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Tanaka spaces and products of sequential spaces
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Abstract. We consider properties of Tanaka spaces (introduced in Mynard F., More
on strongly sequential spaces, Comment. Math. Univ. Carolin. 43 (2002), 525–530),
strongly sequential spaces, and weakly sequential spaces. Applications include product
theorems for these types of spaces.
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Introduction

We assume that all spaces are regular and T1, and that all maps are continuous
surjections.
In 1976, the author [23] investigated a characterization for the product of a

sequential space with a first countable space to be sequential, introducing the
following key condition:

(C) For every decreasing sequence (An) in X with x ∈ clAn for any n ∈ N,
there exist xn ∈ An such that {xn : n ∈ N} converges to some point p ∈ X .

When p = x, such a space X is a strongly Fréchet space [21] (or, countably
bi-sequential space [10]). Strongly Fréchet spaces have played an important role
in studying products of Fréchet spaces.
The following question was essentially raised in [23]: For a sequential space X

with property (C), is X × Y sequential for any first countable space Y ?
F. Mynard proved in [13] that a space X is strongly sequential if and only

if X × Y is sequential for any first countable space Y , introducing “strongly
sequential spaces”, and then he showed in [14] that a strongly sequential space is
exactly a sequential space with condition (C), which gives an affirmative answer
to the above question.
A space is a Tanaka space [14] if it satisfies condition (C). A spaceX is strongly

sequential [13] if, whenever (An) is a decreasing sequence in X with x ∈ clAn

for any n ∈ N, then the point x belongs to the (idempotent) sequential closure
of the set A of limit points of convergent sequences {xn : n ∈ N} with xn ∈ An

(equivalently, X is a sequential space such that if {An : n ∈ N} is a decreasing
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sequence in X with x ∈ clAn for any n ∈ N, then the point x belongs to the
(usual) closure of the set A).

A strongly sequential space, or a locally sequentially compact space is a Tanaka
space, but a Tanaka space need not be (strongly) sequential.

In this paper, we consider properties of Tanaka spaces, strongly sequential
spaces, and weakly sequential spaces. As applications, we consider products of
these types of spaces and sequential spaces. Also, we will pose some questions on
these spaces and their product spaces.

For a cover P of a space X , P is a determining cover [29] (or, P determines
X [5]), if U ⊂ X is open in X if and only if U ∩P is relatively open in P for every
P ∈ P . Here, we can replace “open” by “closed”. Obviously, every open cover is
a determining cover. Recall that a space X is a sequential space (resp. a k-space,
a quasi-k-space) if X has a determining cover by all compact metric sets (resp.
compact sets, countably compact sets) in X . We note that we can replace “all”
by “some”, and also “compact metric sets” by “convergent sequences (containing
its limit point) ”. A space is weakly sequential [24] if it has a determining cover
by sequentially compact sets. A strongly sequential space is sequential, and a
sequential space is weakly sequential.

A map f : X → Y is bi-quotient [9] (resp. countably bi-quotient [21]) if, when-
ever y ∈ Y and U is a cover (resp. a countable cover) of f−1(y) by open sets,
then finitely many f(U) with U ∈ U cover a neighborhood of y in Y . Then, open
maps are bi-quotient, bi-quotient maps are countably bi-quotient, and countably
bi-quotient maps are quotient maps. A (finite or infinite) product of bi-quotient
maps is a bi-quotient map ([9]).

Many (local) topological properties (P ) relevant to our purpose can be charac-
terized as follows: A space Y has property (P ) if and only if there exists a space
X with property (Q) and a quotient map f : X → Y of the type p, where (Q) is
a (nice) property stronger than (P ) and p determines how good the quotient map
is. We gather below such results from [10]. Recall that an M -space is exactly a
space admitting a quasi-perfect map (i.e., closed with countably compact fibers)
onto a metric space.

