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I-weight of compact and locally compact LOTS

Brad Bailey

Abstract. Ramı́rez-Páramo proved that under GCH for the class of compact Hausdorff
spaces i-weight reflects all cardinals [A reflection theorem for i-weight , Topology Proc.
28 (2004), no. 1, 277–281]. We show that in ZFC i-weight reflects all cardinals for
the class of compact LOTS. We define local i-weight, then calculate i-weight of locally
compact LOTS and paracompact spaces in terms of the extent of the space and the i-
weight of open sets or the local i-weight. For locally compact LOTS we find a necessary
and sufficient condition for i-weight to reflect cardinal κ.
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1. Introduction

Tkachenko began the study of reflection in [6], and a systematic study was made
by Hodel and Vaughan in [4]. Hajnal and Juhász proved that weight reflects every
infinite cardinal [2]. Ramı́rez-Páramo proved that under GCH for the class of
compact Hausdorff spaces, i-weight reflects all infinite cardinals [5]. In the second
section of this paper we prove that for compact linearly ordered spaces i-weight
reflects all infinite cardinals. We show that the point-separating weight must
reflect, which implies that i-weight must reflect. In Section 3, we find necessary
and sufficient conditions for i-weight to reflect in the class of locally compact
linearly ordered spaces. The lemmas used to determine under what conditions
i-weight will reflect for these spaces provide a means of calculating the i-weight
of an ordinal space. In the last section, we define local i-weight, and show that
for paracompact spaces, i-weight is determined by the extent of the space and
the local i-weight. This paper concludes with a necessary condition for i-weight
to reflect in the class of paracompact linearly ordered spaces and an example of
an hereditarily paracompact linearly ordered space for which i-weight does not
reflect.

All the spaces considered in this paper are assumed to be at least Tychonoff.
We begin with some definitions which may be found in [5], [4].
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Definition. A cardinal function φ is said to reflect cardinal κ, if when φ(X) ≥ κ
there is a subset Y of X so that |Y | ≤ κ and φ(Y ) ≥ κ.

Definition. We say that X is condensed onto Z if there is a continuous bijection
from f : X → Z. Commonly, Z is regarded as a copy of X , and the topology on Z
is considered to be contained in the topology on X . We say that X is condensed
into Y if there is a subspace Z of Y that X may be condensed onto.

Definition. For a Tychonoff space X the i-weight of X is the minimum weight
of a Tychonoff space onto which X may be condensed.

So for example, the i-weight of Tychonoff space X is ω if and only if X has a
weaker separable metric topology.

Definition. We say that V ⊆ P(X) is T1-separating if for each pair (x, y) ∈ X2,
x 6= y, there is an U ∈ V so that x ∈ U and y /∈ U . By T1-separating weight ,
denoted sw(X), we mean min{|V| : V is a separating open cover of X}.

Definition. A tree is a partially ordered set (T,�) with the property that for
each t ∈ T , the set {s ∈ T : s ≺ t} is well ordered by �. The order type of the
set {s ∈ T : s ≺ t}, denoted lv(t), is called the level of t. For any ordinal α,
Tα = {t ∈ T : lv(t) = α}; the height of T is the first ordinal so that Tα = ∅.
Two members of Tα are equivalent if they have the same set of strict prede-

cessors. This gives an equivalence relation on Tα. We call the equivalent classes,
nodes . For each node, N of T , we choose a linear order <N of the points of N .
A path in T is a subset P ⊆ T so that {s ∈ T : s ≺ t} ⊆ P whenever t ∈ P , and

the height of P , denoted ht(P ), is the least ordinal so that P ∩ Tα = ∅. A branch
of T is a maximal path. For a branch v of T , let v(α) be the unique point of
v ∩ Tα.
By Br(T ) we denote the set of all branches in T . If v and w are distinct

branches of T , let β(v, w) be the least ordinal so that v(β(v, w)) 6= w(β(v, w)).
Then v(β(v, w)) and w(β(v, w)) are members of the same node N . Define v ⊑ w if
and only if v(β(v, w)) <N w(β(v, w)). This gives a linear order for Br(T ), which
we use to define an order topology on the set.

