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A categorical account of the

localic closed subgroup theorem

Christopher Townsend

Abstract. Given an axiomatic account of the category of locales the closed subgroup
theorem is proved. The theorem is seen as a consequence of a categorical account of the
Hofmann-Mislove theorem. The categorical account has an order dual providing a new
result for locale theory: every compact subgroup is necessarily fitted.
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1. Introduction

The closed subgroup theorem in locale theory ([IKPR]) is remarkable as it
shows a clear distinction between locale theory and ordinary point set topology.
It is not the case that every subgroup of a topological group is closed; it is the
case that every subgroup of a localic group is a closed sublocale. In its proof the
localic subgroup theorem uses the excluded middle. Since a motivation for locale
theory is to develop a theory that is true in any topos of sheaves (i.e. one that
is slice stable) it is natural that a version of the closed subgroup theorem was
developed that did not depend on the excluded middle. The theorem became: for
any localic subgroup H ≤ G then provided H is open as a locale, the subgroup
inclusion is weakly closed. In the presence of the excluded middle all locales are
open and weakly closed is the same condition as closed and so the original result
is recovered. In a recent paper ([T05]) an axiomatic account of the category of
locales is developed. Since this axiomatic account is strong enough to discuss the
relevant concepts (open maps, weakly closed) an investigation as to whether the
closed subgroup theorem held seemed worthwhile. The purpose of this paper is
to show that indeed the closed subgroup does hold. Further, what was found is
(a) the closed subgroup theorem is a consequence of a categorical account of the
Hofmann-Mislove theorem and (b) the theorem has an order dual which is that
every compact localic subgroup is fitted.
Let us outline the contents of the paper. In the next section we recall various

axioms that are to be put on a category C so as to make it behave like the category
of locales. Next we discuss how to describe weak-closure of a subobject in such
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a category and develop some lemmas about how this closure operation works
(for example, relative denseness is pullback stable). The next section proves the
(weakly) closed subgroup theorem. The final section describes the order duality
which exists with the axiomatic approach offered, this leads to an interpretation of
the order dual of the closed subgroup theorem in the case C = Loc, the category
of locales.
The reader is assumed to be familiar with lattice theory and category theory

(see [J82] and [MacL71] respectively). Since the proof is axiomatic the reader
does not necessarily need to fully understand locale theory though they must be
aware that the category of locales is a category set up to behave like the familiar
category of topological spaces.

2. Categorical axioms for locales

Here are the categorical axioms that we will place on a category C so that it
behaves like a category of locales.
I. C is order enriched, has finite limits, finite coproducts and finite products

distribute over coproducts,
II. there exists an order internal distributive lattice, the Sierpiński object , S,

such that for any morphism α : SX → S

⊓S(α × Id) ⊑ α ⊓
SX (Id×S

!X ),

III. for any two objects X and Y of C the map ⊗ : SX ×S
Y Sπ1×Sπ2

−−−−−−→ S
X×Y ×

S
X×Y ⊓

−→ S
X×Y is a universal join bilinear map,

IV. there is a KZ-monad (PL, ηL, µL) on C, the lower power monad , such that
there exists a natural order isomorphism,

C(Y, PL(X)) ∼= {α : SX → S
Y | α is a join semilattice homomorphism},

V. for any equalizerE
e
→֒ X

f
−→
−→

g
Y in C and any join semilattice homomorphism

α : SX → S
Z such that

α ⊓
SX (Id×S

f ) = α ⊓
SX (Id×S

g)

there exists a unique join semilattice homomorphism β such that βS
e = α; and,

VI. the map f 7−→ S
f reflects isomorphisms.

We do not make the assumption that S
X exists as an object of C. The object

S
X is the presheaf

C( × X, S) : Cop → Set

and so, for example, the morphism α : S
X → S

Z is a natural transformation.
Since join semilattice homomorphisms S

Y → S
X are in order isomorphism with
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suplattice homomorphisms ΩY → ΩX in the case C = Loc (see [TV02]) all of
these axioms are elementary observations from locale theory (Chapter II of [J82],
or [V89]).
To proceed we are going to need to use topological definitions relative to the

category C.