Characterizations: (A) A space X is respectively bi-sequential, bi-k, bi-quasi-k
if and only if it is a bi-quotient image of a metric space, a paracompactM -space,
anM -space. Here, the latter two domains can be chosen to be a subset of X ×M
for some metric space M (the same holds in (B) and (C) below).

(B) A space X is respectively countably bi-sequential, countably bi-k, count-
ably bi-quasi-k if and only if it is a countably bi-quotient image of a metric space,
a paracompact M -space, an M -space.

(C) A spaceX is respectively sequential, k, quasi-k if and only if it is a quotient
image of a metric space, a paracompact M -space, an M -space.
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Results

Proposition 1. (1) Let X be a weakly sequential or Tanaka space. Then a
subset S of X is sequentially compact (resp. weakly sequential) if and only if S
is countably compact (resp. quasi-k).
(2) The following are equivalent:

(a) X is weakly sequential;
(b) X is a quasi-k-space whose countably compact sets are sequentially com-
pact;

(c) X is a quotient image of a Tanaka M -space.

(3) The following are equivalent:

(a) X is sequential;
(b) X is a weakly sequential space whose countably compact sets are closed
in X ;

(c) X is a quotient image of a metric space.

Proof: (1). The “only if” part is obvious. For the “if” part, any infinite sequence
in a countably compact set in X can be assumed to be not closed in X . Then,
since X is a weakly sequential or Tanaka space, we see that a subset S of X is
sequentially compact if S is countably compact. Thus, the parenthetic part also
holds.
(2). (a)⇔(b) holds by (1). For (b)⇒(c), let T be the topological sum of all

countably compact (hence, sequentially compact) sets in X . Then T is a Tanaka
M -space, and X is the quotient image of T . For (c)⇒(a), an M -space is quasi-
k by Characterization (C), thus a Tanaka M -space is weakly sequential by (1).
Then X is weakly sequential, for the weak sequentiality is obviously preserved by
quotient maps.
(3). (a)⇔(c) holds by Characterization (C). For (a)⇒(b), a countably compact

set K in X is closed in X , because K ∩ L is closed in X for every convergent
sequence L in X . For (b)⇒(a), let F ⊂ X , and assume that F ∩L is closed in X
for every convergent sequence L in X . To show that F is closed in X , let C be a
countably compact set in X . Then C is sequentially compact by (1), thus F ∩ C
is sequentially compact by the assumption, hence, F ∩ C is closed in X by (b).
This implies that F is closed in X since X is a quasi-k-space. �

Recall that a space X is a GO-space if X is a subspace of a LOTS, that
is, a linearly ordered space. In a GO-space X , every countably compact set
K is sequentially compact, because any sequence in K has a monotone, hence
convergent, subsequence in K. Thus, the following holds by Proposition 1(2).

Corollary 2. A GO-space is weakly sequential if and only if it is a quasi-k-space.

Recall that a space X has countable tightness , denoted t(X) ≤ ω, if whenever
x ∈ clA, then x ∈ clC for some countable C ⊂ A (equivalently, X has a deter-
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mining cover by countable sets (cf. [10])). As is well-known, a sequential space or
a hereditarily separable space has countable tightness.
A space X is an A-space [11] if, whenever (An) is a decreasing sequence in X

with x ∈ cl(An − {x}), then there exist Bn ⊂ An such that
⋃
{clBn : n ∈ N} is

not closed in X . Also, X is an inner-closed A-space (resp. an inner-one A-space)
when the Bn are closed sets (resp. singletons). For the decreasing sequence (An),
if we assume

⋂
{An : n ∈ N} = ∅, then such a space X is respectively A′-space,

inner-closed A′-space, inner-one A′-space. For a space X with non-measurable
cardinality or t(X) ≤ ω, X is an A-space if and only if X is an A′-space. We can
add prefixes “inner-closed”, and “inner-one” ([11]).

In the following proposition, (1) and (2) are routinely shown, using Proposition
1(1), and (3) is due to [14].

