t)t∈T(i) ] satisfies ∁ϑi

in

the Polish space (X,
∨

j<ω, j 6=i τP(j)). By Definition 17 we have

τ<
P =

∨

j<ω

τP(j) =

(

∨

j<ω, j 6=i

τP(j)

)

P(i)

,

so by the induction hypothesis {P(i), τ
<
P } is a Π0ϑi

(τ) topological Hurewicz test

pair (i < ω). Thus the conditions of Theorem 21 are satisfied, Theorem 21.2 can
be applied and we conclude that {P, τP } is a Π0ξ(τ) topological Hurewicz test

pair. �

We need that if P lives in a product space but it is nontrivial only on one
coordinate then ∁ξ puts conditions also only on one coordinate.

Proposition 26. Let 0 < ξ < ω1 and let [P, (Pt)t∈T ] be a Π
0
ξ(τ) set with

presentation in the Polish space (X, τ). Let (Y, σ) be a Polish space and set
Q = P × Y , Qt = Pt × Y (t ∈ T ). Then [Q, (Qt)t∈T ] is a Π

0
ξ(τ × σ) set with

presentation and for every (C, G) ∈ Cξ(X ×Y, τ ×σ, Q), C is of product form and
it is nontrivial only on the X coordinate, i.e. C = PrX(C) × Y .

Proof: The statement easily follows by induction on ξ. �

The next claim gives that ∁ξ remains true if the initial topology gets coarser.
Compare this with Lemma 16.

Proposition 27. Let τ ′ be a Polish topology on X refining τ . If for some 0 <
ξ < ω1 a Π

0
ξ(τ) set with presentation [P, (Pt)t∈T ] satisfies ∁ξ in (X, τ ′) then it

satisfies ∁ξ in (X, τ) as well.

Proof: We prove by induction on ξ that Cξ(X, τ, P ) ⊆ Cξ(X, τ ′, P ) (0 < ξ < ω1).
From this the statement follows.
For ξ = 1 we have τ ⊆ τ ′ and so C1(X, τ, P ) ⊆ C1(X, τ ′, P ). Suppose now

that the statement holds for ϑ < ξ and let ϑi ։ ξ. Since τ ⊆ τ ′ we also have
τ<
P ⊆ τ ′<P , τP(i) ⊆ τ ′P(i)

(i < ω) so

{

(X \ P, G):G ∈ τ<
P

}

⊆
{

(X \ P, G):G ∈ τ ′<P
}
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and by the induction hypothesis,

Cϑi

(

X,
∨

j<ω, j 6=i

τP(j) , P(i)

)

⊆ Cϑi

(

X,
∨

j<ω, j 6=i

τ ′P(j) , P(i)

)

.

This proves Cξ(X, τ, P ) ⊆ Cξ(X, τ ′, P ) and completes the proof. �

From now on in this section we work to prove the main lemma of Theorem 1.
The technique of the proof is to exploit the low Borel class Hurewicz test sets
appearing in the construction of a Π0ξ(τ) test set. For this we need some more

topologies.

Definition 28. Let 0 < ξ < ω1 and let [P, (Pt)t∈T ] be a Π
0
ξ(τ) set with presen-

tation which satisfies ∁ξ in (X, τ). We define the topologies

(2) τ(n) =
∨

i<n

τP(i) ∨
∨

n<i<ω

τ<
P(i)
(n < ω)

and

(3) τP (n) =
∨

i≤n

τP(i) ∨
∨

n<i<ω

τ<
P(i)
(n < ω).

Lemma 29. Let 0 < ξ < ω1, ϑi ։ ξ and let [P, (Pt)t∈T ] be a Π
0
ξ(τ) set with

presentation satisfying ∁ξ in (X, τ). Then for every n < ω, with the notation of
Definition 28, {P(n), τP (n)} satisfies the conditions of Theorem 21 in the Polish

space (X, τ(n)). Also for every n < ω, {P(n), τP (n)} is a Π
0
ϑn
(τ) topological

Hurewicz test pair in (X, τ). Moreover we have

τP (0)
< =

∨

i<ω

τ<
Pi

and τP (n+ 1)
< = τP (n) (n < ω).

Proof: Since [P, (Pt)t∈T ] satisfies ∁ξ, [P(n), (Pn⌢t)t∈T(n) ] satisfies ∁ϑn
in the

Polish space
(

X,
∨

i<ω, i6=n

τP(i)

)

.