Definition 1. (a) A morphism f : X → Y of C is open if and only if S
f : SY →

S
X has a left adjoint ∃f : S

X → S
Y such that the Frobenius condition

⊓
SY (∃f × Id) = ∃f ⊓

SX (Id×S
f )

holds,
(b) an object X of C is open if and only if !X : X → 1 is open,
(c) i : X0 →֒ X is a subobject provided it is a regular monomorphism; and,
(d) a subobject i : X0 →֒ X is weakly closed provided if it is a lax equalizer of

a diagram f, g : X ⇉ Y universally setting g ⊑ f where f factors via the terminal
object 1.

See [JT84] for background on open maps in locales. Trivially the composition
of two open maps is open. If f : X → Y is an open morphism and is a split
epimorphism (split by i : Y → X say) then ∃f S

f = Id. This is because S
f∃fS

f =

S
f for any adjunction and S

f is a split monomorphism (split by S
i). We will call

upon this in the proof of the main theorem. Further note that by Axiom II it is

sufficient to construct a left adjoint to S
!X : S → S

X to prove that an object X is
open.
It can be shown axiomatically, as in the localic case, that open maps are pull-

back stable and the Beck-Chevalley condition holds for the pullback square. There
is a uniqueness aspect to this assertion which is that given any pullback square

X ×Y Z
p2

//

f∗p

��

Z

p

��

X
f

// Y

in C with p an open morphism then there exists a unique join semilattice homo-
morphism β : SX×Y Z → S

X which satisfies the Frobenius condition for f∗p and
for which the Beck-Chevalley condition

βS
p2 = S

f∃p

holds. This uniqueness assertion follows by an application of Axiom V, treating
the pullback as an equalizer in the usual manner.
In order to avoid a detailed exposition on the axiomatic approaches available

when studying Loc we will rely, without proof, on the following result which is
proved axiomatically in [T05].
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Theorem 2. For any object X , C(1, PLX) is naturally order isomorphic to
{X0 →֒ X | X0 open and X0 →֒ X a weakly closed subobject}.

This result is an order dualization (see Section 5) of a categorical proof of the
Hofmann-Mislove theorem, see [T05] for details. The order isomorphism of this
theorem is found, in one direction, by sending i : X0 →֒ X to the map

S
X Si

−−→ S
X0

∃X0−−−−→ S

and applying Axiom IV. In the other direction any morphism p : 1→ PLX gives
rise to a lax equalizer setting p!X ⊒ (ηL)X which is, by definition, weakly closed.
The (weakly) closed subgroup theorem relative to C will be established by

showing that any subgroup, which is open as a subobject, is isomorphic to its
weak closure. To make this work we are going to need to develop the notion of
weak closure and so will need to work out what it means, axiomatically, for a
subobject to be dense. This is the subject of the next section.

3. Dense subobjects

In this section we propose a new definition of dense sublocale. In the presence of
the excluded middle the new definition is exactly the usual definition. It is shown,
axiomatically, that any subobject X0 →֒ X in C with X0 open, factors uniquely
as a dense subobject followed by a weakly closed subobject. The remainder of
the section proves basic results about this weak closure operation.
Recall that the data for a locale map f : X → Y is given by a frame homo-

morphism Ωf : ΩY → ΩX [J82]. A locale map is dense if and only if Ωf(a) = 0
implies a = 0 for every a ∈ ΩX . For a category C satisfying the axioms the
following definition is proposed:

Definition 3. A morphism f : X → Y of C is dense if and only if X and Y are
open and

S
X

∃X
!!C

C

C

C

C

C

C

C

S
Y

S
f

oo

∃Y

��

S

commutes.

Whilst we have given the definition in terms of a general map, we shall not
be looking at situations where f is not a subobject. It is immediate that the
composition of two dense morphisms is dense.

Lemma 4. When C = Loc and the excluded middle is true, the two definitions
of dense are equivalent.
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Proof: If the excluded middle is true then all locales are open since for any
locale X the map ∃X : ΩX → Ω, defined by ∃X(a) = 0 if and only if a = 0,

provides a left adjoint for Ω!X . Verifying this lemma then becomes trivial. �

Enough definitions have now been given to enable us to state and prove the
main technical result.