Proposition 3. (1) A Tanaka space is inner-one A′. Thus, a Tanaka space of
non-measurable cardinality or of countable tightness is inner-one A.
(2) (i) A space is weakly sequential and inner-closed A′ if and only if it is weakly

sequential and inner-one A′ if and only if it is Tanaka and quasi-k.

(ii) A space X is weakly sequential and inner-closed A if and only if it is
weakly sequential and inner-one A. Such a space is a Tanaka and quasi-
k-space. The converse is true under the assumption that the cardinality
of X is non-measurable or that t(X) ≤ ω.

(3) The following are equivalent:

(a) X is a sequential inner-closed A-space;
(b) X is a sequential inner-one A-space;
(c) X is a sequential Tanaka space;
(d) X is a strongly sequential space.

Remark 4. (1) A compact space (hence inner-one A-space) need not be a weakly
sequential or Tanaka space in view of Proposition 1(1). Also, a countable inner-
one A-space need not be a Tanaka or quasi-k-space. Indeed, the compact sequen-
tial space Ψ∗ in [3, Example 7.1] contains a subset S = N ∪ {∞}. Since Ψ∗ is
sequential inner-closed A, any subset of Ψ∗ is inner-one A by [11, Proposition 5.4],
hence so is S. But, S is not a Tanaka or quasi-k-space, for any compact set in S
is finite.
(2) Under (MC) (i.e., the existence of a measurable cardinal), the space X∗

(with the only non-isolated point x∗) in [10, Example 10.16] is a (hereditarily)
Tanaka space, but it is not an inner-one A-space with t(X∗) > ω, not a quasi-k-
space. Indeed, if x∗ ∈ clAn (An ⊃ An+1),

⋂
{An : n ∈ N} 6= ∅, and no countable

subset in X∗ has an accumulation point in X∗, as is shown in [10]. Also, a Tanaka
space or even a sequentially compact space need not be a k-space by [2, 3.10.I].
Without (MC), the author does not know whether a Tanaka space is a quasi-k-
space. In other words, he has the following question in view of Proposition 1: Is
a weakly sequential space exactly a quotient image of a Tanaka space ?
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The following follows from Propositions 1(1) & 3(2), and Corollary 2.

Corollary 5. Let X be an inner-closed A and quasi-k-space, in particular, a
countably bi-quasi-k-space ([10]).

(1) The following are equivalent:

(a) X is a Tanaka space;
(b) X is weakly sequential;
(c) Any countably compact set in X is sequentially compact.

(2) If X is a sequential space or a GO-space, then X is a Tanaka space.

In the following lemma, (i) in (1) follows from [11, Theorem 6.3 and Propo-
sition 2.4], and (ii) follows from [11, Theorem 6.7 and Proposition 3.1] (cf. [10,
Theorem 9.9]). (2) follows from [10, Theorem 9.5 and Lemma 9.6].

Lemma 6. (1) Let f : X → Y be a closed map. Then the following hold.

(i) f is countably bi-quotient if Y is an A′-space.
(ii) Each boundary ∂f−1(y) is countably compact if X is normal or countably
paracompact, and Y is inner-closed A.

(2) A quotient map f : X → Y is bi-quotient if f is Lindelöf andX is paracompact
(resp. f is an s-map and X is meta-Lindelöf ), and Y is an inner-closed A-space
with t(Y ) ≤ ω. Here, a map is Lindelöf (resp. an s-map) if each fibers is Lindelöf
(resp. separable).

Recall that a cover P of a space X is a k-network if, for any compact set K
of X and any open set V ⊃ K, K ⊂ ∪ P ′ ⊂ V for some finite P ′ ⊂ P . When K
is any convergent sequence (containing its limit point), some P ∈ P with P ⊂ U
contains a subsequence ofK (not necessarily containing the limit point), then such
a cover P is a wcs∗-network [7] which is a useful generalization of k-networks. For
a survey on k-networks, see [28].

A space X is a q-space [8] if each x ∈ X has a q-sequence {Vn : n ∈ N} of
neighborhoods of x (i.e., if xn ∈ Vn, {xn : n ∈ N} has an accumulation point).
A q-space is characterized as an open image of an M -space; see [10].