Then by Proposition 27, [P(n), (Pn⌢t)t∈T(n) ] satisfies ∁ϑn
in the Polish space

(X, τ(n)). By (2) and (3) we have

τP (n) = τP(n) ∨
∨

i<n

τP(i) ∨
∨

n<i<ω

τ<
P(i)
= τ(n)P(n)
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so by Proposition 27, {P(n), τP (n)} satisfies the conditions of Theorem 21 in

the Polish space (X, τ(n)). So it is a Π0ϑn
(τ) topological Hurewicz test pair in

(X, τ(n)) hence by Lemma 16 in (X, τ), as well. Similarly,

τP (n+ 1)
< = τ<

P(n+1)
∨

∨

i<n+1

τP(i) ∨
∨

n+1<i<ω

τ<
P(i)
= τP (n) (n < ω)

and

τP (0)
< = τ<

P(0)
∨

∨

0<i<ω

τ<
P(i)
=

∨

i<ω

τ<
P(i)

,

which completes the proof. �

The next lemma is an application of our newly found Hurewicz test sets.

Lemma 30. Let 2 < ξ < ω1 and ϑi ։ ξ. Let [P, (Pt)t∈T ] be a Π
0
ξ(τ) set with

presentation which satisfies ∁ξ. Fix an n < ω. If A is a Σ0ϑ(τ) set where ϑ < ϑn+1

and A is τP (n)-meager in a τP (n)-open set G then

1. A is τP (n+1)-meager in G∩HX,P(n+1)(ϑ) if ξ = ξ′+1 for a limit ordinal ξ′;

2. A is τP (n+ 1)-meager in G if ξ = ξ′ + 1 for no limit ordinal ξ′.

Proof: By Lemma 29 we have {P(n+1), τP (n + 1)} is a Π
0
ϑn+1
(τ) topological

Hurewicz test pair in (X, τ) and τP (n + 1)
< = τP (n). So by Corollary 23.3 our

A cannot be of τP (n+ 1)-second category in G ∩HX,P(n+1)(ϑ) in case 1 or in G

in case 2. This completes the proof. �

In order to avoid Π0ϑ(τ) sets when 3 ≤ ϑ < ω1 we have to reduce complicated

sets to Π02(τ) sets. This is the motivation of the following concept.

Definition 31. Let T ⊆ ω<ω be a tree. We say that a subtree T ′ ⊆ T is even if

(4) t ∈ T ′, |t| odd =⇒
{

t||t|−1
⌢i: i < ω

}

∩ T ′ = {t} &
{

t⌢i: i < ω
}

∩ T 6= ∅ &
{

t⌢i: i < ω
}

∩ T ⊆ T ′.

We say that T ′ ⊆ T is even-complete if it is a maximal even subtree of T .
If T ′ ⊆ T is an even subtree, t ∈ T ′ \T(T ′) with |t| even then t+T ∈ T ′ denotes

the unique extension of t with |t+T | = |t|+ 1.

Our first observation immediately follows from the definition.

Lemma 32. With the notation of Definition 31, if T ′ ⊆ T is even-complete,
t ∈ T ′ and |t| is even T ′

t is an even-complete subtree of Tt.
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Lemma 33. For some 0 < ξ < ω1 let [P, (Pt)t∈T ] be a Π
0
ξ(τ) set with pre-

sentation. If T ′ ⊆ T is an even-complete subtree and x /∈ Pt (t ∈ T(T ′)) then
x /∈ P .

Proof: We prove the statement by induction on ξ. For ξ = 1 and ξ = 2 the
only even-complete subtree of T is T ′ = {∅} that is x /∈ P∅ = P , as stated.
Suppose now that 3 ≤ ξ and the statement holds for ϑ < ξ. By maximality we
have T ′ 6= ∅, hence there is a unique i < ω such that (i) ∈ T ′. By Lemma 32,
T ′

i⌢j is an even-complete subtree of Ti⌢j (j < ω, i⌢j ∈ T ) so by the induction

hypothesis x /∈ Pi⌢j (j < ω). That is x ∈ P(i) and so x /∈ P , which completes

the proof. �

Now we can prove the main result of the section.