2. Compact linearly ordered spaces

In this section we show that for compact linearly ordered spaces, T1-separating
weight and i-weight reflect all cardinals. For the reader’s comfort we now briefly
outline how we intend to show this.
For a cardinal κ, a κ+-Aronszajn tree is a tree of height κ+ such that every

chain and every level is of cardinality < κ+. For a κ+-Aronszajn tree T we show
that the space Br(T ) has no separating open cover of cardinality less than κ+.
For each compact linearly ordered space we construct the tree Tr(X). If every
subset of X that has cardinality κ+ may be separated by κ or fewer open sets,
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then Tr(X) will contain κ+-Aronszajn tree A for which the points of Br(A) may
be separated by κ or fewer open sets, which contradicts the earlier result.

If a node N has only finitely many points, then each of the points min((N, <N ))
and max((N, <N )) are defined. Let A be a tree in which each node contains
finitely many points. For any t ∈ A, let l(t) be the branch of A that satisfies

(1) t ∈ l(t),
(2) if lv(t) < α and if l(t) ∩ Tα 6= ∅, then l(t)(α) = min((N, <N )) where N is
the node to which l(t)(α) belongs.

Informally, we think of l(t) as the left-most branch passing through t. We define
r(t), the right-most branch passing through t, analogously using max((N, <N )).

Lemma 1. Let A be a κ+-Aronszajn tree such that

(1) A has one point at level 0,
(2) every node has either 0 or 2 points.

Then less than or equal to κ many open sets in Br(A) cannot separate the pairs
{{l(t), r(t)} : t ∈ A}.

Proof: Let A be as above. Consider in Br(A) the branches l(t) and r(t) for each
t ∈ A. Suppose that V is a collection of ≤ κ-many open sets that point separate
r(t) and l(t) for t ∈ A. For each t ∈ A, let 〈Vt, Wt〉 be a pair from V that separates
l(t) and r(t) with l(t) ∈ Vt, r(t) ∈ Wt, r(t) /∈ Vt and l(t) /∈ Wt. Each V ∈ V can
be decomposed into disjoint convex subsets, so for each t ∈ A′ let (vt, v

′
t) be the

neighborhood of l(t) from the decomposition of Vt.

For the set (vt, v
′
t) to contain l(t) and not r(t), the branch vt must contain a

point at that is immediately to the “left” of a point below t. That is for some
point bt � t, we have that at <N bt, where N is the node containing at and p.
The branch v′t must contain the point t.

Let S be a stationary subset of κ+, and for each t ∈ A so that lv(t) ∈ S, let
p(t) = at. Now we define a map f from S into κ+. First, for each s ∈ S, pick

ts ∈ A in the sth level of A, then let f(s) = α if and only if the level of (p(ts)) is
α. By the Pressing Down Lemma, there is a level of the tree, α, so that f−1{α}
is a stationary subset of κ+. Since each level has cardinality less than or equal to
κ this means that there is a point a in level α so that |p−1{a}| = κ+. Consider
{Vt : t ∈ p−1{a}} ⊆ V . Since |V| ≤ κ, there is a V so that V = Vt for κ+-many
t ∈ p−1{a}. Since a is to the left of a point below each t ∈ p−1{a}, there is
one convex set (v, v′) from the disjoint decomposition of V so that v = vt and
v′ = v′t for each t ∈ p−1{a}. Let β be the height of branch v′, and note that
|β| ≤ κ. Then the number of points t so that l(t) ∈ (v, v′) is less than |β| ≤ κ,
yet p−1({a}) ⊆ (v, v′), contradiction. �

Lemma 2. For a compact Hausdorff space X , iw(X) = w(X) = nw(X) =
sw(X).
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Proof: By [3], we know that sw(X) ≤ nw(X) and that if X is compact
psw(X) = nw(X) = w(X). The proof that if X is compact Hausdorff then
sw(X) ≥ nw(X) closely follows the proof that psw(X) ≥ nw(X) for compact
Hausdorff X , in [3]. �

A cardinal function φ is called monotone if and only if φ(Y ) ≤ φ(X) whenever
Y ⊆ X .The following lemma and its proof are found in [4].

Lemma 3. If φ is a monotone cardinal function that reflects successor cardinals,
then φ reflects all infinite cardinals.