The Arens’ space S2 is a quotient space obtained from the topological sum of
{Ln : n ∈ N}, where Ln are the convergent sequence {1/n : n ∈ N} ∪ {0}, by
identifying each 1/n ∈ L1 with 0 ∈ Ln (n ≥ 2). The quotient space S2/L1 is the
sequential fan Sω.

Proposition 7. (1) Let X be a Fréchet space, a sequential hereditarily normal
space, or a space with Gδ-points (i.e., a space whose points are Gδ-sets). Then
X is a Tanaka space if and only if it is strongly Fréchet.

(2) Let X be a space with a point-countable wcs∗-network. If X is a k-space
or t(X) ≤ ω, then X is a Tanaka space if and only if it is first countable (actually,
X has a point-countable base).
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(3) Let X be a closed image of a countably bi-quasi-k-space (resp. a closed
image of an M -space). Then X is a Tanaka space if and only if it is a weakly
sequential and countably bi-quasi-k-space (resp. a weakly sequential and q-space).
(4) LetX be a quotient Lindelöf image of a paracompact bi-quasi-k-space (resp.

a quotient s-image of a meta-Lindelöf bi-quasi-k-space). If t(X) ≤ ω, then X is
a Tanaka space if and only if it is a weakly sequential and bi-k-space (resp. a
weakly sequential and bi-quasi-k-space).

Proof: The “if” parts of (1)∼(4) hold by Corollary 5, so let X be a Tanaka
space for (1)∼(4).
(1). For X being a Fréchet space or a space with Gδ-points, X is strongly

Fréchet by [23, Lemma 2.1]. For X being a sequential hereditarily normal space,
since X contains no closed copy of S2, X is Fréchet by [6, Corollary 2.3], hence
strongly Fréchet.
(2). Let P be a point-countable wcs∗-network for X . Then P is a k-network

by [26, Proposition 1.2(1)] and Proposition 1(1). Thus X has a point-countable
k-network. Since X is a k-space or t(X) ≤ ω, X has a point-countable base in
view of the proofs of [5, Corollaries 3.5 and 3.6], replacing “countably bi-k-space”
by “Tanaka space of countable tightness” there.
(3). Since X is Tanaka and quasi-k, X is weakly sequential by Proposition 1(1).

SinceX is an A′-space by Proposition 3(1), any closed map ontoX is countably bi-
quotient by Lemma 6(1). Thus, X is countably bi-quasi-k in view of [10]. For the
parenthetic part, let f : S → X be a closed map with S anM -space. Since theM -
space S is countably bi-quasi-k, X is countably bi-quasi-k, hence inner-closed A.
While, S is countably paracompact, for everyM -space is countably paracompact.
Thus, each boundary ∂f−1(x) is countably compact by Lemma 6(1). Since f is
a closed map, for some closed set F in S, g = f |F is a quasi-perfect map onto X .
Thus, since F is an M -space, X is a q-space by [12, Theorem 4.2].
(4). X is weakly sequential, for X is Tanaka and quasi-k. Since X is inner-

closed A by Proposition 3(1), X is a bi-quotient image of a bi-k-space (resp. a
bi-quasi-k-space) by Lemma 6(2), here a paracompact bi-quasi-k-space is bi-k
([10, p. 94]). Thus X is bi-k (resp. bi-quasi-k) in view of [10]. �

Theorem 8. (1) Let t(X) ≤ ω. Then X is a hereditarily Tanaka space if and
only if it is strongly Fréchet.
(2) Let X be a Tanaka space. A subset S of X is a Tanaka space if S is a

closed or open set in X , or S is a quasi-k-space such that S is inner-closed A or
t(X) ≤ ω.
(3) A countably bi-quotient image of a Tanaka space is a Tanaka space.
(4) Let X be a Tanaka space, and Y be a Tanaka bi-quasi-k-space. Then X×Y

is a Tanaka space.