Proposition 5. If C is a category satisfying the axioms then any subobject
i : X0 →֒ X , with X0 open, factors uniquely as

X0
�

� j
// X0

�

� i // X

where j is dense and i is weakly closed.

Proof: Let X0
i
→֒ X be the weakly closed subobject of X corresponding to the

point of PL(X) given by the join semilattice homomorphism,

α : SX Si

−−→ S
X0

∃X0−−−−→ S.

This weakly closed subobject exists by Theorem 2 and further, by that theorem,

X0 is an open object. X0
i
→֒ X is constructed as the lax equalizer setting pα!

X ⊒
(ηL)X where

pα : 1 −→ PL(X)

is the point corresponding to α (Axiom IV). To prove that i factors via i we must
check that

[A] pα!
X i ⊒ (ηL)X i.

Note that !X i =!X0 and that (ηL)X must correspond to the identity Id : S
X −→

S
X via Axiom IV. So to check [A], by Axiom IV this amounts to checking that

S
X S

i

−→ S
X0 is less than

S
X Si

−−→ S
X0

∃X0−−−−→ S
S!

X0

−−−−→ S
X0

which is immediate as ∃X0 is left adjoint to S
!X0 . Therefore there exists unique

j : X0 →֒ X0 such that ij = i. Now the proof of Theorem 2 (see the comments
above after the statement of the theorem) shows that

S
X S

i

−−→ S
X0

∃
X0−−−−→ S
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equals

α : SX Si

−−→ S
X0

∃X0−−−−→ S

and so, since S
i is epimorphic (Axiom V) and S

j
S

i = S
i we obtain that

S
X0

∃X0 ""E

E

E

E

E

E

E

E

E

S
X0

S
j

oo

∃
X0

��

S

commutes. Since we have observed already that X0 is open this is sufficient to
prove that j is dense.
Let us now tackle the uniqueness assertion. Say that i also factors is

X0
j′

→֒ X ′
0

i′
→֒ X.

What we will show is that if j′ is dense then i′ factors via i; this more general
assertion will be of use later. Next we will show that if i′ is weakly closed (with

open domain) then i factors via i′; this is sufficient to establish the uniqueness
assertion of the theorem.
Say j′ is dense. To prove that i′ factors via i we must check that

pα!
X i′ ⊒ (ηL)X i′

which amounts to checking that S
X S

i′

−−→ S
X′

0 is less than

S
X Si

−−→ S
X0

∃X0−−−−→ S
S!

X′

0

−−−−→ S
X′

0 .

But S
i = S

j′
S

i′ and as j′ is dense we have that ∃X0S
j′ = ∃

X′

0
and so this is

immediate as ∃
X′

0
is left adjoint to S

!X
′

0 .

On the other hand, say i′ is weakly closed with open domain. Then via Theo-
rem 2 it is the lax equalizer setting

pα′ !X ⊒ (ηL)X

where α′ is the map S
X S

i′

−−→ S
X′

0

∃
X′

0−−−→ S. So to prove that i factors via i′ we
must check that

pα′ !X i ⊒ (ηL)X i
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which amounts to checking that S
X S

i

−→ S
X0 is less than

[B] S
X Si′

−−→ S
X′

0

∃
X′

0−−−→ S
S!

X0

−−−−→ S
X0 .

Since j′ is dense S
X′

0

∃
X′

0−−−→ S factors as S
X′

0
S

j′

−−→ S
X0

∃X0−−−→ S and so [B] is equal
to

S
X Si

−−→ S
X0 Sj

−−→ S
X0

∃X0−−−−→ S
S!

X0

−−−−→ S
X0

since i′j′ = i = ij. But then by denseness of j we have that [B] equals

S
X Si

−−→ S
X0

∃
X0−−−−→ S

S!
X0

−−−−→ S
X0

and so we are done, again by the fact that ∃
X0
is left adjoint. �

It is natural to make the following definition for relative denseness.