Proposition 34. Let ξ be a successor ordinal such that 2 < ξ < ω1, say ξ = ξ′+1.
Let [P, (Pt)t∈T ] be a Π

0
ξ(τ) set with presentation which satisfies ∁ξ in (X, τ). For

every n < ω let An be a Π0ξ′(τ) set such that An ∩ P(n) = ∅ (n < ω). Then

P \
⋃

n<ω An 6= ∅.

Proof: Let ξn ≤ ξ′ be such that we have a presentation [An, (An
t )t∈T n ] of An as

a Π0ξn
(τ) set (n < ω). Let ϑi ։ ξ′. Take maps η1:ω → ω and η2:ω → ω<ω such

that
η = (η1, η2):ω →

⋃

n<ω

{n} × T n

is a bijection satisfying

(5) t, t′ ∈ T n, t ⊆ t′ =⇒ η−1(n, t) ≤ η−1(n, t′) (n < ω)

and

(6) η1(n) ≤ n (n < ω).

We construct inductively a basic τP (n)-open set Gn (n < ω) and an even-
complete subtree Fn ⊆ T n (n < ω) such that

clτP (n)(Gn+1) ⊆ Gn (n < ω);(7)

Gn ∩ P(n) = ∅ (n < ω);(8)

Gn ∩ An is τP (n)-meager (n < ω);(9)

if η2(n) ∈ F η1(n) \ T(F η1(n)) and |η2(n)| is even, then(10)

Gn ∩ A
η1(n)

η2(n)+F η1(n)⌢i
is τP (n)-meager (n, i < ω);

if η2(n) ∈ T(F η1(n)) then Gn ⊆ X \ A
η1(n)
η2(n)

(n < ω).(11)
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Since the topology τ<
P is finer than (or equals) τP (n) (n < ω), clτP (n)(Gn+1) ⊆ Gn

implies that clτ<
P
(Gn+1) ⊆ Gn (n < ω), so we have

⋂

n<ω Gn 6= ∅ by (7) and
⋂

n<ω Gn ⊆ P by (8). By Lemma 33, (11) gives

⋂

n<ω

Gn ⊆ P \
⋃

n<ω

An.

To start with, set Fn = {∅} (n < ω). In the following construction we will
successively grow the trees Fn, so a node can be terminal after some intermediate
step but not in the final tree. To be concrete, the mth step of the construction
will have two parts: in the first part we grow Fm at ∅ if and only if 2 < ξm;
while in the second part, with η(m) = (n, s), we grow Fn at s if and only if
s 6= ∅ and [An

s , (An
s⌢t)t∈T n

s
] is a Π0ϑ(τ) set with presentation where 2 < ϑ. We

will declare when a tree does not grow any more from a node, so that this node
remains terminal.
For every 0 < n < ω after completing the n − 1th step of the construction we

define the ordinal

ρn = sup
{

ϑ < ω1: ∃m < n ∃ s ∈ Fm \ {∅}
(

[Am
s , (Am

s⌢t)t∈T m
s
] is a Π0ϑ(τ) set with presentation

)}

if the sup is taken on a nonempty set, else we set ρn = 0. Observe that if
[Am

s , (Am
s⌢t)t∈T m

s
] is a Π0ϑ(τ) set with presentation for some m < n and s ∈

Fm \ {∅} then ϑ ≤ ϑs|{0}
= ϑ∅+F m < ξm. Since after the n − 1th step of the

construction Fm 6= {∅} holds only for finitely many m < ω and [Am, (Am
t )t∈T m ]

is a Π0ξm
(τ) set with presentation where ξm ≤ ξ′ (m < ω) we get ρn < ξ′

(0 < n < ω).
If ξ′ is a limit ordinal we will choose Gn (0 < n < ω) such that in addition

to (7) it will satisfy

(12) Gn ⊆ Gn−1 ∩HX,P(n)(ρn) (0 < n < ω).

We prove first that for every 0 < N < ω,

(13) if k, m < N, s ∈ Fm \ {∅} after the kth step of the construction

and Am
s is τP (k)-meager in Gk then Am

s is τP (N)-meager in GN .