Proof: (1). The “if” part is obvious. For the “only if” part, any countable set
in X is a Tanaka space, hence strongly Fréchet by Proposition 7(1). Thus, since
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t(X) ≤ ω, X is strongly Fréchet by [10, Proposition 8.7].

(2). For S being open in X , S is obviously a Tanaka space (for, X is reg-
ular). So, let S be quasi-k. Then S is weakly sequential by Proposition 1(1).
Thus, when S is inner-closed A, S is a Tanaka space by Proposition 3(2). When
t(X) ≤ ω, since X is inner-one A by Proposition 3(1), S is inner-closed A by [11,
Proposition 5.3]. Thus S is also a Tanaka space.

(3). This holds, because for a countably bi-quotient map f : X → Y , if (An) is
a decreasing sequence in Y with y ∈ cl(An −{y}), then (f−1(An)) is a decreasing
sequence in X with x ∈ cl((f−1(An))− {x}) for some x ∈ f−1(y) ([21]).

(4). First, let Y be a q-space. To see that X × Y is a Tanaka space, let (An)
be a decreasing sequence in X ×Y with (x, y) ∈ clAn. Since Y is a q-space, there
exists a q-sequence {Vn : n ∈ N} of neighborhoods of y. Let Bn = An ∩ (X × Vn)
and let p : X × Y → X denote the projection. Then (p(Bn)) is a decreasing
sequence of subsets of X such that x ∈ cl p(Bn). But, Y is a Tanaka and q-space,
so that Y is weakly sequential by Proposition 1(1). Thus, if yn ∈ Vn, the sequence
{yn : n ∈ N} has a convergent subsequence. Hence, since X is a Tanaka space,
there exist pn ∈ Bn such that {pn : n ∈ N} converges to a point in X × Y .
Then X × Y is a Tanaka space. Next, let Y be a bi-quasi-k-space. Then Y is a
bi-quotient image of a q-space T , where T is a subspace of Y ×M for some metric
space M by Characterization (A). Thus Y × M is a Tanaka space by the above.
But, T is a q-space, hence an inner-one A and quasi-k-space. Thus T is a Tanaka
space by (2). Since X and T are Tanaka spaces, and T is a q-space, X × T is a
Tanaka space by the above. Since X ×Y is a bi-quotient image of X ×T , X × Y
is a Tanaka space by (3). �

Remark 9. (1) Let X be a Tanaka space. A subset S of X which is inner-one
A need not be a Tanaka space by Remark 4(1). While, every sequential and
inner-one A-space is a Tanaka space by Proposition 3(3). But, the author has the
following question: Is any sequential subset of a Tanaka space a Tanaka space ?

(2) A quotient finite-to-one image X of a countable metric space need not be
a Tanaka space (by taking X as the space S2).

(3) A product of countable strongly Fréchet spaces need not be a Tanaka space.
Indeed, there exists a countable strongly Fréchet space whose square is not Fréchet
(cf. [16]), hence the square is not a Tanaka space by Proposition 7(1). Moreover,
under (CH), there exist countable strongly Fréchet spaces X and Y such that
X × Y is Fréchet, but X × Y is not strongly Fréchet ([20]), hence it is not a
Tanaka space.

The following corollary is a consequence of Propositions 3(3) and 7, and The-
orem 8. For (3), note that a subset of a sequential space is sequential if it is
quasi-k (by Proposition 1(1) and (3)). (4) can be also obtained by means of [13,
Theorem 3.3].
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Corollary 10. (1) (i) Let X be a Fréchet space, a hereditarily normal space, or
a space with Gδ-points. Then X is strongly sequential if and only if it is
strongly Fréchet.

(ii) LetX be a space with a point-countable wcs∗-network. ThenX is strongly
sequential if and only if it is first countable.

(iii) Let X be a closed image of a countably bi-quasi-k-space (resp. a closed
image of an M -space). If X is sequential, then X is strongly sequential
if and only if it is countably bi-quasi-k (resp. q).