Next, we need to observe that T1-separating weight is monotone. We combine
this with a similar lemma for i-weight.

Lemma 4. I-weight is monotone, and for compact spaces T1-separating weight

is monotone.

Theorem 5. For a compact linearly ordered space, T1-separating weight reflects

κ+. Hence, for compact linearly ordered spaces, T1-separating weight reflects all
infinite cardinals.

Proof: Suppose X is a compact linearly ordered space and sw(X) ≥ κ+, but
every subset Y of X such that |Y | ≤ κ+ has T1-separating weight at most κ.
We construct a tree Tr(X) from the space X .
Let X = I∅, then divide the space X into two closed intervals with at most one

point in common, I〈0〉 and I〈1〉, so that every point of I〈0〉 is less than or equal
to every point of I〈1〉. For a reason that will only be important near the end of

this construction, we choose to split the interval at a non-isolated point, if the
interval contains a non-isolated point. Next, form I〈0,0〉 , I〈0,1〉, I〈1,0〉 and I〈1,1〉
by dividing each of I〈0〉 and I〈1〉 into two parts, again at a non-isolated point, if
possible. This process is done at each successor level of the tree. At the level ω,
consider σ : w → 2. If

⋂
n<ω Iσ↾n is a non-degenerate interval, then Iσ is a point

at the ω level. Likewise at each limit level, points appear only if the intersection
of preceding intervals is a non-degenerate interval. If at some successor level an
interval should have only one point in it, then that point (in the tree) does not
branch. The ordering on the tree is that Iσ ≤ Iτ if and only if σ ⊆ τ .

Claim 1. For each α < κ+, the cardinality of level α is less than κ+.

Suppose that at some level less than κ+, there are at least κ+ many non-
degenerate intervals. Let α be the least such level.
Since |α| ≤ κ, the collection of points that precede the α level has size not

more than κ. Let {Iγ : γ < κ+} = {[lγ , rγ ] : γ < κ+} index the κ+ many non-
degenerate intervals at the level α. Assume that there is a collection V of at most
κ-many open sets in X that T1 separate points rγ and lγ for γ < κ+. Then for

each γ < κ+ there is a Wγ ∈ V so that, rγ ∈ Wγ and lγ /∈ Wγ . There is a set W

and some J ∈ [κ+]κ
+

so that W =Wγ for γ ∈ J .
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Next, decompose W into disjoint convex subsets, and for each γ ∈ J let
(wγ , w

′
γ) ⊂ W be the convex neighborhood of rγ from this disjoint decompo-

sition. The assignment γ 7→ (wγ , w′
γ) is one-to-one since if (wγ , w

′
γ) = (wβ , w′

β),

then either lγ or lβ is in (wγ , w
′
γ) ⊂ W . Now each rγ is the limit of a sequence

of right end points of the intervals that precede Iγ in the ordering of the tree.
Therefore, for each γ ∈ J , there is a right end point r′γ of an interval preceding Iγ
that is contained in (wγ , w

′
γ). However, there are only κ-many points below the

α level of this tree, and therefore only κ-many potential r′γ for κ+-many disjoint

(wγ , w
′
γ), contradiction. Therefore, we conclude that every level of Tr(X) below

the κ+ level has cardinality less than κ+.

Claim 2. Every branch has length < κ+.

Suppose this tree contains a branch of length κ+. Then either the sequence of
left endpoints or the sequence of right endpoints of intervals forming the branch in
the tree has cardinality κ+. Without loss of generality, the set of right end points
{rα : α < κ+} has cardinality κ+. Then {rα}α<κ+ is a non-increasing sequence,
and must converge to r ≥ sup{lα : α < κ+}. For each α < κ+, let Uα ∈ V be
the open set that contains r and not rα. Then some U is Uα for κ+-many α.
However, for some β < κ+ we will have rγ ∈ U whenever γ > β, contradiction.

We have now shown that every level of Tr(X) has cardinality not more than κ
and that every chain has length less than or equal to κ. So either Tr(X) is a κ+-
Aronszajn tree or the height of Tr(X) is less than κ+. It follows from Lemma 1
that Tr(X) cannot be a κ+-Aronszajn tree. If Tr(X) were a κ+-Aronszajn tree,
then consider Br(Tr(X)) and the points corresponding to r(t) and l(t) for the
points t ∈ Tr(X). By our assumptions, in X we are able to separate these ≤ κ+

points in X with κ-many open sets, contradiction.