Definition 6. Given morphisms j : X0 −→ X and f : X → Y in C, we say that
j is dense over f if and only if both f and fj are open maps and the diagram

S
X0

∃fj !!C
C

C

C

C

C

C

C

S
X

Sj
oo

∃f

��

S
Y

commutes.

With a slice stable account of C (see [T05]) this definition is equivalent to the
requirement that j is dense in the category C/Y . Clearly, if j : X0 −→ X is
dense over some f : X → Y and g : Y → Z is some other open morphism then
j : X0 −→ X is dense over gf : X → Z. Notice therefore that if j : X0 −→ X is
dense over any f : X → Y and Y is open, then j is dense.
Let us now check a lemma which is trivial but key to the main theorem below:

Lemma 7. Given morphisms X0
j
−→ X

f
−→
−→

g
Y in C together with automorphisms

φ : X → X and φ0 : X0 → X0 such that φj = jφ0 and fφ = g then j is dense
over f if and only if it is dense over g.

Proof: If f is open then so is g since φ is an isomorphism; ∃g = ∃f∃φ where

∃φ = S
φ−1
. If fj is open then so is gj since gj = fjφ0 and φ0 is an isomorphism.
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Therefore also ∃gj = ∃fjS
φ−1
0 and so

∃gjS
j = ∃fjS

φ−1
0 S

j

= ∃fjS
j
S

φ−1

= ∃f S
φ−1

= ∃g,

the second last line based on an assumption that j is dense over f . This shows
that j is dense over g given the assumption that it is dense over f .
The ‘if’ way round follows symmetrically. �

To end the section here are two technical lemmas on the relative notion of
denseness just introduced: (i) it is pullback stable and (ii) the intersection of two
dense subobjects is dense.

Lemma 8. We are given j : A0 −→ A and f : A → Y and a morphism p : Z → Y
in C and consider the pullback squares

B0
k //

g

��

B
g

//

r

��

Z

p

��

A0
j

// A
f

// Y

Then if j is dense over f , k is dense over g.

Proof: By the pullback stability of open morphisms we have, under the as-
sumption that j is dense over f , both g and gk are open. It remains to prove
that

S
B0

∃gk !!C
C

C

C

C

C

C

C

S
B

S
k

oo

∃g

��

S
Y

commutes. However, by the uniqueness of morphisms satisfying Beck-Chevalley
on the right hand pullback square, it is sufficient to verify that ∃gkS

k satisfies the
Frobenius condition on g and the Beck-Chevalley condition. Both assertions are
easy. For the Frobenius condition note that S

k is always a meet semilattice homo-
morphism as it is a distributive lattice homomorphism. For the Beck-Chevalley
condition:

(∃gkS
k)Sr = (∃gkS

q)Sj

= (Sp∃fj)S
j

= S
p∃f
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where the second last line is using Beck-Chevalley on the outer square and the
last line is by denseness of j over f . �

Lemma 9. Say f : X → Y is a morphism in C. Then if X0 →֒ X and X1 →֒ X
are two subobjects of X , both dense over f , then their intersection is a dense
subobject over f .

Proof: By definition of subobject we have two equalizers

(x) X0
�

�

iX0 // X
a1−→
−→
a2

A

and

(y) X1
�

�

iX1 // X
b1−→
−→
b2

B

and therefore the intersection of X0 and X1 is found by constructing the equalizer

X0 ∩ X1
�

�

iX0∩X1 // X
(a1,b1)
−→
−→
(a2,b2)

A × B.

Notice that we can find a join semilattice homomorphism α : S
X0∩X1 → S

Y

satisfying

S
X0∩X1

α
''N

N

N

N

N

N

N

N

N

N

N

N

S
X

S
iX0∩X1

oo

∃f

��

S
Y

by applying Axiom V since it can be verified that ∃f : S
X → S

Y composes equally
with

S
X × S

A×B
⊓(Id×S

(a1,b1))
−→
−→

⊓(Id×S(a2,b2))

S
X

by using Axiom V on the equalizers (x) and (y), and applying Axiom III. To
complete it therefore remains to check that fiX0∩X1 is open with ∃fiX0∩X1

= α.