First we show that Am
s is τP (k + 1)-meager in Gk+1. We apply Lemma 30 for

n = k, A = Am
s , G = Gk. If [A

m
s , (Am

s⌢t)t∈T m
s
] is a Π0ϑ(τ) set with presentation

then ϑ ≤ ρk+1. Thus if ξ′ is limit we have HX,P(k+1)(ρk+1) ⊆ HX,P(k+1)(ϑ) so
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by (7) if ξ′ is a successor and by (12) if ξ′ is a limit we get Am
s is τP (k+1)-meager

in Gk+1. By repeating the argument N − k − 1 times the statement follows.

We turn to the construction. For n = 0, by (5) and (6) we have η(0) = (0, ∅).
To find our G0 observe that X \A0 is a Σ0ξ′(τ) set containing P(0). By Lemma 29,

{P(0), τP (0)} satisfies the conditions of Theorem 21 in (X, τ(0)), in particular it

is a Π0ξ′(τ) topological Hurewicz test pair in (X, τ). By Theorem 21.1, P(0) and

hence X \ A0 is τP (0)
<-residual, by Corollary 23.2, X \ A0 is of τP (0)-second

category, that is A0 is τP (0)-meager in some nonempty basic τP (0)-open set G.

If A0 is Π0ϑ(τ) with 3 ≤ ϑ < ω1 we have A0 =
⋂

i<ω X \ A0(i), so for some

k0 < ω and nonempty basic τP (0)-open set G′ ⊆ G we have X \ A0(k0)
is τP (0)-

meager in G′. Put k⌢
0 i ∈ F 0 (i < ω). So if we take G0 ⊆ G′ then (10) holds for

n = 0 and (11) does not apply. Since P(0) is τP (0)-nowhere dense we can pass to

some basic τP (0)-open subset G0 ⊆ G′ such that G0 ∩ P(0) = ∅; so (8)–(11) are
satisfied for n = 0.

Else we have A0 is Π01(τ) or Π
0
2(τ). Since τP (0) is finer than τ , the set A0,

which is τP (0)-meager in G, is actually τP (0)-nowhere dense in G. In this case
choose the basic τP (0)-open set G0 so that G0 ⊆ G \ (P(0) ∪ A0) and F 0 does

not grow at all, that is η2(0) = ∅ ∈ T(F 0). Now (10) does not apply and (11)
holds; so we again have (8)–(11) for n = 0. This finishes the first part of the
construction for n = 0 and there is no second part.

Suppose that Gn (n < N) is already defined such that (8)–(13) hold for n < N
and (7) holds for n < N − 1; we find our GN . If ξ

′ is a limit ordinal by Propo-
sition 19.2 and Theorem 21.1, P(N) ⊆ HX,P(N)(ρN ) implies that HX,P(N)(ρN ) is

a τP (N)
<-residual τP (N)

<-open set. By Lemma 29, τP (N)
< = τP (N − 1) so

GN−1 is τP (N)
<-open hence GN−1 ∩ HX,P(N)(ρN ) 6= ∅. Thus by passing to a

basic τP (N)
<-open subset we can assume that GN−1 ⊆ HX,P(N)(ρN ). Then (12)

will hold for n = N if GN ⊆ GN−1.

Again, X \AN is a Σ0ξ′(τ) set containing P(N). By Lemma 29, {P(N), τP (N)}

satisfies the conditions of Theorem 21 in (X, τ(N)), it is a Π0ξ′(τ) topological

Hurewicz test pair, τP (N)
< = τP (N − 1) so GN−1 is τP (N)

<-open. By The-

orem 21.1, P(N) and hence X \ AN is τP (N)
<-residual in GN−1, so by Corol-

lary 23.2, X \ AN is of τP (N)-second category in GN−1, that is AN is τP (N)-
meager in some nonempty basic τP (N)-open set G ⊆ GN−1.

If [AN , (AN
t )t∈T N ] is not a Π01(τ) or a Π

0
2(τ) set with presentation then we

have AN =
⋂

i<ω X \AN
(i). So for some kN < ω and nonempty basic τP (N)-open

set G′ ⊆ G we have X \ AN
(kN )

is τP (N)-meager in G′. We put k⌢
N i ∈ FN ,

(i < ω). If [AN , (AN
t )t∈T N ] is a Π01(τ) or a Π

0
2(τ) set with presentation then we

set G′ = G, and FN does not grow at all so ∅ ∈ T(FN ).
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Since P(N) is τP (N)-nowhere dense, we can pass to some basic τP (N)-open

subset G′′ ⊆ G′ such that G′′ ∩ P(N) = ∅ and clτP (N)(G
′′) ⊆ GN−1. So (7)–(9)

hold for every basic τP (N)-open set GN ⊆ G′′. The first part on the N th step of
the construction is complete. We turn to the second part.

