REBECCA WALO OMANA

Abstract. In this paper we show some results of multiplicity and existence of signchanging solutions using a mountain pass theorem in ordered intervals, for a class of quasi-linear elliptic Dirichlet problems. As a by product we construct a special pseudogradient vector field and a negative pseudo-gradient flow for the nondifferentiable functional associated to our class of problems.

Keywords: sign-changing, mountain-pass theorem, ordered intervals Classification: 35J25, 35J65

1. Introduction

Let $\Omega \subset \mathbb{R}^N$ (N > 1) be an open and bounded domain with sufficiently smooth boundary $\partial \Omega$. We consider a quasi-linear elliptic boundary value problems of the form:

$$(P_{\lambda}) \qquad \qquad \operatorname{div}(A(x,u)\nabla u) = f(\lambda, x, u), \quad x \in \Omega, \\ u = 0, \qquad x \in \partial\Omega, \end{cases}$$

where $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function (i.e., is measurable with respect to $x \in \Omega$ for all $(\lambda, s) \in \mathbb{R}^2$ and continuous in (λ, s) for almost every $x \in \Omega$), such that $f(\lambda, x, 0) = 0$ for almost every (in short a.e.) $x \in \Omega, \lambda \in \mathbb{R}$, and $f(\lambda, x, s)s > 0$ for $s \neq 0$. We suppose that f satisfies

- (f₁) for every bounded set $\Lambda \subset (0, \infty)$ and for $2 < r < 2^*$, $|f(\lambda, x, u)| \leq C(1 + |u|^r)$ for all $\lambda \in \Lambda$, and a.e. $x \in \Omega$,
- (f₂) there exist $\theta > 2$, M > 0 such that $0 < \theta F(\lambda, x, u) \le uf(\lambda, x, u)$ for all $|u| \ge M, \lambda \in \Lambda$ and a.e. $x \in \Omega$, where $F(\lambda, x, u) = \int_0^u f(\lambda, x, s) ds$,

and that there exist constants $0 < \alpha < \beta$ such that

(f₃) $\lim_{s\to 0} \frac{f(\lambda, x, s)}{s} > \beta \mu_1$ uniformly in $(\lambda, x) \in \mathbb{R}^+ \times \Omega$,

(f₄) $\limsup_{s\to\infty} \frac{f(\lambda, x, s)}{s} < \alpha \mu_1$ uniformly in $(\lambda, x) \in \mathbb{R}^+ \times \Omega$,

where $\mu_1 > 0$ is the first eigenvalue of the Laplacian operator (with Dirichlet condition).

Let $A:\Omega\times\mathbb{R}\to\mathbb{R}$ be a Carathéodory function such that

- (A₁) $|A(x, u)| \leq \beta$, for every $u \in \mathbb{R}$ and a.e. $x \in \Omega$,
- (A₂) $\forall (s,\xi) \in \mathbb{R} \times \mathbb{R}^N, A(x,s)\xi \cdot \xi \ge \alpha |\xi|^2$,
- (A₃) there exists a continuous function $\omega : \mathbb{R}^+ \to \mathbb{R}$ such that $\omega(0) = 0$, $\int_0^\infty \frac{ds}{\omega(s)} = +\infty$ and $|A(x,s) A(x,t)| \le \omega(|s-t|)$, for s and $t \in \mathbb{R}$,
- (A₄) the function $u \to A(x, u)$ has continuous and bounded derivative for a.e. $x \in \Omega$, and there exists $u_0 > 0$ such that A(x, u) is nondecreasing in $u \in [0, u_0]$.

We can consider the matrix $A(x, u) = (a_{ij}(x, u)), i, j = 1, 2, ..., N$, with Carathéodory coefficients $a_{ij} : \Omega \times \mathbb{R} \to \mathbb{R}$ such that $a_{ij} = a_{ji}$ and $s \mapsto a_{ij}(x, s)$ is C^1 for a.e. $x \in \Omega$, $a_{ij}(x, u)$ and $\frac{\partial a_{ij}}{\partial s}(x, s) \in L^{\infty}(\Omega \times \mathbb{R}, \mathbb{R})$.

The problem (P_{λ}) has been extensively studied in semilinear case, including the case A = 1, see [1]–[6], by means of bifurcation, variational methods, subsolution and supersolution method according to the behavior of the function f(see Ambrosetti at al. [4]–[6] for related topics). In this case, the existence of multiple and sign-changing solutions has been considered by many authors (cf. Li Shujie and Wang [15], Dancer and Du Yihon [12], Li Shujie and Zang Zhitao [17], Alama and Del Pino [1], and references therein). However, it seems that very few results have been reported on the quasi-linear case (see for instance [7] and [8]), and at least to the best of our knowledge, sign-changing solutions have not been considered yet.

Our purpose is to contribute to some nontrivial and sign-changing solutions for the problem (P_{λ}) , when f satisfies $(f_1)-(f_4)$. The main difficulty in this problem lies in deriving a min-max critical value for the Euler functional associated to (P_{λ}) , since this functional is continuous, but may not be Lipschitz continuous and therefore nondifferentiable. In order to overcome this difficulty, we use some technical tools used by Struwe [17] for nondifferentiable functionals in Banach spaces. We also use a mountain-pass theorem in ordered intervals, in the spirit of Li Shujie and Wang [15], and differential equations theory in Banach spaces to define a critical point value and to show the existence of sign-changing solutions. Our results generalize or improve many results obtained for C^1 functionals and for nondifferentiable functionals in [5], [15] and [7], as shown in Theorems 5, 7 and Remark 6.

2. Main result

Let us consider the functional $J_{\lambda}: W_0^{1,2}(\Omega) \to \mathbb{R}$ defined by

$$J_{\lambda}(u) = \frac{1}{2} \int_{\Omega} A(x, u) |\nabla u|^2 \, dx - \int_{\Omega} F(\lambda, x, u) \, dx.$$

The functional J_{λ} has been considered in [7] by Arcoya and Boccardo, and in [9] by Artola and Boccardo, where it has been shown that J_{λ} has a directional derivative

$$J'_{\lambda}(u)(v)$$
 at each $u \in W_0^{1,2}(\Omega)$ along any direction $v \in W_0^{1,2}(\Omega) \cap L^{\infty}(\Omega)$, with

$$J_{\lambda}'(u)(v) = \int_{\Omega} A(x,u) \nabla u \nabla v \, dx + \int_{\Omega} \frac{1}{2} A_{u}'(x,u) |\nabla u|^{2} v \, dx - \int_{\Omega} f(\lambda, x, u) v \, dx,$$

where $A'_u(x, u) = \frac{\partial}{\partial u} A(x, u)$. Clearly for fixed $u \in W_0^{1,2}(\Omega)$, the function $J'_\lambda(u)(v)$ is linear in $v \in W_0^{1,2}(\Omega) \cap L^\infty(\Omega)$, and for every fixed direction $v \in W_0^{1,2}(\Omega) \cap L^\infty(\Omega)$, $J'_\lambda(u)(v)$ is continuous in $u \in W_0^{1,2}(\Omega)$. Hence, a critical point of $J_\lambda(u)$ is a function $u \in W_0^{1,2}(\Omega)$ such that $J'_\lambda(u)(v) = 0$ for every $v \in W_0^{1,2}(\Omega) \cap L^\infty(\Omega)$. Therefore, for every $\lambda \in \Lambda$, a nontrivial critical point of J_λ is a nontrivial solution of the boundary problem

$$(P'_{\lambda}) \qquad -\operatorname{div}(A(x,u)\nabla u) + \frac{1}{2}A'_{u}(x,u)|\nabla u|^{2} = \frac{\partial}{\partial u}F(\lambda,x,u) = f(\lambda,x,u).$$

For $u \in W_0^{1,2}(\Omega)$, and in this case for a solution of (P'_{λ}) , we consider $u \in W_0^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ such that

$$\int_{\Omega} A(x,u) \nabla u \nabla v \, dx + \frac{1}{2} \int_{\Omega} A'_u(x,u) |\nabla u|^2 v \, dx = \int_{\Omega} f(\lambda, x, u) v \, dx,$$

for all $v \in W_0^{1,2}(\Omega) \cap L^{\infty}(\Omega)$.

Let us consider the space $Y = W_0^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ endowed with the norm $\|\cdot\|_{\infty}$, and the set

$$M = \Big\{ u \in Y \setminus \{0\} : \int_{\Omega} A'_u(x, u) |\nabla u|^2 v \, dx = 0, \forall v \in Y \Big\}.$$

On $M, J'_{\lambda}(u)(v)$ has the form

$$J'_{\lambda}(u)(v) = \int_{\Omega} A(x, u) \nabla u \nabla v \, dx - \int_{\Omega} f(\lambda, x, u) v \, dx,$$

for all $u \in Y$. From (A₁)–(A₂) and (f₁), a solution of $J'_{\lambda}(u)(v) = 0$ is a weak solution of the boundary value problem (see also [9])

$$\operatorname{div}(A(x,u)\nabla u) = f(\lambda, x, u), \quad x \in \Omega,$$
$$u = 0, \qquad x \in \partial\Omega.$$

Indeed, for all $h \in W^{-1,2}(\Omega)$ (the dual space of $W_0^{1,2}(\Omega)$), a weak solution of

$$div(A(x, u)\nabla u) = h(x), \quad x \in \Omega,$$
$$u = 0, \qquad x \in \partial\Omega,$$

is a function $u \in W_0^{1,2}(\Omega)$ such that

$$\int_{\Omega} A(x,u) \nabla u \nabla v \, dx = \int_{\Omega} h(x) v \, dx, \quad \forall v \in W_0^{1,2}(\Omega).$$

Moreover, if (A_3) is satisfied, then this solution is unique (see [9]). Therefore, the divergent operator

 $Q(u) = -\operatorname{div}(A(x, u)\nabla u), \quad u \in W^{1,2}_0(\Omega) \cap L^\infty(\Omega),$

is invertible with continuous inverse.