(iv) Let X be a quotient Lindelöf image of a paracompact bi-quasi-k-space
(resp. a quotient s-image of a meta-Lindelöf bi-quasi-k-space). If X is
sequential, then X is strongly sequential if and only if it is bi-k (resp.
bi-quasi-k).

(2) A hereditarily strongly sequential space is exactly strongly Fréchet.

(3) A subset of a strongly sequential space is strongly sequential if and only if
it is quasi-k.

(4) A countably bi-quotient image of a strongly sequential space is strongly
sequential.

(5) A countable product of spaces with Gδ-points is a Tanaka space if and only
if it is strongly Fréchet (equivalently, strongly sequential).

Remark 11. A squareX2 can be sequential but not strongly sequential (even not
a Tanaka space). For instance, ifX = Sω or S2, then X2 is known to be sequential
by [9, (7.5)] but not a Tanaka space. Also, X × Y can be sequential but not a
Tanaka space, even if X and Y are both strongly sequential (by Remark 9(3)).
However, under these circumstances, the author has the following question: Let
X and Y be both (strongly) sequential. If X × Y is a Tanaka space, is X × Y
sequential ?

The square of a compact Fréchet space (hence, strongly Fréchet space) need not
be Fréchet ([19]). But for a strongly Fréchet space X and a countably compact
space Y , if X × Y is Fréchet, it is a strongly Fréchet ([16]). Also, the square of

a countable strongly Fréchet space need not be quasi-k under (2ℵ0 < 2ℵ1) ([18]).
While, a product of a strongly Fréchet space with a sequential bi-quasi-k-space
is sequential ([14]). More generally, the following theorem holds ((2)(i) should be
compared to the above result in [14]).

Theorem 12. (1) (i) If X is strongly Fréchet and Y is bi-sequential, then X×Y
is (strongly) Fréchet. Conversely, if X × Y is Fréchet, then X is strongly
Fréchet or Y is discrete.

(ii) Let X be Fréchet, and Y be bi-quasi-k. Then X×Y is Fréchet if and only
if X × Y is strongly Fréchet, or Y is discrete.

(2) (i) Let X be strongly sequential, and let Y be sequential bi-quasi-k. Then
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X × Y is strongly sequential.

(ii) Let X be sequential, and Y be a sequential bi-k-space (resp. a bi-k-space).
Then X × Y is a sequential space (resp. a k-space) if and only if X is a
Tanaka space, or Y is locally countably compact.

Proof: (1). (i) is due to [10], here the latter part holds by the proof of [10,
Proposition 4.D.5]. For (ii), let X × Y be Fréchet with Y non-discrete. Then X
is strongly Fréchet by (a). Thus X × Y is a Tanaka space by Theorem 8(4) and
Corollary 5. Then X × Y is strongly Fréchet by Proposition 7(1).

(2). For (i), X×Y is sequential by [27, Corollary 9], and it is a Tanaka space by
means of Theorem 8(4). Then X × Y is strongly sequential by Proposition 3(3).
Part (ii) holds by means of [27, Corollary 9 and Lemma 16]. �

Remark 13. In (1) in Theorem 12, we cannot replace “bi-sequential (or bi-
quasi-k)” with “strongly Fréchet” by Remark 9(3). For (2), the author has the
following question: Let X be sequential, and Y be sequential bi-quasi-k. Does
the conclusion in (2)(ii) remain true ?

Theorem 14. (1) Let X be weakly sequential. If Xω is a quasi-k-space, then it
is weakly sequential.

(2) Let X be weakly sequential and t(X) ≤ ω. If Xω is a k-space (resp. a
quasi-k-space), then Xω (resp. X) is a Tanaka space.

(3) Let X be sequential. If Xω is a quasi-k-space, then it is strongly sequential.

Proof: (1). Since Xω is quasi-k, it has a determining cover {K;K is countably
compact in Xω}. But, for each countably compact set K in Xω, K ⊂ ΠKi

for some countably compact sets Ki in X . Thus Xω has a determining cover
C = {ΠKi : Ki is countably compact in X}. But, the countably compact sets Ki

in X are sequentially compact by Proposition 1(1), then so is ΠKi by [2, 3.10.35].
Hence, Xω is weakly sequential.