We clearly have that αS
fiX0∩X1 ⊑ Id since ∃fS

f ⊑ Id. Also S
fiX0∩X1αS

iX0∩X1 ⊒

S
iX0∩X1 since S

f∃f ⊒ Id and so S
fiX0∩X1α ⊒ Id by application of the uniqueness

part of Axiom V. Therefore α is left adjoint to S
fiX0∩X1 and it remains only to

check the Frobenius condition. In fact since S
iX0∩X1

×Id is a surjection (Axiom V

again), and using the fact that ⊗ : SX × S
Y → S

X×Y is universal bilinear, it is
sufficient to check

α ⊓ (SiX0∩X1 × S
iX0∩X1S

f ) = ⊓(αS
iX0∩X1 × Id)

which is immediate. �
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4. Closed subgroup theorem

The weak closure operation in C extends to the category of internal monoids
in C. Once this is established in the next lemma it will be trivial to extend the
result to groups. But it will then become clear, for groups, that the weak closure
operation is trivial: all subgroups, that are open as objects, are already weakly
closed.

Lemma 10. If (M, ∗M , e) is an internal monoid in C and iM0
: M0 →֒ M is a

submonoid with M0 an open object, then iM0
:M0 →֒ M is a submonoid of M .

Proof: By pulling back M0
j
→֒ M0

!M0
−−→ 1 along itself we see that

M0 × M0
�

� j×Id
// M0 × M0

is dense over π2 :M0 × M0 → M0 by Lemma 8. It is therefore dense. By pulling

back M0
j
→֒ M0

!M0
−−→ 1 along M0

!M0
−−→ 1 we see that

M0 × M0
�

� Id×j
// M0 × M0

is dense over π1 :M0×M0 → M0. It is therefore dense. Hence M0 × M0
�

� j×j
//

M0 × M0 is dense as it is the composition of two dense morphisms. This is then
sufficient, by use of Proposition 5, to show that there exists ∗

M0
making the

diagram

M0 × M0

∗M0

��

�

� j×j
// M0 × M0

∗
M0

��

�

�

iM0×iM0 // M × M

∗M

��

A0
�

� j
// M0

�

�

iM0 // M

commute. �

We can now prove the main result.

Theorem 11. If G is an internal group in C and iH : H →֒ G is a subgroup with
H an open object in C then iH is weakly closed.

Proof: Firstly the previous lemma extends to groups; since j : H →֒ H is dense
the map

H
�

� iH // G
invG−−−→ G
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factors through H
�

� iH // G where invG is the group inverse. This is by applica-
tion of Proposition 5.
Next consider the pullbacks

H × H

π1

��

�

� j×Id
// H × H

π1

��

π2 // H

��

H
�

� j
// H // 1

By Lemma 8, H × H
�

� j×Id
// H × H is dense over π2 : H×H → H . Symmetrically

H × H
�

� Id×j
// H × H is dense over π1 : H ×H → H . Now, finally using the fact

that we have a group,
(π1, ∗H

) : H × H → H × H

is an automorphism with π2(π1, ∗H
) = ∗

H
and

(∗
H

, π2) : H × H → H × H

is an automorphism with π1(∗H
, π2) = ∗

H
. (Indeed a monoid is a group if and

only if these maps are automorphisms.) The inverses are given by
(π1, ∗H

(inv
H

π1, π2)) and (∗H
(π1, invH π2), π2) respectively. Further

(j × Id)(π1, ∗H
) = (π1, ∗H

)(j × Id) and so by Lemma 7 H × H
�

� j×Id
// H × H

is dense over ∗
H
. Also (Id×j)(∗

H
, π2) = (∗H

, π2)(Id×j) and so by the same

lemma, H × H
�

� Id×j
// H × H is dense over ∗

H
. It follows by the stability of

relative denseness proved above that H × H
�

� j×j
// H × H is dense over ∗H

as it

is the intersection of H × H
�

� Id×j
// H × H and H × H

�

� j×Id
// H × H .