Let us denote $K(u) = Q^{-1}(f(\lambda, x, v))$. If u is a solution of (P_{λ}) then u satisfies

(1)
$$u = K(u).$$

Thus, the solutions of (1) are zeros of $J'_{\lambda}(u)(v) = 0$, and therefore, critical points of J_{λ} on M.

- **Remark 1.** (a) If $u \in W_0^{1,2}(\Omega)$, then by (f_1) , $f(\lambda, x, u) \in L^r(\Omega)$ and by regularity theorems, $Q^{-1}(f(\lambda, x, u)) \in W_0^{1,2}(\Omega)$. Thus, $K : W_0^{1,2}(\Omega) \to W_0^{1,2}(\Omega)$.
 - (b) Under (A₁)-(A₃) and (f₁), it can be shown (see [8, Lemma 3.1]) that if $u \in W_0^{1,2}(\Omega)$ is a solution of $\int_{\Omega} A(x,u) |\nabla u|^2 dx \int_{\Omega} f(\lambda, x, u) u dx = 0$, then $u \in L^{\infty}(\Omega)$. Therefore $K : Y \to Y$ is well defined and $I K : Y \to Y$ is well defined as well.

Lemma 2. Assume that A satisfies $(A_1)-(A_3)$. Let $v \in Y$ be a nonnegative function. Then u is a positive solution of Q(u) = v if and only if

(2)
$$u - Q^{-1}(v) = 0.$$

PROOF: Note that $u - Q^{-1}(u) = 0$ if and only if

$$\int_{\Omega} A(x,u) \nabla u \nabla \varphi \, dx = \int_{\Omega} u \varphi \, dx, \quad \forall \, \varphi \in Y.$$

We claim that $u \ge 0$. In fact, since $v \ge 0$, using (A₂) and taking $\varphi \equiv u^-$ as a test function, we obtain

$$\alpha \|u^-\|_x^2 \le \int_{\Omega} A(x, u) \nabla u^- \nabla u^- \, dx = \int_{\Omega} u u^- \, dx \le 0.$$

This implies that $u^- \equiv 0$.

398

Remark 3. (a) K is continuous and compact, by (f_1) .

(b) Let $\overset{\circ}{P}$ the interior of the positive cone P. If in addition $f(\lambda, \cdot, \cdot)$ is $C^1(\Omega \times \mathbb{R})$ and $A(x, \cdot)$ is C^1 , then $u \in \overset{\circ}{P}$ (see [9, Remarks 2]). We observe that the regularity condition for f can be relaxed by taking $f(\lambda, x, s) + ms$ increasing in $[0, s_0]$ for some m > 0 and for every $s_0 > 0$, and we shall use this relaxation throughout all the paper if necessary, so we will not require explicitly this regularity condition. Using the strong maximum principle, we can prove that K is strongly order preserving for some $\lambda \in \Lambda$.

Remark 4. (A₃) implies that, for a fixed direction $\lambda \in Y$, the function $J'_{\lambda}(u)(v)$ is continuous in $u \in W_0^{1,2}(\Omega)$.

Our main result is the following:

Theorem 5. Suppose that $(A_1)-(A_4)$ and $(f_1)-(f_5)$ hold. Then there exists $\lambda_0 > 0$ such that, for every $\lambda \in (0, \lambda_0]$ and $\lambda \notin \sigma(Q)$, the problem (P_{λ}) has at least six nontrivial solutions. More precisely:

- (i) (P_{λ}) has at least two positive solutions u_1^+ and u_2^+ with $u_1^+ > u_2^+$, $J_{\lambda}(u_2^+) < 0$ and u_2^+ is a local minimizer of $J_{\lambda}(u)$;
- (ii) (P_{λ}) has at least two negative solutions u_{3}^{-} and u_{4}^{-} with $u_{3}^{-} < u_{4}^{-}$, $J_{\lambda}(u_{4}^{-}) < 0$ and u_{4}^{-} is a local minimizer of $J_{\lambda}(u)$;
- (iii) (P_{λ}) has at least two sign-changing solutions u_5 and u_6 with $J_{\lambda}(u_5) < 0$, u_5 is a mountain-pass point of J_{λ} , and u_6 is outside of $[u_4^-, u_2^+]$.

Remark 6. We do not require f to be C^1 as in many applications, however, we assume that f is sublinear and we obtain the same results as in [15], where the C^1 condition is required and

$$f(\lambda, x, u) = \lambda |u|^{q-1}u + g(u)$$

with g(s) = o(|s|) at 0 and g'(s) > -a for some a > 0. Our Theorem 5 also generalizes a result of [5], where the following strong assumptions were made:

- (G1) $G \in C^2(\mathbb{R},\mathbb{R}), sG'(s) \ge \alpha G(s) \ge 0$ for all $s \in \mathbb{R}$ with $2 < \alpha < 2^*$, where $2^* = 2N/(N-2)$, if N > 2;
- (G2) $s^2 G''(s) \ge \alpha G'(s)s$, for all $s \in \mathbb{R}$;
- (G3) $s^2 G''(s) \leq C_1 |s|^{\alpha}$, for all $s \in \mathbb{R}$ (for some $C_1 > 0$),

where $G(s) = \int_0^s g(t) dt$. In comparison with [5] and [15], we get a much stronger and general result with more information than in [5], using weaker assumptions.

We observe that our result is also valid for $A \equiv 1$, in which case $\alpha = \beta = 1$. Our assumptions (f₃), (f₄) are the same as in [12], where the author obtains at least two positive solutions. In [7], the authors consider the same assumptions as us for the function A, with g(s) convex and obtain at least two solutions, using a variant of the usual mountain-pass theorem; their results, however, do not give any information on sign-changing solutions.

To deal with the superlinear case, we consider the following hypothesis.

- (f'_2) There exists $2 < \theta < 2^*$ such that $0 < \theta F(\lambda, x) \le u f(\lambda, x, u)$ for all $u \in \mathbb{R}$, $\lambda \in \Lambda$ and for almost every $x \in \Omega$.
- (f'_4) There exist a number k > 0 and $\lambda_0 > 0$ such that for all $0 < \lambda < \lambda_0$, and for a.e. $x \in \Omega$, $|f(\lambda, x, u) < k|$ for $u \in [-c, c]$, where $c = \max_{\Omega} e(x)$ and e(x)satisfies the boundary value problem $-\triangle e(x) = k$ in Ω and e(x) = 0 on $\partial\Omega$.

Under the above assumptions we have the following result.

Theorem 7. The results of Theorem 5 still hold under the hypotheses $(A_1)-(A_4)$, (f_1) , (f'_2) and (f'_4) .

3. Abstract results

Let us start by presenting some abstract results. The abstract framework is derived from the following hypothesis.

Let $(X, \|\cdot\|_X)$ be a Hilbert space and $Y \subset X$ a normed subspace of X endowed with the norm $\|\cdot\|_Y$, and densely embedded in X.

Let $P_X \subset X$ be a convex cone and $P = Y \cap P_X$. Assume that P has a nonempty interior $\stackrel{\circ}{P}$, and that any ordered interval in X is finitely bounded. Let $\Phi: X \to \mathbb{R}$ be a functional in X, which is continuous in $(Y, \|\cdot\| + \|\cdot\|_Y)$ and satisfies the following assumptions.

- (Φ_1) The functional Φ has directional derivative $\Phi'(u)(v)$ at each $u \in X$, through any bounded direction $v \in Y$. For fixed $u \in X$, the function $\Phi'(u)(v)$ is linear in v, and for fixed $v \in Y$, the function $\Phi'(u)(v)$ is continuous in $u \in X$.
- (Φ_2) The functional Φ is bounded from below on any ordered interval in X.
- (Φ_3) For any fixed direction $v \in Y$, the function $\Phi'(u)(v)$ is of the form $u K_X(u)$ for each $u \in K$, where $K_X : X \to X$ is compact, $K_X(Y) \subset Y$ and $K = K_{X|Y} : Y \to Y$ is continuous and strongly order preserving, i.e. $u > v \Leftrightarrow K(v) \gg K(v)$ for all $u, v \in Y$, where $u \gg v \Leftrightarrow u v \in \overset{\circ}{P}$.
- (Φ_4) The functional Φ satisfies the Palais-Smale ((PS) for short) condition in X, the deformation property in Y and has only finitely many isolated critical points.