If η2(N) /∈ T(F η1(N)) then set GN = G′′. If |η2(N)| is odd neither (10) nor
(11) apply so the inductive step is complete. If |η2(N)| is even then (11) does
not apply so it remains to show (10). If η2(N) = ∅ then after the first part of

the η1(N)
th step of the construction we had that [Aη1(N), (A

η1(N)
t )t∈T η1(N) ] is

neither a Π01(τ) nor a Π
0
2(τ) set with presentation and

X \ A
η1(N)
(kη1(N)

)
= X \ A

η1(N)

∅+F η1(N)

is τP (η1(N))-meager in Gη1(N); hence Gη1(N)∩A
η1(N)

∅+F η1(N)⌢i
is τP (η1(N))-meager

(i < ω). By (6) we have η1(N) < N so (13) for k = m = η1(N) and s =

∅+F η1(N)⌢i gives that A
η1(N)

∅+F η1(N)⌢i
is τP (N)-meager in Gη1(N) hence also in GN

(i < ω), as required.

If η2(N) /∈ T(F η1(N)), |η2(N)| is even but η2(N) 6= ∅ we show that η2(N) will

never be a node of F η1(N). Let u be the terminal node of F η1(N) on the branch
of η2(N) in T η1(N). By (5) there is an m < N such that η1(m) = η1(N) and

η2(m) = u. After the mth step of the construction u remained a terminal node

of F η1(N), that is according to our growing convention F η1(N) never grows from

u so η2(N) will never be a node of F
η1(N). So again neither (10) nor (11) apply

and the inductive step is complete.

If η2(N) ∈ T(F η1(N)) and η2(N) = ∅ then by (6) and by our growing conven-

tion [Aη1(N), (A
η1(N)
t )t∈T η1(N) ] is a Π

0
1(τ) or a Π

0
2(τ) set with presentation, in

the η1(N)
th step of the construction by (11) we obtained Gη1(N) ⊆ X \Aη1(N) so

G′′ ⊆ X \Aη1(N), as well. So (10) does not apply and (11) holds, thus GN = G′′

completes the inductive step.

If η2(N) ∈ T(F η1(N)), η2(N) 6= ∅ then we do the following. Let k < ω be such
that η1(k) = η1(N) and η2(k) = η2(N)||η2(N)|−2. By (5) we have k < N . Since

η2(N) 6= ∅, [Aη1(N), (A
η1(N)
t )t∈T η1(N) ] is neither a Π

0
1(τ) nor a Π

0
2(τ) set with

presentation. We had (10) in the kth step of the construction so by (13) for k,

m = η1(N) and s = η2(N), G
′′ ⊆ GN−1 implies that A

η1(N)
η2(N)

is τP (N)-meager in

G′′. If [A
η1(N)
η2(N)

, (A
η1(N)
η2(N)⌢t

)
t∈T

η1(N)

η2(N)

] is a Π01(τ) or a Π
0
2(τ) set with presentation

then since τP (N) is finer than τ , A
η1(N)
η2(N)

is actually τP (N)-nowhere dense in G′′.

So we can find a nonempty basic τP (N)-open set GN ⊆ G′′ \ A
η1(N)
η2(N)

. We do not
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grow F η1(N) from the node η2(N), so (10) does not apply and (11) holds.

If [A
η1(N)
η2(N)

, (A
η1(N)
η2(N)⌢t

)
t∈T

η1(N)

η2(N)

] is a Π0ϑ(τ) set with presentation for some 3 ≤

ϑ < ξ′ since A
η1(N)
η2(N)

=
⋂

i<ω X \ A
η1(N)
η2(N)⌢i

, for some lN < ω and nonempty basic

τP (N)-open set GN ⊆ G′′ we have X \ A
η1(N)
η2(N)⌢lN

is τP (N)-meager in GN . We

put η2(N)
⌢l⌢N i ∈ F η1(N), (i < ω), then (10) holds and (11) does not apply. This

completes the second part of the inductive step and finishes the proof. �

6. Constructing coverings

In order to proceed we need to construct at least one concreteΠ0ξ(τ) topological

Hurewicz test pair for every ξ < ω1. We do this in the Polish space (C, τC ).