The left and right endpoints of the intervals contained as points in the tree
form a subset of X , call this collection Y . Since the height of the tree is less than
κ+ have that |Y | ≤ κ. We claim that this subset together with the isolated points
is dense in X . Consider a nonempty open convex subset (a, b) of X . Either (a, b)
contains a left or right endpoint of some interval contained in the tree, or (a, b)
is contained in an interval from each level of the tree. Then let β be the height
of the tree, and for each α < β let Jα be the interval from level α that contains
(a, b). Then (a, b) ⊆

⋂
α<β Jα, while |

⋂
α<β Jα| = 1. So nonempty (a, b) = {x}.

So Y together with the isolated points is a dense set in X .

We now claim that the set of isolated points has cardinality at most κ. Let
{Jm : m ∈ M} be the collection of minimal intervals contained in the tree which
we were not able to split at a non-isolated point, meaning each point of Jm
is isolated. We claim each Jm can contain at most countably many isolated
points. Let [lm, rm] = Jm, then pick am ∈ Jm; we have [lm, am] is a closed
set, and is therefore compact. Pick any open neighborhood W of lm, and then
{W}∪{{x} : x ∈ [lm, am]\W} covers [lm, am]. Therefore, all but finitely many of
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the points of [lm, am] must be inW . SinceW is arbitrary, this implies that[lm, am]
contains countably many isolated points. By symmetry, so does [am, rm]. Now
it remains to note that every isolated point of X is contained in Jm for some
m ∈ M , and since |M | ≤ κ, we have at most κ many isolated points.
We use Y to construct a base of cardinality at most κ for X . Let B = {(a, b) :

a, b ∈ Y, a < b} ∪ {{x} : x is isolated}. Let Y ′ = Y ∪ {x : x is isolated}.
Let x be a point in X and (u, u′) be a convex neighborhood of x. Unless x is

isolated, we have that at least one of (u, x) and (x, u′) is nonempty. Without loss
of generality, assume that (u, x) is nonempty, and choose a ∈ Y ′∩ (u, x). If (x, u′)
is nonempty, then choose b similarly, and x ∈ (a, b) ⊆ (u, u′). So assume instead
that (x, u′) is empty.
Consider an increasing sequence of points in the tree (which is a decreasing

sequence of intervals in X) that contain the point x, say {Kα : α < β}. Then⋂
α<β Kα = {x}. Let γ be the least ordinal so that for rγ , the right end point of

Kγ , rγ ≤ u′. If rγ = u′, then u′ ∈ Y , and the set we need is (a, u′). If rγ = x,
then there is a second increasing sequence of intervals in the tree that contain x,
but for this sequence x is a left end point. Then consider all the members of this
second sequence that also contain u′. The intersection of them would be [x, u′],
and would be a point of the tree. Therefore, u′ ∈ Y , and again the set we want
is (a, u′), for then x ∈ (a, u′) ⊆ (u, u′). Therefore, X has weight at most κ, and
hence T1-separating weight at most κ, contradiction. �

Corollary 6. For compact linearly ordered spaces, i-weight reflects all cardinals.

Proof: Since iw(X) = sw(X) for each compact Hausdorff space, if iw(X) ≥ κ
then sw(X) ≥ κ. Therefore, there is Y ⊆ X so that |Y | ≤ κ yet sw(Y ) ≥ κ. Any
base for a Tychonoff topology, would also be a separating open cover, therefore,
iw(Y ) ≥ sw(Y ) ≥ κ. �

3. Locally compact linearly ordered spaces

In this section we prove reflection theorems for locally compact linearly ordered
spaces and i-weight. We begin with several lemmas that build toward the main
result. We determine that the i-weight of an ordinal space is the cardinality of the
ordinal. Also, we determine the i-weights of subspaces of ordinal spaces. We find
necessary and sufficient conditions for i-weight to reflect cardinal κ in the class of
locally compact linearly ordered space. This section ends with two examples.
We use the following definitions throughout the rest of this section.

