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Embedding into discretely absolutely star-Lindelöf spaces

Yan-Kui Song

Abstract. A space X is discretely absolutely star-Lindelöf if for every open cover U of
X and every dense subset D of X, there exists a countable subset F of D such that F

is discrete closed in X and St(F,U) = X, where St(F,U) =
S
{U ∈ U : U ∩ F 6= ∅}.

We show that every Hausdorff star-Lindelöf space can be represented in a Hausdorff
discretely absolutely star-Lindelöf space as a closed subspace.
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1. Introduction

By a space, we mean a topological space. A space X is absolutely star-Lindelöf
(see [1]) (discretely absolutely star-Lindelöf )(see [10], [11]) if for every open cover
U ofX and every dense subset D ofX , there exists a countable subset F ofD such
that St(F,U) = X (F is discrete and closed in X and St(F,U) = X , respectively),
where St(F,U) =

⋃
{U ∈ U : U ∩ F 6= ∅}.

A space X is star-Lindelöf (see [4], [7] under different names) (discretely star-
Lindelöf ) (see [9], [15]) if for every open cover U of X , there exists a count-
able subset (a countable discrete closed subset, respectively) F of X such that
St(F,U) = X . It is clear that every separable space and every discretely star-
Lindelöf space are star-Lindelöf as well as every space of countable extent (in
particular, every countably compact space or every Lindelöf space).
A family of subsets is centered (linked) provided every finite subfamily (ev-

ery two elements, respectively) has nonempty intersection and a family is called
σ-centered (σ-linked) if it is the union of countably many centered subfami-
lies (linked subfamilies, respectively). A space X is centered-Lindelöf (linked-
Lindelöf ) (see [2], [3]) if every open cover U of X has a σ-centered (σ-linked)
subcover.
From the above definitions, it is not difficult to see that every discretely abso-

lutely star-Lindelöf space is absolutely star-Lindelöf, every discretely absolutely
star-Lindelöf space is discretely star-Lindelöf, every absolutely star-Lindelöf space
is star-Lindelöf, every star-Lindelöf space is centered-Lindelöf, and every centered-
Lindelöf space is linked-Lindelöf.
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Bonanzinga and Matveev [2] proved that every Hausdorff (regular, Tychonoff)
linked-Lindelöf space can be represented a closed subspace in a Hausdorff (regular,
Tychonoff, respectively)star-Lindelöf space. They asked if every Hausdorff (reg-
ular, Tychonoff) linked-Lindelöf space can be represented a closed Gδ-subspace
in a Hausdorff (regular, Tychonoff, respectively) star-Lindelöf space. The author
[10] gave a positive answer to their question. The author [11] showed that every
Hausdorff (regular, Tychonoff) linked-Lindelöf space can be represented a closed
Gδ-subspace in a Hausdorff (regular, Tychonoff, respectively) absolutely star-
Lindelöf space. The author [12] showed that every separable Hausdorff (regular,
Tychonoff, normal) star-Lindelöf space can be represented in a Hausdorff (regu-
lar, Tychonoff, normal, respectively) discretely absolutely star-Lindelöf space as a
closed Gδ-subspace. Thus, it is natural for us to consider the following question:

Question. Is it true that every Hausdorff (regular, Tychonoff ) linked-Lindelöf
space can be represented a closed subspace in a Hausdorff (regular, Tychonoff,
respectively) discretely absolutely star-Lindelöf space? And can it be embedded
as a closed Gδ-subspace?

The purpose of this note is to give a construction showing that every Hausdorff
linked-Lindelöf space can be represented in a Hausdorff discretely absolutely star-
Lindelöf space as a closed subspace, which gives a positive answer to the question
in the class of Hausdorff spaces.

Throughout this paper, the cardinality of a set A is denoted by |A|. Let ω
denote the first infinite cardinal. For a cardinal κ, let κ+ be the smallest cardinal
greater than κ. As usual, a cardinal is the initial ordinal and an ordinal is the set
of smaller ordinals. When viewed as a space, every cardinal has the usual order
topology. For each pair of ordinals α, β with α < β, we write [α, β] = {γ : α ≤
γ ≤ β} and (α, β) = {γ : α < γ < β}. Other terms and symbols that we do not
define will be used as in [5].

2. Embedding into discretely absolutely star-Lindelöf spaces

First, we show that every Hausdorff star-Lindelöf space can be represented in
a Hausdorff discretely absolutely star-Lindelöf space as a closed subspace.

Recall the definition of the Alexandorff duplicate A(X) of a space X . The
underlying set of A(X) is X × {0, 1}; each point of X × {1} is isolated and a
basic neighborhood of a point 〈x, 0〉 ∈ X × {0} is of the from (U × {0}) ∪ ((U ×
{1})\ {〈x, 1〉}), where U is a neighborhood of x in X . It is well-known that A(X)
is Hausdorff (regular, Tychonoff, normal) iff X is, A(X) is compact iff X is and
A(X) is Lindelöf iff X is.