Definition 35. We set (C1, τC1) = (C, τC ),

P1 =
{

x ∈ C1: ∀m ∈ ω (x(m) = 1)
}

,

T1 = {∅} and P 1∅ = P1. Suppose that the spaces (Cϑ, τCϑ
) and the Π0ϑ(τCϑ

) sets

with presentation [Pϑ, (Pϑ
t )t∈Tϑ

] are defined for every ϑ < ξ. Then with ϑi ։ ξ
let

Cξ =
∏

i<ω

Cϑi
, τCξ

=
∏

i<ω

τCϑi
,

Pξ = {x ∈ Cξ : ∀ i < ω (x(i, .) ∈ Cϑi
\ Pϑi

)},(14)

Tξ = {n⌢t: t ∈ Tϑn
, n < ω},(15)

P
ξ
n⌢t =

∏

i<n

Cϑi
× Pϑn

t ×
∏

n<i<ω

Cϑi
(t ∈ Tϑn

, n < ω).(16)

Proposition 36. Let 0 < ξ < ω1 and ϑi ։ ξ. The Polish space (Cξ , τCξ
) is

homeomorphic to (C, τC ). TheΠ
0
ξ(τ) set with presentation [Pξ , (P

ξ
t )t∈Tξ

] satisfies

∁ξ in (Cξ , τCξ
), so it is a Π0ξ(τCξ

) topological Hurewicz test pair in (Cξ , τCξ
). We

have τ<
Pξ
=

∏

i<ω τPϑi
and

τPξ
= τ<

Pξ
[{Uξ,n:n < ω}] (1 < ξ < ω1)

where

(17)

Uξ,n =
∏

i<n

(

Cϑi
\ Pϑi

)

× Pϑn
×

∏

n<i<ω

Cϑi

⊆
∏

i<n

Cϑi
× Cξn

×
∏

n<i<ω

Cϑi
= Cξ (1 < ξ < ω1, n < ω).
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Proof: It is obvious that (Cξ , τCξ
) is homeomorphic to (C, τC ). We prove the

other statements by induction on ξ. For ξ = 1, P1 is a single point so it is τ -
nowhere dense in C1, as stated. Remember that by Definition 17, τP = τ<

P = τ .
Let now 1 < ξ < ω1 and suppose that the statements are true for ϑ < ξ. Then

by definition,

τ<
Pξ
=

∨

i<ω

τ
P ξ

(i)

=
∏

i<ω

τPϑi
,

as stated.
Let now (D, G) ∈ Cξ(Cξ , τCξ

, Pξ). If D = X \ Pξ and G ∈ τ<
Pξ
is nonempty

then G is nontrivial only on finitely many coordinates so it intersects X \ Pξ =
⋃

i<ω P ξ
(i)
. If for some i < ω,

(D, G) ∈ Cϑi

(

Cξ ,
∨

j<ω,j 6=i

τ
P ξ

(j)

, P ξ
(i)

)

then by Proposition 26 for P = P ξ
(i)
, (X, τ) = (Cϑi

, τCϑi
) and

(Y, σ) =

(

∏

j<ω,j 6=i

Cϑj
,

∏

j<ω,j 6=i

τPϑj

)

,

D is nontrivial only on the Cϑi
coordinate and G =

∏

j<ω Gj where Gj = Cϑj

except for finitely many j < ω, Gj is basic τPϑj
-open (j ∈ ω\{i}) while Gi is basic

τCϑi
-open. Since [Pϑi

, (Pϑi
t )t∈Tϑi

] satisfies ∁ϑi
in (Cϑi

, τCϑi
) by the induction

hypothesis, we have PrCϑi
(D) ∩ PrCϑi

(G) 6= ∅, which implies D ∩ G 6= ∅. So

[Pξ , (P
ξ
t )t∈Tξ

] indeed satisfies ∁ξ in (Cξ , τCξ
).

Finally we have P ξ
(n)

∩
⋂

i<n(Cξ \ P ξ
(i)
) = Uξ,n, so by Definition 17,

τPξ
= τ<

Pξ
[{Uξ,n:n < ω}].

This completes the proof. �

Now we have everything to give the proof of Theorem 1.