Definition. For a locally compact linearly ordered spaceX and a, b ∈ X we write
a ∼ b if and only if either [a, b] or [b, a] is compact. Then ∼ is an equivalence
relation. Let ã = {b ∈ X : a ∼ b} denote the equivalence class of a. Then for a
locally compact linearly ordered space X , we define E(X) to be the number of
distinct equivalence classes under the ∼ relation, i.e., E(X) = |{ã : a ∈ X}|.
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Let Dκ denote the discrete space of cardinality κ. Also, by log(κ) we denote

min{λ ≤ κ : 2λ ≥ κ}.

Lemma 7. For a locally compact linearly ordered space X , each ã is an open
subset of X .

Proof: To see that ã is open, let p ∈ ã. We assume that a < p, and the proof
for the case with p < a is analogous. Then since X is linearly ordered and locally
compact there is an open interval (c, d) of X so that p ∈ (c, d) and (c, d) = [c, d]
is compact. Then either a < c or c ≤ a ≤ d. If a < c, then [a, d] = [a, p] ∪ [p, d].
Since [p, d] is a closed subset of the compact space [c, d], [p, d] is compact and [a, d]
is compact as a union of finitely many compact sets. Also, for each b ∈ (c, d) the
set [a, b] is compact. Therefore, (c, d) ⊆ ã, which implies that ã is open.
If c ≤ a ≤ d then for each b ∈ (c, d), either [a, b] or [b, a] is nonempty and

compact as a closed subset of [c, d], so in this case (c, d) ⊆ ã. �

Lemma 8. For a locally compact linearly ordered space X , if E(X) is infinite
then E(X) = e(X).

Proof: Notice first that e(X) ≥ E(X). We form a closed discrete set C of
cardinality E(X) by taking one point from each equivalence class. We have shown
that for each a ∈ X the set ã is open, so C is discrete. Also, ã \ {a} is open, so
C is closed.
Next, suppose that e(X) > E(X). Since E(X) is infinite, e(X) ≥ ω1. Then

there is at least one equivalence class, call it ã, that contains at least ω1-many
members of a closed discrete set C. Choose a point p′ ∈ C ∩ ã. At least one of
P = {c ∈ C ∩ ã : c < p′} and S = {c ∈ C ∩ ã : c > p′} is uncountable. We
assume the set P is uncountable, as the proof for the case that S is uncountable
is analogous. We claim that we can find p < p′ ∈ ã so that |C ∩ [p, p′]| ≥ ω. For
c ∈ P , let Ac = {d ∈ P : c < d}. If Ac were finite for each c ∈ P , then P would
be an increasing union of sets which are all finite, and so |P | ≤ ω, contradiction.
Hence there is a p so that |Ap| ≥ ω, then [p, p′] ∩ C is infinite, [p, p′] is compact
and cannot contain an infinite closed discrete set, contradiction. �

Lemma 9. For any topological spacesX and Y , iw(X×Y )=max{iw(X), iw(Y )}.

Proof: Suppose that X and Y are topological spaces, and consider X × Y . If
BX and BY are bases for X and Y , then BX × BY is a base for X × Y .
So w(X×Y ) ≤ |BX×BY | = |BX ||BY |. Therefore, iw(X×Y ) ≤ iw(X)iw(Y ) =

max{iw(X), iw(Y )}.
Next, suppose that B is a base for a Tychonoff topology on X × Y which is

coarser than the product topology. Fix y0 ∈ Y and consider UX = {U ∩ (X ×
{y0}) 6= ∅ : U ∈ B}. Then π1(UX ) is a base for a Tychonoff topology on X .
The above argument is symmetric with respect to x and y, so the i-weights of

X and Y are not more than |B|. Therefore, i-weights of X and Y are not more
than i-weight of X × Y . �
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Theorem 10. Let κ be a regular cardinal, and let A be a stationary subset of κ.
Then A with the subspace topology inherited from the order topology on κ has
i-weight κ.