We shall consider the following compactness conditions.

(H) There exists a sequence $(u_n)_{n \in \mathbb{N}}$ in Y such that for some sequences $(K_n)_{n \in \mathbb{N}}$ $\subset \mathbb{R}^+$ and $(\varepsilon_n) \to 0$, the following are satisfied

(3)
$$(\Phi(u_n))_{n \in \mathbb{N}}$$
 is bounded.

(4)
$$||u_n||_Y \le 2K_n, \quad \forall n \in \mathbb{N}$$

and

(5)
$$|\Phi'(u_n)(v)| \le \varepsilon \left(\frac{\|v\|_Y}{K_n} + \|v\|_X\right), \text{ for all } v \in Y.$$

(C) Any sequence $(u_n)_{n\in\mathbb{N}}$ in dom $(\Phi) \subset Y$ satisfying for some $(K_n) \subset \mathbb{R}^+$ and $(\varepsilon_n) \to 0$ the conditions (3), (4) and (5), possesses a convergent subsequence in X.

We state some abstract results, which will be used to solve the problem (P_{λ}) .

Theorem 8. Assume that Φ satisfies (Φ_1) , (Φ_2) , (Φ_3) , (Φ_4) and $\underline{u} < \overline{u}$ is a pair of subsolution and supersolution for $\Phi'(u)(v) = 0$, for any bounded direction $v \in Y$. Then, $[\underline{u}, \overline{u}]$ is positively invariant under the negative gradient flow of Φ , and $u - \Phi'(u)(v)$ belongs to the interior of $[\underline{u}, \overline{u}]$ through any fixed and bounded direction $v \in Y$. Moreover, if $\underline{u} < \overline{u}$ is a pair of strict subsolution and supersolution, then $\deg(\mathrm{id} - K, [\underline{u}, \overline{u}], 0) = 1$.

Corollary 9. If $\underline{u} < \overline{u}$ is a pair of strict subsolution and supersolution for $\Phi'(\cdot)(v) = 0$ in X, then $K_{\Phi} \cap \partial[\underline{u}, \overline{u}] = \emptyset$, where $K_{\Phi} = \{u \in X : \Phi'(u)(v) = 0\}$ is the critical point set of Φ .

Now, we give a suitable version of the mountain-pass theorem in ordered interval in this framework.

Theorem 10. Assume that Φ satisfies (Φ_1) , (Φ_2) , (Φ_3) and (Φ_4) . Suppose that there exist four points in $Y : v_1 < v_2$, $\omega_1 < \omega_2$, $v_1 < \omega_2$, satisfying $[v_1, v_1] \cap [\omega_1, \omega_2] = \emptyset$ with $v_1 < Kv_1$, $v_2 > Kv_2$, $\omega_1 < K\omega_1$ and $\omega_2 > K\omega_2$. Then, Φ has a mountain-pass point $u_0 \in [v_1, \omega_2] \setminus ([v_1, \omega_1])$.

Proofs of abstract results

PROOF OF THEOREM 8: Since $[\underline{u}, \overline{u}]$ is finitely bounded and K compact, deg(id $-K, [\underline{u}, \overline{u}], 0$) is well defined. Consider the negative gradient flow of Φ in X satisfying

$$\left\{ \begin{array}{l} \frac{\partial}{\partial t}\eta(t,u) = -\Phi'(\eta(t,u)(v)), \\ \eta(0,u) = u, \end{array} \right.$$

for any fixed direction $v \in Y$ and for all $u \in Y$. Then, from (Φ_4) , $u(t, u) \in Y$. It suffices to show that for $y \in P - \{0\}$, and for any bounded direction $v \in Y$, $\eta(t,\underline{u}+y) \in \underline{u}+\overset{\circ}{P}$ and $\eta(t,\overline{u}-y) \in \overline{u}-\overset{\circ}{P}$ for all t > 0. By (Φ_1) , we know that for any given direction in Y, $\Phi(u + \cdot)$ is differentiable in Y, for all $u \in \text{dom}(\Phi) \subset X$. Hence, for any given $y \in P - \{0\}$,

$$\underline{u} + y - \Phi'_Y(\underline{u} + y)(v) = K(\underline{u} + y) \gg K(u) > u,$$

where $\Phi'_Y(\underline{u}+y) = \frac{\partial}{\partial u} \Phi(\underline{u}+y)$. Similar arguments imply that $\overline{u} - y - \Phi'_Y(\overline{u} - y)$ $y)(v) = K(\overline{u} - y) \ll K(\overline{u}) < \overline{u}. \text{ Therefore, } \eta(t, \underline{u} + y) \in \underline{u} + \overset{\circ}{P} \text{ and } \eta(t, \overline{u} - y) \in \overline{u} - \overset{\circ}{P}$ for any bounded direction v in Y. Hence, $[u, \overline{u}]$ is positively invariant and for all $u \in [u, \overline{u}], u - \Phi'(u)(v)$ belongs to the interior of $[u, \overline{u}]$ for any bounded direction v in Y. Now, using this invariance property, the fact that K is strongly order preserving and compact, $P \neq \emptyset$, and arguments of H. Amann [2], it is easy to see that K has a fixed point in $[\underline{u}, \overline{u}]$. If this fixed point is isolated, then its index is 1, and by the excision property of the Schauder degree, we are done.

PROOF OF THEOREM 10: Since Φ is bounded from below and satisfies the deformation property, it has at least one local minimizer in each ordered interval. Let v_0 be the minimizer of Φ in $[v_1, v_2]$, and ω_0 the minimizer of Φ in $[\omega_1, \omega_2]$. Let $\eta(t, u)$ denote the negative gradient flow of Φ , and let

(6)

$$\Gamma = \left\{ x(t) : x(t) \in C([0,1], [v_1, \omega_2]) \text{ is such that} \\
x(t) \in [v_1, \omega_2] \setminus ([v_1, v_2] \cap [\omega_1, \omega_2]), \quad \text{if } t \in \left(\frac{1}{3}, \frac{2}{3}\right), \\
x(t) = \eta \left(\frac{1}{3} - t, x\left(\frac{1}{3}\right)\right), \quad \text{if } 0 \le t \le \frac{1}{3}, x\left(\frac{1}{3}\right) \in \partial[v_1, v_2], \\
x(t) = \eta \left(t - \frac{2}{3}, x\left(\frac{2}{3}\right)\right), \quad \text{if } \frac{2}{3} \le t \le 1, x\left(\frac{2}{3}\right) \in \partial[\omega_1, \omega_2] \right\}.$$

Then $\Gamma \neq \emptyset$ is a complete metric space for the metric $\rho(x, y) = \max_{t \in [0,1]} ||x(t) - y(t)|| = \max_{t \in [0,1]} ||x(t) - y(t)||$ $y(t) \parallel$. Let

(7)
$$c = \inf_{x \in \Gamma} \sup_{t \in [0,1]} \Phi(x(t)).$$

Then c is a critical value. In fact, let

$$K_c^v = \{ u \in [v_1, \omega_2] : \Phi'(u)(v) = 0, \ \Phi(u) = c \}$$

for all $v \in Y$; it suffices to prove that $K_c^v \cap \{[v_1, \omega_2] \setminus ([v_1, v_2] \cup [\omega_1, \omega_2])\}$. Let

$$F(x(t)) = \max_{t \in [0,1]} \Phi(x(t)), \quad x(t) \in \Gamma.$$

Then, F is a continuous function, bounded from below on Γ . Define

$$F'(x)(v) = \limsup_{\theta \to 0} \frac{F(x+\theta h) - F(x)}{\theta}$$

and let $\mathbb{B}(x) = \{s \in [0,1] : \Phi(x(s)) = F(x(s)) \equiv \max_{t \in [0,1]} \Phi(x(t))\}$. From Ekeland's variational principle, we have for any given sequence $\{\varepsilon_n\}, \varepsilon_n \to 0$, that there exists a sequence $\{x_n\} \subset \Gamma$ such that

$$c \leq F(x_n) \leq c + \varepsilon_n$$
 and $F(x) \geq F(x_n) - \varepsilon_n \rho(x, x_n),$
 $\forall x \neq x_n, x \in \Gamma, n = 1, 2, 3 \dots$

Hence, for any $h \in \Gamma$ and $\theta \in]0,1[$, we have

$$\frac{F(x_n + \theta h) - F(x_n)}{\theta} \ge -\varepsilon_n \max_{t \in [0,1]} \|h(t)\|.$$

Taking limit as θ decreases to zero, we get

$$F'(x_n)(h) = \limsup_{\theta \to 0} \frac{F(x_n + \theta h) - F(x_n)}{\theta} \ge -\varepsilon_n \max_{t \in [0,1]} \|h(t)\|$$