(2). Since Xω is quasi-k and t(X) ≤ ω, X is inner-one A by refering to [25,
Theorem 4.13]. Thus, X is a Tanaka space by Proposition 3(2). Let Y = Xω.
Then Y ω(∼= Xω) is a k-space and Y is weakly sequential by (1). Then, it suffices to
show that t(Y ) ≤ ω, hence we show that any compact set K of Y has countable
tightness by [25, Corollary 1.13(2)], for Y is a k-space. But, K ⊂ ΠKi and
the compact set ΠKi has countable tightness in view of [2, 3.12.8], then K has
countable tightness.

(3). Since X is sequential, by Proposition 1(3), any countably compact set in
X is closed, hence sequential. Thus, by [15, Theorem 4.5], the elements ΠKi of
the determining cover C of Xω in (1) are sequential since each Ki is countably
compact sequential. ThenXω is sequential, and thusXω is a Tanaka space by (2).
Hence Xω is strongly sequential by Proposition 3(3). �
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Remark 15. In Theorem 14(2), “t(X) ≤ ω” is essential. Indeed, under (CH),
there exists a (weakly sequential) space X which is an image of a locally compact
Lindelöf space under a closed map f , and Xω is a k-space, but X is not locally
compact ([1]). Since X is not locally compact, the closed map f is not bi-quotient,
hence not countably bi-quotient. ThenX is not anA′-space by Lemma 6(1), hence
not a Tanaka space.

The square of a countably compact space need not be a quasi-k-space ([10,
Example 10.7]), nor an inner-one A-space by the proof there, using [11, Exam-
ple 11.17]. But, the following holds.

Corollary 16. Let X be a bi-quasi-k-space. Then the following hold.
(1) If X is a Tanaka space (equivalently, a weakly sequential space), then Xω

is a Tanaka (weakly sequential) bi-quasi-k-space.
(2) If X is sequential, then Xω is a strongly sequential bi-quasi-k-space.

Proof: (1). By Characterization (A), X is a bi-quotient image of an M -space
S, where S ⊂ X × M for some metric space M . Since X is a Tanaka space, any
countably compact set in X is sequentially compact by Proposition 1(1), hence
so is any countably compact set in X × M , hence in S. Thus, Sω is an M -space
by [22, Corollary 1]. While, Xω is a bi-quotient image of Sω. Therefore Xω

is bi-quasi-k, thus quasi-k. Then, by Theorem 14(1) Xω is weakly sequential
(equivalently, a Tanaka space by Corollary 5).
(2). This holds by Theorem 14(3), for Xω is quasi-k by (1). �

Corollary 17. Let X be sequential. Concerning equivalent relations among the
following (a)∼(g), (1), (2), and (3) below hold:

(a) Xω is quasi-k;
(b) Xω is sequential;
(c) Xω is strongly sequential;
(d) Xω is Fréchet;
(e) Xω is strongly Fréchet;
(f) Xω is countably bi-quasi-k;
(g) X is bi-quasi-k.

(1) (a), (b), and (c) are equivalent, and so are (d) and (e).
(2) (i) If X is a space with Gδ-points, then (a)∼(f) are equivalent.

(ii) If X is a space with a point-countable wcs∗-network, then (a)∼(g) are
equivalent.

(iii) Suppose that X is a closed image of an M -space, a quotient Lindelöf
image of a paracompact bi-quasi-k-space, or a quotient s-image of a meta-
Lindelöf bi-quasi-k-space. Then (a), (b), (c), (f) and (g) are equivalent.

In (ii) and (iii), for (g), X is respectively first countable, q, bi-k if X is a space
with a point-countable wcs∗-network, a closed image of an M -space, a quotient
Lindelöf image of a paracompact bi-quasi-k-space.
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(3) If X is a closed image of a normal bi-k-space, then (a), (b), (c), and (f) are
equivalent.