Proof of Theorem 1 for ξ > 2: Fix our ξ, say ξ = ξ′ + 1. First we construct
Φ = Φξ for (X, τ) = (Cξ , τCξ

) and P = Pξ ; note that this is a valid setting since

by Proposition 36, [Pξ , (P
ξ
t )t∈Tξ

] satisfies ∁ξ in (Cξ , τCξ
) so by Proposition 25,

Corollary 23.5 holds and gives that Pξ is a properΠ
0
ξ(τ) set. For everyB ∈ S0ξ (Pξ)

fix a decomposition B =
⋃

j<ω Bj where Bj is Π
0
ξ′(τCξ

) (j < ω). Since the class
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Π0ξ′(τCξ
) has the separation property (see e.g. [2, (22.16) Theorem]) we can take

a sequence (∆n(B))n<ω ⊆ ∆0ξ′(τCξ
) such that

(18)
⋃

i≤n

Bi ⊆ ∆n(B) ⊆ Cξ \
⋃

i≤n

P
ξ
(i)
(n < ω).

Set

(19) Φξ(B) =
⋂

m<ω

⋃

m≤n<ω

∆n(B).

It is clear that Φξ(B) is Π
0
ξ(τCξ

) and (18) implies B ⊆ Φξ(B) ⊆ Pξ . It remains

to show that if Bi ∈ S0ξ (Pξ) with its fixed decomposition Bi =
⋃

j<ω Bi
j (i < ω)

then we can find a point in Pξ \
⋃

i<ω Φξ(B
i).

We apply Proposition 34 for An =
⋃

i≤n∆n(B
i) (n < ω). We obtain Pξ \

⋃

n<ω An 6= ∅. Since

Φξ(B
i) ⊆

⋃

i≤n<ω

∆n(B
i) ⊆

⋃

n<ω

An (i < ω),

we have Pξ \
⋃

i<ω Φξ(B
i) 6= ∅, which completes the proof of the special case.

Let now (X, τ) and P be arbitrary. By Proposition 36, (Cξ , τCξ
) is homeo-

morphic to (C, τC ) so by Theorem 10 we can take a continuous one-to-one map
ϕ: (Cξ , τCξ

)→ (X, τ) such that ϕ−1(P ) = Pξ . For B ∈ S0ξ (P ) let

Φ(B) = (P \ ϕ(Pξ)) ∪ ϕ(Φξ(ϕ
−1(B))).

Since P \ ϕ(Pξ) = P ∩ (X \ ϕ(Cξ)) is a Π
0
ξ(τ) set and homeomorphisms preserve

the Borel class of sets this definition makes sense and fulfills the requirements.
�

As we mentioned in the introduction we think that it is independent whether
Theorem 1 holds for limit ordinals or not. For limit ξ the argument of the proof
above brakes down in (19) since the Φξ(B) defined there is merely Π

0
ξ+1(τCξ

).

To have a Π0ξ(τCξ
) cover instead, the sets ∆n(B) should be of lower Borel class

than what we get from the separation property. So we get back to the problem
whether Theorem 6 can be extended to the entire Borel hierarchy or the answer to
Question 4 can be consistently positive. As we mentioned above these problems
seem to be open.
Finally we would like to draw the attention of the reader to one more aspect

of Theorem 1. One could say that Theorem 1 is trivial if the Σ0ξ(τCξ
) subsets
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of Pξ (which are all τPξ
|Pξ
-meager by Corollary 23.2, Proposition 19.3 and Defi-

nition 15.3) could be covered by a τPξ
|Pξ
-meager Π0ξ(τCξ

) subset of Pξ . Then a

category argument would give that

Pξ \
⋃

i<ω

Φ(Bi) 6= ∅ (Bi ∈ S0ξ (Pξ) (i < ω)).

However, this is not the case even for ξ = 3 and (X, τ) = (C, τC ) as illustrated by
the following result (see [4, Proposition 19]).

Proposition 37. There is a Π03(τC ) topological Hurewicz test pair {PL, τPL
}

and a Σ03(τC) set A ⊆ PL such that if B is Π03(τC) and A ⊆ B then B ∩ PL is

τPL
|PL
-residual in PL.
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[4] Mátrai T., Hurewicz tests: separating and reducing analytic sets on the conscious way,
PhD Thesis, Central European University, 2005.
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