Therefore, there exists $(s_n) \subset \mathbb{B}(x)$ such that $|\Phi'(x_n(s_n))(v)| \leq \varepsilon_n ||v||$ for all $v \in Y$, which implies that $\Phi'(x_n(s_n))(v) \to 0$ as $n \to \infty$. From the definition of Γ and Theorem 1, $x_n(s_n) \in [v_1, \omega_2] - ([v_1, v_2] \cup [\omega_1, \omega_2])$, and from (3), (4), (5) and the deformation property, $(x_n(s_n))$ has a subsequence converging in Y to some $u_0 \in [v_1, \omega_2] - ([v_1, v_2] \cap [v_1, \omega_2])$. Since Φ is continuous in X, we have $\Phi(u_0) = c$ and $\Phi'(u_0)(v) = 0$. Thus c is a critical value. Substituting v_0, ω_0 for v_1, ω_2 , and using the proof of Theorem 8, it is easy to see that $v_0 \ll u_0 \ll \omega_0$. From the deformation property, Theorem 8, and Corollary 9 we have

$$\inf_{u\in\partial[v_1,v_2]} \left\{ \Phi(u) \right\} > \Phi(v_0), \ \inf_{u\in\partial[\omega_1,\omega_2]} \left\{ \Phi(u) \right\} > \Phi(\omega_0).$$

Therefore, $c > \max{\Phi(v_0), \Phi(\omega_0)}$ and u_0 is an isolated critical point of Φ . Let V be a neighborhood of u_0 such that for any open neighborhood $W \subset V$ of u_0 , $\overset{\circ}{\Phi}^c \cap W \neq \emptyset$ and is not path-connected. Let us define critical groups of u_0 by

$$C_n(\Phi, v_0) = H_n(\Phi^c \cap W, \Phi^c \cap W \setminus \{u_0\}), \quad n = 1, 2, \dots,$$

where $\overset{\circ}{\Phi}^c \cap W \setminus \{0\} \neq \emptyset$, and is not path-connected either. Thus, from the definition of critical group

$$C_0(\Phi, u_0) = H_n(\Phi^c \cap W, \Phi^c \cap W \setminus \{u_0\}) = 0.$$

Using arguments of [11] and [14], we can prove that $C_1(\Phi, u_0) \neq 0$, and from the argument given in [10], we know that u_0 is a mountain-pass point.

4. Some lemmas and definitions

We first prove the existence of two pairs of subsolutions and supersolutions.

Lemma 11. Assume $(A_1)-(A_4)$ and $(f_1)-(f_4)$ hold. Then, there exist two pairs of strict subsolutions and supersolutions of (P_{λ}) .

PROOF: Let φ_1 be the eigenfunction associated to μ ; then we may take $\|\varphi_1\|_{\infty} = 1$. For r > 0 sufficiently small, (f₃) implies that $f(\lambda, x, r\varphi_1) > (\beta \mu_1 - \varepsilon(r))r\varphi_1$, for some $\varepsilon(r) > 0$. Using (A₁), we obtain

$$-\operatorname{div}(A(x, r\varphi)\nabla(r\varphi_1)) < f(\lambda, x, r\varphi_1).$$

This means that $r\varphi_1$ is a strict subsolution of (P_λ) for r > 0 sufficiently small. Hence, by continuity, there exists $r_0 > 0$ such that this is true for $0 < r < 2r_0$. Now, suppose that u is a nonnegative and nontrivial solution of (P_λ) . Then by the maximum principle, u > 0 in Ω and there exists $\varepsilon \in (0, 2r_0)$ small enough such that $u \ge \varepsilon \varphi_1$. Using a sweeping argument, we can prove that $u \ge r\varphi_1$, for all $r \in (0, 2r_0]$. In particular $u \ge 2r_0\varphi_1 > r_0\varphi_1$, and we can take $\underline{u} = r_0\varphi_1$.

By (f₄), there exist constants C > 0 and $\tilde{\alpha}$, with $0 < \tilde{\alpha} < \alpha$ such that

(8)
$$f(\lambda, x, u) < \tilde{\alpha} \mu_1 u + C.$$

Therefore, any nontrivial solution of (P_{λ}) satisfies

(9)
$$-\operatorname{div}(A(x,u)\nabla u) < \tilde{\alpha}\mu_1 u + C.$$

Using (A₂), we find that $Q(u) = -\operatorname{div}(A(x, u)\nabla u) - \tilde{\alpha}\mu_1 u$ has a bounded inverse $Q_{\alpha}^{-1}C$ in Y, which is strongly order preserving, thus from (9) it follows that every solution of (P_{λ}) satisfies $u < \phi = Q_{\alpha}^{-1}C$. Hence, by (8)

$$-\operatorname{div}(A(x,\phi) \bigtriangleup \phi) < f(\lambda, x, \phi) \text{ in } \Omega, \ \phi_{|\partial\Omega}$$

This means that ϕ is a strict supersolution of (P_{λ}) , and we can take $\overline{\omega} = \phi$ if $\phi > r_0\varphi_1$; but this can be easily achieved by enlarging *C* if necessary. Using similar arguments, we obtain another pair of strict subsolution and supersolution $\underline{v} < \overline{v} < 0$, where $\overline{v} = -r_0\varphi_1$ and $\underline{v} = -\phi$.

Now, we prove that J_{λ} satisfies the compactness condition (C).

Lemma 12. Assume that $(A_1)-(A_3)$, (f_1) , (f_2) hold. Then J_{λ} satisfies the compactness condition (C).

PROOF: Let (u_n) a sequence such that $(J_{\lambda}(u_n))$ is bounded and $J'_{\lambda}(u)(v) \to 0$ as $n \to \infty$, for all $v \in Y$. Then, there exist $(\varepsilon_n) \subset \mathbb{R}^+$, $\varepsilon_n \to 0$, $(K_n) \subset \mathbb{R}^+$, such that $|J'_{\lambda}(u)(v)| \leq \varepsilon_n \left[\left\| \frac{v}{K_n} \right\|_Y + \|v\| \right]$ for all $v \in Y$.

We now prove that (u_n) is bounded in Y. By (f_2) , for any $2 < \theta$, we have

$$C_{0} + \varepsilon_{n} \left[\left\| u_{n} \right\|_{Y} + \left\| u_{n} \right\| \right] > \theta J_{\lambda}(u_{n}) - J_{\lambda}'(u_{n})(u_{n})$$

$$= (\theta - 1) \int_{\Omega} A(x, u_{n}) |\nabla u_{n}|^{2} dx$$

$$- \int_{\Omega} \left\{ \theta F(\lambda, x, u_{n}) - f(\lambda, x, u_{n})u_{n} \right\} dx$$

$$\geq (\theta - 1)\alpha \|u_{n}\|^{2} - o(\|u_{n}\|_{Y}^{2})$$

$$> (\theta - 1)r \|u_{n}\|^{2} - o(\|u_{n}\|_{Y}^{2}),$$

and for r > 0 sufficiently small, (u_n) is bounded in Y and, therefore, there exists a subsequence (u_{nk}) of (u_n) converging in $W_0^{1,2}(\Omega)$ to some $u \in Y$. Since the function $J'_{\lambda}(u)(v)$ is continuous in $u \in Y$ for any fixed $v \in Y$, we have $J'_{\lambda}(u_n)(v) \to J'_{\lambda}(u)(v)$.

Consider $(u_n) \subset M$ such that $J'_{\lambda}(u_n)(v) = 0$ for every $v \in Y$. Since M is closed, if $u \in Y$ is such that $u_{nk} \to u$, then $u \in M$ and $J'_{\lambda}(u)(v) = 0$ for any $u \in Y$. Hence, u is a critical point of J_{λ} .

We recall the following definitions in the regular case (see for instance [14]).

Definition 13. Let Φ be a C^1 functional on a Banach space X. Denote by $\operatorname{Reg}(\Phi) = \{u \in x : \Phi'(u) \neq 0\}$. A pseudo-gradient vector field for Φ on $\operatorname{Reg}(\Phi)$ is a locally Lipschitz continuous mapping $v : \operatorname{Reg}(\Phi) \to X$ such that

(10)
$$||v(u)|| \le ||\Phi'(u)||$$
 and $\langle \Phi'(u), v(u) \rangle \ge ||\Phi'(u)||^2$.

Let $K = \{u \in X : \Phi(u) = 0\}$ be the set of critical points of Φ . Consider the initial value problem

$$\frac{du}{dt} = -v(u), \quad u(0) = u_0 \in X \setminus K.$$

Since v(u) is locally Lipschitz continuous in $X \setminus K$, the initial value problem has a unique solution $u : [0, t(u_0)] \to X \setminus K$ with $t(u_0)$ maximal.

Definition 14. Let $N \subset X$. We say that N is an *invariant set of descent flow* of Φ if the set $\{u(t_0, u_0, t), t \in [0, t(u)), u_0 \in N \setminus K\} \subset N$.