Proof: (1). (a)⇔(b)⇔(c) holds by Theorem 14(3). (d)⇒(e) holds by Corol-
lary 10(1), for Xω is strongly sequential and Fréchet.
(2). This holds by Corollaries 10 and 16(2).
(3). Let f : S → X be a closed map with S normal bi-k. Let Xω be sequential

(hence, X is strongly sequential). Since S is normal and X is inner-closed A, each
∂f−1(x) is countably compact by Lemma 6(1). Thus, we can assume that the
map f is quasi-perfect (by the proof of Proposition 7(3)). Since S is a k-space
and Xω is sequential, by [22, Theorem 2], fω is quasi-perfect, hence countably
bi-quotient. Then Xω is a countably bi-quotient image of Sω . Since Sω is bi-k
([10]), Xω is countably bi-k. �

Remark 18. (1) Related to Corollary 17, it is also given in [13] that (b) implies
X is strongly sequential. For a closed image X of a countably bi-quasi-k-space,
(b) implies X is countably bi-quasi-k by Corollary 10(1), but the author has the
following question: Let X be a closed image of a countably bi-quasi-k-space. If
Xω is sequential, is Xω (or X) bi-quasi-k ?
(2) In Corollary 17, (c) need not imply (d). Indeed, there exists a compact

Fréchet space X such that X2 is not Fréchet ([19]), but Xω is strongly sequential
by Corollary 16(2). Also, (e) need not imply (g). Indeed, under (CH) there exists
a countable space X such that Xω is strongly Fréchet, but X is not bi-sequential
([17]), hence not bi-quasi-k by [10, Theorem 7.3].
(3) A product Xω need not be a Tanaka or quasi-k-space even if any finite

product Xn is strongly Fréchet. Indeed, under (MA) there exists a countable
space X such that any Xn is strongly Fréchet, but Xω is not Fréchet ([4]), hence
not a Tanaka or quasi-k-space by Corollaries 10(5) and 17.

Finally, we give the following questions on products. (1), (2), (3), and (4)
relate respectively to Theorem 12(2), Theorem 14 with Remark 15, Corollary 16
with Remark 18(1), and Remark 18(3).

Question 19. (1) Let X be a Tanaka k-space, and Y be a metric or bi-k-space.
Is X × Y a k-space ?
(2) Let Xω be a k-space with X a Tanaka space. Is Xω a Tanaka or A′-space ?
(3) Let Xω be sequential. Is Xω (or X) countably bi-quasi-k ?
(4) Let Xω be sequential with any Xn (n ∈ N) Fréchet. Is Xω Fréchet ?
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[7] Lin S., Tanaka Y., Point-countable k-networks, closed maps, and related results, Topology
Appl. 59 (1994), 79–86.

[8] Michael E.A., A note on closed maps and compact sets, Israel J. Math. 2 (1964), 173–176.
[9] Michael E.A.,Bi-quotient maps and cartesian products of quotient maps, Ann. Inst. Fourier,
Grenoble 18 (1968), 287–302.

[10] Michael E.A., A quintuple quotient quest, General Topology Appl. 2 (1972), 91–138.
[11] Michael E., Olson R.C., Siwiec F., A-spaces and countably bi-quotient maps, Dissertationes

Math. 133 (1976), 4–43.
[12] Morita K., Some results onM-spaces, Colloquia Math. Soc. János Bolyai 8 (1972), 489–503.
[13] Mynard F., Strongly sequential spaces, Comment. Math. Univ. Carolin. 41 (2000), 143–153.
[14] Mynard F., More on strongly sequential spaces, Comment. Math. Univ. Carolin. 43 (2002),

525–530.
[15] Noble N., Products with closed projections, II, Trans. Amer. Math. Soc. 160 (1971), 169–

183.
[16] Nogura T., The product of 〈αi〉-spaces, Topology Appl. 21 (1985), 251–259.
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