Recall from [6] that a space X is absolutely countably compact (= acc) if for
every open cover U of X and every dense subset D of X , there exists a finite
subset F of D such that St(F,U) = X . It is not difficult to show that every
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Hausdorff absolutely countably compact space is countably compact (see [6]). In
our construction, we use the following lemma.

Lemma 2.1 ([8], [14]). If X is countably compact, then A(X) is acc. Moreover,
for any open cover U of A(X), there exists a finite subset F of X × {1} such
that A(X) \ St(F,U) ⊆ X × {0}) is a finite subset consisting of isolated points of
X × {0}.

Theorem 2.2. Every Hausdorff star-Lindelöf space can be represented in a Haus-

dorff discretely absolutely star-Lindelöf space as a closed subspace.

Proof: If |X | ≤ ω, then X is separable; the author [12] showed that every
separable Hausdorff (regular, Tychonoff, normal) space can be represented in
Hausdorff (regular, Tychonoff, normal respectively) discretely absolutely star-
Lindelöf space as a closed Gδ-subspace.
Let X be a star-Lindelöf space with |X | > ω, let T be X with the discrete

topology and let

Y = T ∪ {∞}, where ∞ /∈ T

be the one-point Lindelöfication of T . Pick a cardinal κ with κ ≥ |X |. Define

S(X, κ) = X ∪ (Y × κ+).

We topologize S(X, κ) as follows: Y × κ+ has the usual product topology and is
an open subspace of S(X, κ), and a basic neighborhood of a point x of X takes
the form

G(U, α) = U ∪ (U × (α, κ+)),

where U is a neighborhood of x in X and α < κ+. Then, it is easy to see that X
is a closed subset of S(X, κ) and S(X, κ) is Hausdorff if X is Hausdorff.
Let

R(X) = A(S(X, κ)) \ (X × {1}).

Then R(X) is Hausdorff if X is Hausdorff.
We show that R(X) is discretely absolutely star-Lindelöf. To this end, let U

be an open cover of R(X). Without loss of generality, we assume that U consists
of basic open sets of R(X). Let S be the set of all isolated points of κ+ and let

D1 = ((T × S)× {0}) ∪ ((T × κ+)× {1}) and D2 = ({∞} × κ+)× {1}.

Set D = D1 ∪ D2. Then, every element of D is isolated in R(X), and so every
dense subset of R(X) contains D. Thus, it is sufficient to show that there exists
a countable subset F of D such that F is discrete closed in R(X) and St(F,U) =
R(X).
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For each x ∈ X , there exists a Ux ∈ U such that 〈x, 0〉 ∈ Ux, Hence there exist
αx < κ+ and an open neighborhood Vx of x in X such that

(Vx × {0}) ∪ A(Vx × (αx, κ+)) ⊆ Ux.

If we put V = {Vx : x ∈ X}, then V is an open cover of X , hence there exists a
countable subset F ′

1 of X such that X = St(F ′
1,V), since X is star-Lindelöf. We

pick α0 > sup{αx : x ∈ X}. Let

X1 = (X × {0}) ∪ A(T × [α0, κ
+));

X2 = A(T × [0, α0]) and X2 = A({∞} × κ+).

Then,
X = X1 ∪ X2 ∪ X3.

Let
F1 = (F

′
1 × {α0})× {1}.

Then, F1 is a countable subset of D1 and

X1 ⊆ St(F1,U),

since Ux ∩ F1 6= ∅ for each x ∈ X . Since F1 ⊆ D1 and F1 is countable, F1 is
closed in R(X) by the construction of the topology of R(X).
On the other hand, since Y is Lindelöf and [0, α0] is compact, Y × [0, α0] is

Lindelöf, hence X1 = A(Y × [0, α0]) is Lindelöf. For each α ≤ α0 there exists a
Uα ∈ U such that 〈〈∞, α〉, 0〉 ∈ Uα, hence there exists an open neighborhood Vα

of α in κ+ and an open neighborhood V ′
α of ∞ in Y such that

A(V ′
α × Vα) \ (〈〈∞, α〉, 1〉) ⊆ Uα.

Let V ′ = {Vα : α ≤ α0}. Then, V
′ is an open cover of [0, α0]. Hence, there

exists a finite subcover Vα1 , Vα2 , . . . Vαn
, since [0, α0] is compact. Let

T1 =
⋃

{T \ V ′
αi
: i ≤ n}.

Then, T1 is a countable subset of T . For each i ≤ n, we pick xi ∈ D1 ∩ Uαi
. Let

F ′
2 = {xi : i ≤ n}. Then, F ′

2 is a finite subset of D1 and

(({∞} × [0, α0])× {0}) ∪ A((T \ T1)× [0, α0]) ⊆ St(F
′
2,U).

For each t ∈ T1, since {t}× [0, α0] is compact, A({t}× [0, α0]) is compact as well,
hence there exists a finite subset Ft of D1 such that

A({t} × [0, α0]) ⊆ St(Ft,U).
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Let F ′′
2 =

⋃
{Ft : t ∈ T1}. Then, F ′′

2 is countable, since T1 is countable. Since

F ′′
2 ∩ A({α} × Y ) is countable for each α < κ+ and F ′′

2 ∩ A({κ+} × {t}) is finite
for each t ∈ T , F ′′

2 is closed in R(X) by the construction of the topology of R(X).
By the definition of F ′′

2 , we have

A(T1 × [0, α0]) ⊆ St(F
′′
2 ,U).