In this paper, the functional J_{λ} is not C^1 , it has only directional derivatives at any direction $v \in Y$ and, for any fixed direction $v \in Y$, the function (directional derivative) $J'_{\lambda}(u)(v)$ is continuous in $u \in W_0^{1,2}(\Omega)$, and linear in $v \in Y$ for fixed $u \in W_0^{1,2}(\Omega)$. Using these properties, we shall construct a pseudo-gradient vector field for J_{λ} in M. **Definition 15.** We define the set

$$\operatorname{Reg}(J_{\lambda}) = \left\{ u \in W_0^{1,2}(\Omega) : J_{\lambda}'(u)(v) \neq 0, \text{ for any direction } v \in Y \right\} \text{ and } K_v = \left\{ u \in W_0^{1,2}(\Omega) : J_0'(u)(v) = 0, \text{ for any direction } v \in Y \right\}.$$

Lemma 16. Assume that $(A_1)-(A_4)$ $(f_1)-(f_4)$ hold. Then, there exists a pseudogradient flow for J_{λ} such that P, -P, and $[\underline{u}, \overline{u}]$ are invariant sets of descent flow of J_{λ} , where $\{\underline{u}, \overline{u}\}$ is a pair of strict subsolution and supersolution of J_{λ} in M.

PROOF: We construct a pseudo-gradient vector field for J_{λ} in M, and show that the flow under that vector field satisfies required invariance property.

For all $u \in [\underline{u}, \overline{u}]$ we have

(11)
$$u - J'_{\lambda}(u)(v) = K(u) \gg K(u) > \underline{u}, \quad K(u) \ll K(\overline{u}) < \overline{u}.$$

We observe that through any fixed direction $v \in Y$, the directional derivative function $J'_{\lambda}(u)(v)$ is continuous and $u - J'_{\lambda}(u)(v) \in \operatorname{int}([\underline{u}, \overline{u}])$, by (11). For all $u_0 \in M \setminus K^c$, there exists $y_0 \in Y$ with $\|y_0\|_Y = 1$ (we can normalize y_0 if necessary), such that $\langle J'_{\lambda}(u_0), y_0 \rangle > \frac{2}{3} \|J'_{\lambda}(u_0)\|_Y^2$. If $u_0 \in [\underline{u}, \overline{u}]$ then by (11), we may require $u_0 + y_0 \in \operatorname{int}([\underline{u}, \overline{u}])$. Let $v_0 = \frac{2}{3} (\|J'_{\lambda}(u_0)\|_Y, y_0)$; then $\|v_0\|_y < 2\|J'_{\lambda}(u)\|_Y$ and $\langle J'_{\lambda}(u_0), v_0 \rangle > \|J'_{\lambda}(u_0)\|_Y^2$.

From the continuity of the directional derivative for a fixed direction in Y, there exists a neighborhood $\tilde{U}(u_0)$ of u_0 in \overline{M} such that

(12)
$$||v_0||_y < 2||J'_{\lambda}(u)||_Y$$
 and $\langle J'_{\lambda}(u_0), v_0 \rangle > ||J'_{\lambda}(u_0)||_Y^2$.

For all $\tilde{U}(u_0)$, take

$$U(u_0) = \begin{cases} \tilde{U}(u_0) & \text{if } u_0 \in [\underline{u}, \overline{u}], \\ \tilde{U}(u_0) \cap (\overline{M} \setminus [\underline{u}, \overline{u}]) & \text{if } u_0 \in \overline{M} \setminus [\underline{u}, \overline{u}], \end{cases}$$

where $\overline{M} = M \setminus K_c^v$. Let $u \in P$, $u \neq 0$. Then $K(u) \gg 0$, since K is strongly order preserving. Hence, for any $u_1 \in P$, we can assume that $u_1 + y \in \overset{\circ}{P}$ for any $y \in Y$ such that $\|y\|_Y = 1$. If we take such u_1 in $P \setminus K_c^v$, and let $v_1 = \frac{3}{2} \|J'_\lambda(u_1)\|_Y y$, then $\|v_1\|_Y < 2\|J'_\lambda(u_1)\|_Y$, and $\langle J'_\lambda(u), v_1 \rangle > \|J'_\lambda(u)\|_Y^2$.

From the continuity of the directional derivative for a fixed direction in Y, there exits a neighborhood $U(u_1)$ of u_0 in \overline{M} such that

(13)
$$||v_1||_y < 2||J'_{\lambda}(u_1)||_Y$$
 and $\langle J'_{\lambda}(u), v_1 \rangle > ||J'_{\lambda}(u)||_Y^2$,

for all $u \in U(u_1)$. Using similar arguments, we can show the existence of a pseudogradient vector field v_2 for J_{λ} and, get an open covering $U(u_2)$ for any $u_2 \in P \setminus K_c^v$. Since $Y \setminus K_c^v$ is paracompact, there exists a family $U = \{U(u) : u \in Y \setminus K_c^v\}$, which is an open covering of $P \setminus K_c^v$. Hence, U has a locally finite refinement $(U(u_1))_{i \in I}$, and each $u \in \overline{M}$ has a neighborhood $\beta(u)$ such that $\beta(u) \subset (U(u_1))_{i \in I}$, for a finite number of $i \in I$. Let us define

(14)
$$\rho_i(u) = \operatorname{dist}(u, \overline{M} \setminus U(u_i)), \qquad i \in I,$$

for any $u \in M$, and define

(15)
$$v(u) = \sum_{i \in I} \frac{\rho_i(u)}{\sum_{j \in I} \rho_j(u)} v_i.$$

Since $(U(u_1))_{i \in I}$ is locally finite, all sums in (15) are finite. Therefore, v(u) is locally Lipschitz continuous. Since ρ_i vanishes outside $U(u_i)$, v(u) is a convex combination of finite elements satisfying (10). Clearly, it is a pseudo-gradient vector field for J_{λ} . For the sets $[\underline{u}, \overline{u}]$, P and -P, we may define

(16)
$$v(u) = \sum_{i=0}^{2} \frac{\rho_i(u)}{\sum_{j=0}^{2} \rho_j(u)} v_i.$$

Clearly, v(u) satisfies (10) and is locally Lipschitz continuous.

Let $N_{\varepsilon}^{c} = \{u \in M : |J_{\lambda}(u) - c| < \varepsilon; \|J_{\lambda}'(u)(z)\|_{Y} < \varepsilon, \text{ for any fixed } z \in Y\}$, and consider cut-off functions φ and ψ such that $0 \leq \varphi, \psi \leq 1, \varphi(u) = 0$ on N_{ε}^{c} , $\varphi(u) = 1$ on $M - N_{\varepsilon}^{c}, |J_{\lambda}(\varphi(u)) - c| < \varepsilon \ \varphi(s) = 0$ for $|s - c| \geq 2\varepsilon_{0}$ and $\varphi(s) = 1$ for $|s - c| < \varepsilon_{0}$, for a given ε_{0} such that $0 < \varepsilon_{0} < \varepsilon$. For every $u \in \operatorname{Reg}(J_{\lambda})$, i.e. u such that $J_{\lambda}'(u)(z) \neq 0$ for any fixed direction $z \in Y$, we define

$$v_*(u) = \begin{cases} -\psi(J_{\lambda}(u))\varphi(u) \frac{v(u)}{\|v(u)\|_Y} & \text{if } u \in M \cap \operatorname{Reg}(J_{\lambda}), \\ 0, & \text{otherwise.} \end{cases}$$

Then $J_{\lambda} : \operatorname{Reg}(J_{\lambda}) \to Y$ is a pseudo-gradient vector field and an odd continuous function of u. Consider the initial value problem

(17)
$$\frac{\partial \sigma(t,u)}{\partial t} = v_*(\sigma(t,u)), \ \sigma(0,u) = u_*(\tau(t,u)), \ \sigma(0,u) = u_*($$

for $u \in M$ and $t \geq 0$. Then, $\sigma(t, u)$ is a global, unique and maximal solution of (17) for $0 \leq t < t^*(u)$, where the interval $] - t^*(u), t^*(u)[$ is maximal. Moreover, the solution $\sigma(t, u)$ is continuous on $\mathbb{R} \times M$. Let $\eta \in C([0, 1] \times M, M)$ be defined by

(18)
$$\eta(t, u) = \sigma(2\varepsilon t, u).$$

Then by (17), $\eta(t, u) = u + \int_0^{2\varepsilon t} v_*(\sigma(\tau, u)) d\tau$. For $u_0 \in P \setminus K_c^v$ and for any fixed $y_0 \in \beta(u_0) \cap P$, we have

(19)

$$\eta(t, y_0) = y_0 + \int_0^{2\varepsilon t} v_*(\sigma(\tau, y_0)) d\tau$$

$$= y_0 + \int_0^{2\varepsilon t} v_*(y_0) d\tau$$

$$= y_0 + 2\varepsilon t v_*(y_0) \in \overset{\circ}{P}$$

for $t \in [0, 1]$ by (9). Therefore, P is an invariant set.

Note that for $u_0 \in \overset{\circ}{P} \setminus K_c^v$ such that $\operatorname{dist}(U(u), \partial P) > 0$, we also get (19) for every initial value in $\beta_{\varepsilon}(u_0)$, for all $\varepsilon > 0$, where $\beta_{\varepsilon}(u_0)$, a small neighborhood of u_0 in M. Thus $\overset{\circ}{P}$ is an invariant set of descent flow of J_{λ} . By similar arguments, we prove that -P and $-\overset{\circ}{P}$ are invariant sets of J_{λ} . As for $[\underline{u}, \overline{u}]$, by (11) and the definition of $v_*(u)$, if $u_0 \in [\underline{u}, \overline{u}]$, then

$$\eta(t, u) = u_0 + 2\varepsilon t v_*(u_0) \in [\underline{u}, \overline{u}]$$

for $\varepsilon > 0$ small and $t \in [0, 1]$. Thus, $[\underline{u}, \overline{u}]$ is invariant set of descent flow for J_{λ} .