Intuitively we are now done since ∗
H
is a split epimorphism and so the dense-

ness assertion just obtained shows that ∗
H
(j× j) is epimorphic which is sufficient

as this morphism factors through j : H →֒ H , a monomorphism, so forcing it to
be an isomorphism.
Let us furnish the details. As ∗

H
is a split epimorphism and open we have that

∃∗
H

S
∗

H = Id. Recalling that of course we have a commuting square,

H × H

∗H

��

�

� j×j
// H × H

∗
H

��

H
�

� j
// H
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then,

(∃∗
H
(j×j)S

∗H )Sj = ∃∗
H
(j×j)S

j×j
S
∗

H

= ∃∗
H

S
∗

H

= Id .

But then we also have, S
j(∃∗

H
(j×j)S

∗H )Sj = S
j and so S

j(∃∗
H
(j×j)S

∗H ) = Id

applying Axiom V, available since j is a regular monomorphism. S
j is therefore

an isomorphism and we are done by Axiom VI. �

5. The order dual result

Not only does the category Loc satisfy the axioms, but so too does Locco,
the category of locales with reversed order enrichment. Axiom I is clearly order
dual since it does not say anything about the order enrichment other than that it
exists. Axiom II becomes, “for any meet semilattice homomorphism, α : SX → S,

α ⊔
SX (Id×S

!X ) ⊑ ⊔S(α × Id).”

This can be verified as morphisms S
X → S are in bijection with Scott continuous

maps (i.e. dcpo homomorphisms) ΩX → Ω ([TV02]) and Ω!X : Ω→ ΩX is given
by

i 7−→
∨↑

{0ΩX} ∪ {1ΩX | i = 1Ω}.

Axiom III becomes the assertion that the map ⊙ : SX ×S
Y Sπ1×Sπ2
−−−−−−→ S

X×Y ×

S
X×Y ⊔

−→ S
X×Y is a universal meet bilinear map. This is exactly the preframe

tensor description of locale product made explicit in [JV91].
That there is a coKZ-monad (PU , ηU , µU ) enjoying

Loc(Y, PU (X)) ∼= {α : SX → S
Y | α is a meet semilattice homomorphism},

is the well known upper power locale construction (e.g. Chapter 11 of [V89]).
Axiom V, applied to Locco, is a consequence of the preframe coverage theorem

of [JV91] and Axiom VI is clear as it is order dual.

So we can immediately deduce by the main theorem that if iH : H →֒ G is
a subgroup in Loc (i.e. exactly a subgroup in Locco) and !H : H → 1 is open

in Locco then iH is weakly closed relative to Locco. Now !H is open in Locco

if and only if S
!H has a right adjoint, and this is well known to be equivalent to

compactness as such a right adjoint corresponds to a dcpo homomorphism. Of
course iH is weakly closed relative to Locco if an only if it is a lax equalizer of a
diagram f, g : X ⇉ Y universally setting f ⊑ g where f factors via the terminal
object 1. But this condition is exactly fitted , see [I72], where a sublocale is fitted
if and only if it is an intersection of open sublocales. So for no extra work we get
what appears to be a new result for locale theory:

Theorem 12. Any compact subgroup of a localic group is fitted.
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6. Final comments

With a categorical account of locales we are able to prove the closed subgroup
theorem. That the closed subgroup theorem can be shown by using essentially
categorical arguments is clear from the proof offered as Theorem C5.3.1 in [J02]
(indeed there we see a result about groupoids which is also recoverable using our
framework as the category of locales is slice stable). So that a categorical proof
of the main theorem exists is not overly surprising. What is new is the use of
the order dual of the Hofmann-Mislove to provide the appropriate factorization
system for subobjects with open domains. It is really the factorization system
of Proposition 5 (and by implication our chosen definition of dense) that is new.
With this we are showing a new application of the Hofmann-Mislove theorem,
seeing it as a key step in the proof of the closed subgroup theorem.
The second new aspect is the order duality which leads, as we have just shown,

to a new result about compact localic subgroups: they are always fitted.
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