Then, F2 = F ′
2∪F ′′

2 is a countable closed subset of D2, since F ′
1 and F ′′

2 are closed
in R(X), and

X2 ∪ (({∞} × [0, α0])× {0}) ⊆ St(F2,U).

Finally, we show that there exists a finite subset F3 of D such that X3 ⊆
St(F3,U). Since {∞} × κ+ is countably compact, then, by Lemma 2.1, there
exists a finite subset F ′

3 ⊆ ({∞} × κ+)× {1} such that

E = X3 \ St(F
′
3,U) ⊆ ({∞} × κ+)× {0} is a finite subset

and each point of E is an isolated point of ({∞} × κ+) × {0}. For each point
x ∈ E, there exists a Ux ∈ U such that x ∈ Ux. For each point x ∈ E, pick
dx ∈ D ∩ Ux. Let F ′′

3 = {dx : x ∈ E}; then F ′′
3 is a finite subset of D and

E ⊆ St(F ′′
3 ,U). If we put F3 = F ′

3 ∪ F ′′
3 , then F3 is a finite subset of D and

X3 ⊆ St(F3,U).

If we put F = F1 ∪ F2 ∪ F3, then F is a countable subset of D such that
St(F,U) = R(X). Since F1 and F2 are closed in R(X), F3 is finite, and each
point of F is isolated, F is discrete closed in X , which completes the proof. �

Since every discretely absolutely star-Lindelöf space is discretely star-Lindelöf,
the next corollary follows from Theorem 2.2.

Corollary 2.3. Every Hausdorff star-Lindelöf space can be represented in a

Hausdorff discretely star-Lindelöf space as a closed subspace.

Since every discretely absolutely star-Lindelöf space is absolutely star-Lindelöf,
the next corollary follows from Theorem 2.2.

Corollary 2.4. Every Hausdorff star-Lindelöf space can be represented in a

Hausdorff absolutely star-Lindelöf space as a closed subspace.

Bonanzinga and Matveev [2] proved that every Hausdorff (regular, Tychonoff)
linked-Lindelöf space can be represented a closed subspace in Hausdorff (regu-
lar, Tychonoff, respectively) star-Lindelöf space. Thus, we have the following
corollary.
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Corollary 2.5. Every Hausdorff linked-Lindelöf space can be represented in a

Hausdorff discretely absolutely star-Lindelöf space as a closed subspace.

We have the following two propositions on the separation of Theorem 2.2.

Proposition 2.6. If X is locally countable (i.e., each point of X has a neigh-
borhood U with |U | ≤ ω) and Tychonoff, then S(X, κ) is Tychonoff (hence, R(X)
is Tychonoff ).

Proof: Assume that X is locally countable, Tychonoff and let x ∈ X . Since a
locally countable, Tychonoff space is zero-dimensional, x has a neighborhood base
U(x) in X consisting countable, open-closed sets in X . If U ∈ U(x), then the set

G(U, α) = U ∪ (U × (α, κ+))

is open-closed in S(X, κ) for each α < κ+. Hence, x has a neighborhood base in
S(X, κ) consisting of open-closed sets, which implies S(X, κ) is Tychonoff. �

Proposition 2.7. If X is not locally countable, then S(X, κ) is not regular
(hence, R(X) is not regular).

Proof: If X is not locally countable, then there exists a point x ∈ X which has
no countable neighborhood in X . Let U(x) be a neighborhood base of x in X . If
U ∈ U and α < κ+, then the closure of G(U, α) in S(X, κ) contains 〈∞, γ〉 for
each γ > α by construction of Y . This means that for any U, V ∈ U(x) and any
α, β < κ+,

〈∞, γ〉 ∈ clS(X,κ)G(U, α) \ G(V, β)

for each γ > α. Hence, S(X, κ) is not regular. �

By Theorem 2.2 and Proposition 2.6, we have the following theorem:

Theorem 2.8. Every locally-countable, star-Lindelöf Tychonoff space can be

represented in a discretely absolutely star-Lindelöf Tychonoff space as a closed

subspace.

Remark 1. In Theorem 2.2, even if X is locally-countable normal, R(X) need not
be normal. Indeed, X×{0} and A({∞}×κ+) are disjoint closed subsets of R(X)
that cannot be separated by disjoint open subsets of R(X). Thus, the author
does not know if every normal star-Lindelöf space can be represented in a normal
discretely absolutely star-Lindelöf space as a closed subspace.

Remark 2. From Theorem 2.2, it is not difficult to see that X × {0} is not a
closed Gδ subset of R(X). Thus, the author does not know if every Hausdorff
(regular, Tychonoff) star-Lindelöf space can be represented in a Hausdorff (regu-
lar, Tychonoff, respectively) discretely absolutely star-Lindelöf space as a closed
Gδ-subspace.
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References
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