Remark 17. The same proof as above shows that under the above pseudogradient flow for any subsolution \overline{u} and supersolution \underline{u} , $\underline{u} + P$ and $\overline{u} + P$ are invariant.

Lemma 18 (Deformation Lemma). Assume that $(A_1)-(A_4)$, $(f_1)-(f_4)$ are satisfied. Then for every $\overline{\varepsilon} > 0$, for every c > 0 and every neighborhood N of K_c^v , there exist $\varepsilon \in [0, \overline{\varepsilon}]$ and a continuous family of odd continuous maps such that

- (i) $\eta(t, u) = u$ if $J'_{\lambda}(u)(z) = 0$ for any direction $v \in Y$ or t = 0 or if $|J_{\lambda}(u) c| \ge \varepsilon;$
- (ii) $J_{\lambda}(\eta(t, u))$ is nonincreasing in t for any $u \in M$;
- (iii) $\|\eta(t,u) u\|_Y \leq \delta$, for $t \in [0,1]$, $u \in M$ and some $\delta > 0$;
- (iv) $\eta(1, J_{\lambda}^{c-\varepsilon} \setminus N) \subset J_{\lambda}^{c-\varepsilon};$
- (v) η has the invariance properties of Lemma 4.

PROOF: Let $v : \text{Reg}(J_{\lambda}) \to Y$ be an odd, continuous pseudo-gradient vector field for J_{λ} such that

$$\|v(u)\|_{\mathcal{Y}} < 2\|J'_{\lambda}(u)\|_{Y}, \quad \langle J'_{\lambda}(u), v(u) \rangle > \|J'_{\lambda}(u)\|_{Y}^{2}$$

for all $u \in M \setminus K_c^v$ and any fixed $z \in Y$. Let $N_{\varepsilon}^c := \{u \in M : |J_{\lambda}(u) - c| < \varepsilon, \|J_{\lambda}'(u)\| < \sqrt{\varepsilon}\}$. Hence, $N_{\varepsilon}^c \subset N$. Let φ be a continuous cut-off function such

408

that $\varphi(u) = \varphi(-u)$, $\varphi(u) = 0$ on N_{ε}^{c} and $\varphi(u) = 1$ outside N_{ε}^{c} , in particular $\varphi(u) = 1$ for $u \notin N$ such that $|J_{\lambda}(u) - c| < \varepsilon$. Then, we may define a locally Lipschitz, odd continuous vector field $v_{*}(u) = -\varphi(u) \frac{v(u)}{\|v(u)\|_{Y}}$ for $u \in M \setminus N$ and $v_{*}(u) = 0$ elsewhere. Consider the initial value problem

$$\frac{\partial}{\partial t}\sigma(t,u) = v_*(\sigma(t,u)),$$

$$\sigma(0,u) = u.$$

It has a unique global solution $\sigma(t, u)$ which is continuous on $\mathbb{R} \times M$. Define $\eta(t, u) = \sigma(2\sqrt{\varepsilon}t, u)$; since $\|v_*(u)\|_Y = 1$, we obtain $\|\sigma(t, u) - u\|_Y = \|\int_0^t v_*(\sigma(t, u)) d\tau\|_Y \le t$. Hence, for $\delta \ge 2\varepsilon$ we have $\frac{\delta}{2\varepsilon} \ge 1$ and $\|v_*(u)\|_y \le \frac{\delta}{2\varepsilon}$. Therefore, $\|\eta(t, u) - u\|_Y \le \delta$ for $0 \le t \le 1$, which is (iii).

For any fixed $u \in M$, we can write $\eta(t, u) = u + 2\sqrt{\varepsilon}tv_*(u)$, thus the directional derivative of $J_{\lambda}(\eta(t, u))$ in the direction of v_* is equivalent to the derivative of the function $J_{\lambda} \circ g(t)$ at 0, where $g : \mathbb{R} \to \mathbb{R}$ is defined by $g(t) = u + 2\sqrt{\varepsilon}tv_*(u)$. Hence,

(20)
$$\frac{d}{dt}(J_{\lambda} \circ g(t))\big|_{t=0} = \left\langle J_{\lambda}'(\eta(t,u)), \frac{\partial}{\partial t}\eta(t,u) \right\rangle\big|_{t=0} = 2\sqrt{\varepsilon} \langle J_{\lambda}'(u), v_{*}(u) \rangle.$$

If $u \in J_{\lambda}^{c+\varepsilon} \setminus N$, then $\|J_{\lambda}'(u)\|_{Y} \ge \sqrt{\varepsilon}$. In integrating (20) for $0 \le t \le 1$, we get

$$J_{\lambda}(\eta(1,u)) - J_{\lambda}(u) = 2\sqrt{\varepsilon} \int_{0}^{1} \left\langle J_{\lambda}'(u), v_{*}(u) \right\rangle dt$$
$$= 2\sqrt{\varepsilon} \int_{0}^{1} \left\langle J_{\lambda}'(u), -\varphi(u)v(u) \right\rangle dt$$
$$= -2\sqrt{\varepsilon} \int_{0}^{1} \varphi(u) \left\langle J_{\lambda}'(u), \frac{v(u)}{\|v(u)\|_{Y}} \right\rangle dt$$
$$= -2\sqrt{\varepsilon} \int_{0}^{1} \|J_{\lambda}'(u)\|_{y} dt \leq -2\varepsilon.$$

Here we used our choice of φ . Hence,

$$J_{\lambda}(\eta(1,u)) \le c + \varepsilon - 2\varepsilon = c - \varepsilon.$$

Therefore, $\eta(1, J_{\lambda}^{c+\varepsilon} \setminus N) \subset J_{\lambda}^{c-\varepsilon}$ which is (iv). From (20), we have for any fixed u in M,

$$\frac{d}{dt}J_{\lambda}(\eta(t,u))\big|_{t=0} = \frac{d}{dt}J_{\lambda}(u+2\sqrt{\varepsilon}tv_{*}(u))\big|_{t=0}$$
$$= 2\sqrt{\varepsilon}\langle J_{\lambda}'(u), v_{*}(u)\rangle$$
$$\leq -2\sqrt{\varepsilon}\varphi(u)\|J_{\lambda}'(u)\|_{Y}^{2} < 0.$$

Hence, $\frac{d}{dt}J_{\lambda}(\eta(t,u)) \leq -2\varepsilon\varphi(u)$ for $t \geq 0$, so we get (ii) by our choice of φ . \Box

Lemma 19. Assume that A satisfies $(A_1)-(A_4)$, and f satisfies (f_1) , (f_3) , (f_4) . Then, there is a path $L_0 \subset M$ connecting $\stackrel{\circ}{P}$ and $-\stackrel{\circ}{P}$ such that $J_{\lambda}(\varphi) < 0$, for all $\varphi \in L_0$.

PROOF: Let $\varphi \in M$ be a solution of (P_{λ}) such that φ changes sign. Then, $\varphi = \varphi^+ - \varphi^-$. Multiplying $-\operatorname{div}(A(x,\varphi)\nabla\varphi) = f(\lambda, x, \varphi)$ by φ^+ (φ^- , respectively) and integrating, we get

(21)
$$\int_{\Omega} A(x,\varphi) |\nabla \varphi^+| = \int_{\Omega} f(\lambda, x, \varphi) \varphi^+ dx$$

and

(22)
$$\int_{\Omega} A(x,\varphi) |\nabla \varphi^{-}| = \int_{\Omega} f(\lambda, x, \varphi) \varphi^{-} dx.$$

By (A_1) , (21), (22) and (f_4) we have

$$\int_{\Omega} f(\lambda, x, \varphi) \varphi^+ \, dx < \alpha \mu_1 \int_{\Omega} \varphi \cdot \varphi^+ \, dx = \alpha \mu_1 \int_{\Omega} (\varphi^+)^2 \, dx$$

and

$$\int_{\Omega} f(\lambda, x, \varphi) \varphi^{-} dx < \alpha \mu_{1} \int_{\Omega} \varphi \cdot \varphi^{-} dx = \alpha \mu_{1} \int_{\Omega} (\varphi^{-})^{2} dx.$$

Thus, $\forall t \in [0,1]$, if $\varphi_t = t\varphi^+ + (1-t)\varphi^-$, then there exists R > 0 such $|\varphi_t| \ge R$ and

$$\begin{split} J_{\lambda}(\varphi_{t}) &= \frac{1}{2} \int_{\Omega} A(x,\varphi_{t}) |\nabla \varphi_{t}|^{2} dx - \int_{\Omega} F(\lambda, x, \varphi_{t}) dx \\ &= \frac{t^{2}}{2} \int_{\Omega} A(x,\varphi_{t}) |\nabla \varphi^{+}|^{2} dx + \frac{(1-t)^{2}}{2} \int_{\Omega} A(x,\varphi_{t}) |\nabla \varphi^{-}|^{2} dx \\ &- \int_{\Omega} F(\lambda, x, \varphi_{t}) dx \\ &\leq \frac{t^{2}}{t} \int_{\Omega} A(x,\varphi_{t}) |\nabla \varphi^{+}|^{2} dx - \frac{t^{2} \alpha \mu_{1}}{2} \int_{\Omega} (\varphi^{+})^{2} dx - \frac{(1-t)^{2} \alpha \mu_{1}}{2} \int_{\Omega} (\varphi^{-})^{2} dx \\ &+ \beta \mu_{1} \int_{\Omega} \varphi_{t}^{2} dx + \frac{(1-t)^{2}}{2} \int_{\Omega} A(x,\varphi) |\nabla \varphi^{-}|^{2} dx - \int_{\Omega} F(\lambda, x, \varphi_{t}) dx \\ &< 0. \end{split}$$

Since $\{t\varphi^+ + (1-t)\varphi^-, t \in [0,1]\}$ is compact in Y, we can choose in M a path $L_0 = \{l_0(t) : t \in [0,1]\}$ such that $l_0(t)$ is very close to φ_t for all $t \in [0,1], \varphi \in M$,

 $l_0(0) \in \overset{\circ}{P}, \ l_0(1) \in -\overset{\circ}{P}$ and $J_{\lambda}(l_0(t)) < 0$. Hence, for every $\varphi \in L_0$ and for t > 0 sufficiently small we have

$$\begin{aligned} J_{\lambda}(t\varphi) &= \frac{1}{2} \int_{\Omega} A(x,t\varphi) |\nabla t\varphi|^2 \, dx - \int_{\Omega} F(\lambda,x,t\varphi) \, dx \\ &= \frac{t^2}{2} \Big[\int_{\Omega} A(x,t\varphi) |\nabla \varphi^+|^2 \, dx + \int_{\Omega} A(x,t\varphi) |\nabla \varphi^-|^2 \, dx \Big] - \int_{\Omega} F(\lambda,x,t\varphi) \, dx \\ &\leq \frac{t^2}{t} \Big[\int_{\Omega} A(x,t\varphi) |\nabla \varphi^+|^2 \, dx - \alpha \mu_1 \int_{\Omega} (\varphi^+)^2 \, dx - \alpha \mu_1 \int_{\Omega} (\varphi^-)^2 \, dx \\ &+ \int_{\Omega} A(x,t\varphi) |\nabla \varphi^-|^2 \, dx \Big] + \beta \mu_1 \int_{\Omega} (t\varphi)^2 \, dx - \int_{\Omega} F(\lambda,x,t\varphi) \, dx < 0. \end{aligned}$$

Therefore, there is a path $L = tL_0$ (t sufficiently small) connecting $\stackrel{\circ}{P}$ to $\stackrel{\circ}{-P}$ such that $J_{\lambda}(\varphi) < 0$, for all $\varphi \in L$. Normalizing such $\varphi \in L$, it is possible to improve L in order to get curves without self intersection on ∂B_1 where B_1 is the unit ball in Y.

5. Proofs of the main results

5.1 Proof of Theorem 5. From Lemma 10, we know that there exist two pairs of strict subsolutions and supersolutions of (P_{λ}) , $-\phi < -r\varphi_1 < 0$ and $0 < r\varphi_1 < \phi$ where φ_1 is the eigenfunction associated to the first eigenvalue of the Laplacian operator $-\Delta$ with 0-Dirichlet boundary conditions. From [10], (P_{λ}) has a positive solution u_2^+ and a negative solution u_4^- , such that $-\phi < u_4^- < -r\varphi_1, r\varphi_1 < u_2^+ < \phi$, u_2^+ and u_4^- are local minimizer of $J_{\lambda}(u)$ with $J_{\lambda}(u_2^+) < 0$ and $J_{\lambda}(u_4^-) < 0$. We may assume that u_2^+ is the minimal minimizer of $J_{\lambda}(u)$ and u_4^- is the maximal minimizer of $J_{\lambda}(u)$. From Theorem 9, J_{λ} has a mountain-pass point $u_5 \in M$ such that $u_5 \in [-\phi, \phi] \setminus ([-\phi, -r\varphi_1] \cup [r\varphi_1, \phi])$ and $u_4^- < u_5 < u_2^+$. Let us consider $\Gamma_r = \{u(t) : u(t) \in [-\phi, \phi], \forall t \in [0, 1]\}$ such that $u(t) \in ([-\phi, \phi] \setminus ([-\phi, -r\varphi_1] \cup [r\varphi_1, \phi])$ if $x \in (\frac{1}{3}, \frac{2}{3})$, $u(t) = \eta (\frac{1}{3} - t, u(\frac{1}{3}))$ if $0 \le t \le \frac{1}{3}$, $u(\frac{1}{3}) \in \partial [-\phi, r\varphi_1]$, $u(t) = \eta (t - \frac{2}{3}, u(\frac{2}{3}))$ if $\frac{2}{3} \le t \le 1$ and $u(\frac{2}{3}) \in \partial [r\varphi_1, \phi]$. Hence, $\Gamma_r \neq \emptyset$ is a complete metric space in Y with the metric $\delta(u, v) = \max_{[0,1]} \|u(t) - v(t)\|_Y$. We may choose $b(t) \in C([\frac{1}{3}, \frac{2}{3}], [-\phi, \phi] - ([-\phi, -r\varphi_1] \cup [r\varphi_1, \phi]))$ such that $b(\frac{1}{3}) = -r\varphi_1$, $b(\frac{2}{3}) = r\varphi_1$ and $J_{\lambda}(b(t)) < 0$ for all $t \in [\frac{1}{3}, \frac{2}{3}]$. Define

$$r_r(t) = \begin{cases} b(t) & \text{if } t \in \left[\frac{1}{3}, \frac{2}{3}\right], \\ \eta\left(\frac{1}{3} - t, -r\varphi_1\right) & \text{if } t \in \left[0, \frac{1}{3}\right], \\ \eta\left(t - \frac{2}{3}, r\varphi_1\right) & \text{if } t \in \left[\frac{2}{3}, 1\right]. \end{cases}$$

Then, $e_r(t) \in \Gamma_r$ and $\sup_{t \in [0,1]} J_{\lambda}(e_r(t)) < 0$. By the definition of Γ_r and (7), we see that u_5 is a critical point given by the critical value $\inf_{u \in \Gamma} \sup_{t \in [0,1]} J_{\lambda}(u(t))$

R.W. Omana

< 0. Hence, $J_{\lambda}(u_5) < 0$ and $u_5 \neq 0$. Since we may assume that u = 0 is an isolated critical point in B(0,r), letting r go to zero, we get that u_5 must be sign-changing. Let

$$D = \{ u \in M : -\phi \le u(x) \le \phi \}.$$

From Theorem 8, D and $\overset{\circ}{D}$ are positively invariant under the descend flow of J_{λ} (negative pseudo-gradient flow). Let $U = \{h \in M : \exists t_h > 0 \text{ such that } \eta(t_h, h) \in \overset{\circ}{D}\}$ where $\eta(t, u)$ is the unique solution of the boundary value problem

$$\frac{\partial \eta(t, u)}{\partial t} = v(\eta(t, u)),$$

$$\eta(t, 0) = 0.$$

Then, U is an open set in Y and a positively invariant set under the negative pseudo-gradient flow of J_{λ} in M. Since $\eta(t, u)$ has continuous dependence on the initial value h, it is also easy to prove that ∂U is an invariant set under the negative pseudo-gradient flow. Moreover, J_{λ} is bounded from below on ∂U and satisfies the compactness condition (C) and the deformation property in M.

From Lemma 19, we know that there exists a path $L \subset M$ connecting $\overset{\circ}{P}$ and $-\overset{\circ}{P}$ such that $J_{\lambda}(u) < 0$ for all $u \in L$. Define $Z = \{tu : t > 0 \text{ and } u \in L\}$ and note that Z is homeomorphic to the set $\{(x, y) \in \mathbb{R}^2 : y \ge 0\}$ in \mathbb{R}^2 . We already know that P and -P are positively invariant sets under the negative pseudo-gradient flow. Thus, $U \cap Z$ is a bounded and relatively open set in Z and $\partial(U \cap Z) \neq \emptyset$. We may assume that $U \cap Z$ is connected, since otherwise, we consider a connected component $Z' \subset Z$ of $U \cap Z$, with $(0,0) \in Z$ instead of $U \cap Z$ and, by result of [18, Chapter 4], there exists at least one connected component $C \subset \partial Z$ such that $C \cap \overset{\circ}{P} \neq \emptyset$, $C \cap -\overset{\circ}{P} \neq \emptyset$ and $C \cap (M - (-P \cup P)) \neq \emptyset$. To apply the result of [18], we consider the homeomorphic image of U in \mathbb{R}^{2+} , add its reflection to the other half plane, obtaining so an open set in \mathbb{R}^2 . Moreover, L can be chosen arcwise connected.

Since P and -P are positively invariant sets under the negative pseudo-gradient flow J_{λ} , let

$$V_P = \{h \in M : \exists t_h \ge 0 \text{ such that } \eta(t_h, h) \in \overset{\circ}{P} \}, \text{ and}$$
$$V_{-P} = \{h \in M : \exists t_h \ge 0 \text{ such that } \eta(t_h, h) \in -\overset{\circ}{P} \}.$$

From the strongly order preserving property of the inverse operator K, the sets V_P , V_{-P} , ∂V_P and ∂V_{-P} are invariant open sets of the negative pseudo-gradient

flow $\eta(t, u)$ in M. Let

$$C_{+} = \inf_{\substack{u \in \partial U \cap P}} J_{\lambda}(u),$$

$$C_{-} = \inf_{\substack{u \in \partial U \cap -P}} J_{\lambda}(u),$$

$$C_{0} = \inf_{\substack{u \in \partial U \cap V_{P}}} J_{\lambda}(u).$$

Then, C_+ , C_- and C_0 attain their minima say u_1^+ , u_3^- and u_6 respectively. Since $\partial U \cap P \neq \emptyset$, $\partial U \cap -P \neq \emptyset$ and $\partial U \cap \partial V_0 \neq \emptyset$ are invariant sets under the flow $\eta(t, u)$, we claim that u_1^+ , u_3^- and u_6 are critical points of J_λ for any fixed direction in J. In fact, $J_\lambda(u_1^+) \neq 0$ implies that $J_\lambda(\eta(t, u_1^+)) < C_+$ for t > 0, but $\eta(t, u_1^+) \in \partial U \cap P$ for all t > 0, so we get a contradiction with the definition of C_+ . Similar arguments are used to prove that u_3^- and u_6 are critical points of J_λ . We have $u_1^+ > u_2^+ > 0$, $u_3^- < u_4^- < 0$. From the strong maximum principle and the fact that $u_6 \in \partial U \cap \partial V$, it follows that u_6 is sign-changing.

5.2 Proof of Theorem 7. From (f'_4) and using similar argument as in [4], we find $N = N(\lambda) > 0$ satisfying

$$-\triangle(Ne) > f(\lambda, x, Ne).$$

By the continuity of the function A(x, u) with respect to u for a.e. $x \in \Omega$ and by (A₁), we have

$$-\operatorname{div}(A(x, Ne)\nabla(Ne)) > -\beta \triangle(Ne) > f(\lambda, x, Ne).$$

Thus, Ne is a strict supersolution of (P_{λ}) , and for r > 0 small enough, $r\varphi_1 < Ne$ is a pair of subsolution and supersolution, $-Ne < -r\varphi_1$ is another one. By similar argument as in the proof of Theorem 5, the problem (P_{λ}) has a negative solution u_4^- and a positive solution u_2^+ such that $-Ne < u_4^- < -r\varphi_1$, $r\varphi_1 < u_2^+ < Ne$, u_2^+ is the minimal positive minimizer, u_4^- is the maximal negative minimizer of J_{λ} , and J_{λ} has a mountain-pass point $u_5 \in M$ such that $u_5 \in [-Ne, Ne] \setminus$ $([-Ne, -r\varphi_1] \cup [r\varphi_1, Ne]), u_4^- < u_5 < u_2^+, u_5 \neq 0$ and is sign-changing.

From (f'_2), there exists $u_0 > 0$ such that $f(\lambda, x, u) > 0$ and $\frac{f(\lambda, x, u)}{F(\lambda, x, u)} \ge \frac{\theta}{u}$ for all $u \in \max\{u_0, R\}$ for some R > 0. Hence, $F(\lambda, x, u) \ge Cu^{\theta}$ for some C > 0. Therefore, there exists a constant $C_1 > 0$ such that

$$J_{\lambda}(u) \leq \frac{\beta}{2} \left(\int_{\Omega} \left(|\nabla u|^2 - \frac{2C}{\beta} u^{\theta} \right) dx \right) + C_1.$$

Since $\theta > 2$, if we choose $u = t\varphi_1$ for t > 0 then $J_{\lambda}(t\varphi_1) \to -\infty$ as $t \to \infty$. Hence, there exists $T_0 > N$ such that

(23)
$$J_{\lambda}(T_0\varphi_1) < 0, \quad \left. \frac{d}{dt} J_{\lambda}(te) \right|_{t=T_0} < 0,$$

and

(24)
$$\frac{d}{dt}J_{\lambda}(te)\big|_{t=N} < 0,$$

since e(x) is fixed in M and v(t) = te(x) is linear. Hence, by implicit functions theorem, there exists T_1 with $N < T_1 < T_0$ such that $T_1e \in \partial U$. Therefore, $\partial U \cap \{u_2^+ + P\} \neq \emptyset$, where $w + P = \{u = w + v, v \in P\}$. By a similar argument we get $\partial U \cap \{u_2^+ - P\} \neq \emptyset$. Let φ_1 and φ_2 be the first and the second eigenfunctions of the problem

$$\begin{aligned} -\Delta u - \lambda u, & x \in \Omega, \\ u = 0, & x \in \partial \Omega \end{aligned}$$

Substituting $v \in \text{Span}\{\varphi_1, \varphi_2\}$ for e(x) in (23) and (24), and using a similar argument, we get $\partial U \cap (M - (-P \cup P)) \neq \emptyset$. Since P, -P are positively invariant under η , if V_P and V_{-P} are defined as in the proof of Theorem 5, then by similar argument, ∂V_P , V_P , ∂V_{-P} , V_{-P} , $u_2^+ + P$ and $u_4^- - P$ are invariant sets. Let

$$C_{+} = \inf_{\substack{u \in \partial U \cap (u_{2}^{+}+P)}} J_{\lambda}(u),$$

$$C_{-} = \inf_{\substack{u \in \partial U \cap (u_{4}^{-}-P)}} J_{\lambda}(u),$$

$$C_{0} = \inf_{\substack{u \in \partial U \cap V_{P}}} J_{\lambda}(u).$$

Using a similar argument as in the proof of Theorem 5, we get that our six solutions $u_1^+ > u_2^+ > 0$, $u_3^- < u_4^- < 0$, u_5 and u_6 are sign-changing. The proof is complete.

Acknowledgment. The author would like to thank the referees for helpful suggestions and comments.

References

- Alama S., Del Pino M., Solutions of elliptic equation with indefinite nonlinearities via Morse theory and linking, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 95–115.
- [2] Alama S., Tarantello G., On semilinear elliptic equations with indefinite nonlinearities, Calc. Var. Partial Differential Equations 1 (1993), 469–475.
- [3] Amann H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620–709.
- [4] Ambrosetti A., Brezis H., Cerami G., Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519–543.
- [5] Ambrosetti A., Azorero J.G., Peral I., Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. 137 (1996), 214–242.
- [6] Ambrosetti A., Azorero J.G., Peral I., Existence and multiplicity results for some nonlinear elliptic equations, a survey, SISSA preprint 4/2000/M.

- [7] Arcoya D., Boccardo L., Some remarks on critical point theory for nondifferentiable functionals, Nonlinear Differential Equations Appl. 6 (1999), 79–100.
- [8] Arcoya D., Carmona J., Pellacci B., Bifurcation for some quasi-linear operators, SISSA preprint, 1999.
- [9] Artola M., Boccardo L., Positive solutions for some quasi-linear elliptic equations, Comm. Appl. Nonlinear Anal. 3 (1996), no. 4, 89–98.
- [10] Chang K.C., Infinite dimensional Morse theory and multiple solution problems, Birkhäuser, Boston, 1993.
- [11] Chang K.C., H¹ versus C¹ isolated critical points, C.R. Acad. Sci. Paris, Sér. I Math. **319** (1994), 441–446.
- [12] Dancer E.N., and Du Yihong, A note on multiple solutions for some semilinear elliptic problems, J. Math. Anal. Appl. 211 (1997), 626–640.
- [13] de Figueiredo D.G., Positive solutions of semilinear elliptic problems, in Variational Methods in Analysis and Mathematical Physics, ICTP Trieste autumn course, 1981.
- [14] Mawhin J., Willem M., Critical point theory and Hamiltonian Systems, Springer, New York, 1989.
- [15] Li. S., Wang Z.Q., Mountain-pass theorem in order intervals and multiple solutions for semilinear elliptic Dirichlet's problems, J. Anal. Math. 81 (2000), 373–395.
- [16] Li S., Zhang Z., Sign-changing solutions ad multiple solution theorems for semilinear elliptic boundary value problems with jumping nonlinearities, Acta Math. Sinica 16 (2000), no. 1, 113–122.
- [17] Struwe M., Variational Methods: Applications to Nonlinear Partial Differential Equation and Hamiltonian Systems, Springer, Berlin, 1990.
- [18] Whyburn G.T., Topological Analysis, Princeton University Press, Princeton, 1958.

Département de Mathématiques, Université de Kinshasa, B.P. 190, Kinshasa XI, R.D. Congo

E-mail: rwalo@yahoo.com

(Received August 28, 2003, revised December 14, 2006)