Proof: Let κ be a regular cardinal and assume that A is a stationary subset
of κ. Suppose by way of a contradiction that B is a base for a Tychonoff topology
on A contained in the relative order topology so that |B| < κ. For each U ∈ B,
there is an open subset U ′ of κ so that U ′ ∩ A = U . Let B′ = {U ′ : U ∈ B}.
Since A is stationary, A contains stationarily many limit ordinals. Let S denote
the limit ordinals contained in A.
For each s ∈ S, let ps be any element of A so that ps > s. Also, for each s ∈ S

let (Us, Vs) ∈ B2 be such that s ∈ Us, ps ∈ Vs and Us ∩ Vs = ∅. Since U ′
s must

be open in the order topology, we know that each U ′
s contains a convex segment

containing s. Let g(s) be an ordinal less than s so that (g(s), s] ⊆ U ′
s. Then since

S is stationary, there is a γ so that g−1(γ) is stationary. Because |B| < κ and
|g−1(γ)| = κ, there is (U∗, V ∗) so that (U∗, V ∗) = (Us, Vs) for κ-many different
s ∈ g−1(γ). Then s ∈ (γ, s] ⊆ U∗ and ps /∈ U∗ for each s ∈ g−1(γ). For any fixed
s ∈ g−1(γ), let p∗ = ps. We claim that p∗ is an upper bound on the set g−1(γ),
else if there is a s′ so that p∗ ≤ s′ then p∗ ∈ (γ, s′],⊆ U∗. �

Corollary 11. For any cardinal κ, the i-weight of the ordinal space κ is κ.

Proof: If κ is not regular then κ must be a limit ordinal, since each successor
ordinal is regular. Each limit cardinal is the limit of the preceding regular cardi-
nals. Therefore, let L = {α < κ : α is a regular cardinal}, and notice that κ is
equal to

⋃
α∈L α. Then |κ| ≥ iw(κ) ≥ sup{iw(α) : α ∈ L} = κ. �

Corollary 12. The i-weight of any ordinal space κ is |κ|.

Proof: Assume that κ is an ordinal but not a cardinal. Then, as ordinals,
|κ| < κ. By monotonicity of i-weight we know that iw(|κ|) ≤ iw(κ). Also,
iw(κ) ≤ w(κ) = |κ| = iw(|κ|). �

Lemma 13. A Tychonoff space X with iw(X) ≤ λ can be condensed into Iλ.

Proof: Any Tychonoff space of weight m can be embedded in Im. So if a space
X has i-weight m ≤ λ, then X has a Tychonoff topology τ so that (X, τ) is
homeomorphic to a subset of Im. Call the corresponding embedding f .
Then we embed each Im into Iγ by the defining h : Im → Iγ as follows. Let

x ∈ Im be denoted as (xi)i<m; then h(x) = (xi)i<m
⌢(0)m≤j<γ . Let G : X → Iγ

be defined by h ◦ f . Clearly, G is one-to-one and continuous. �

Theorem 14. Let κ be an ordinal, and C a club subset of κ. Suppose that
κ \C =

⋃
i<γ(ai, bi) so that γ ≤ |κ| and (ai, bi) ∩ (aj , bj) 6= ∅ if and only if i = j.

Then, iw(κ \ C) = max{iw(Dγ), sup{iw((ai, bi)) : i < γ}}.

Recall that by Dγ we denote the discrete space of cardinality γ.
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Proof: Let κ and C be as above, i.e. κ\C =
⋃
i<γ(ai, bi). Then by monotonicity

of i-weight, we have iw(κ\C) ≥ iw((ai, bi)) for each i < γ. Also, since the (ai, bi)
are pairwise disjoint, and each is nonempty and open, we may choose xi ∈ (ai, bi)
so that X = {xi : i < γ} is a discrete space homeomorphic to Dγ . Then, invoking
monotonicity once again, iw(κ \ C) ≥ iw(X).

We prove that iw(κ \ C) ≤ max{iw(Dγ), sup{iw((ai, bi)) : i < γ}} by consid-
ering two cases.

Suppose that there is some λ < |κ| so that λ = sup{iw((ai, bi)) : i < γ}.
We condense each (ai, bi) into Iλ. Then, κ \ C can be condensed to a subset of

Dγ × Iλ. So by Lemma 9, iw(Dγ × Iλ) = max{iw(Dγ), λ}. Therefore, iw(κ \
C) ≤ {iw(Dγ), sup{iw((ai, bi) : i < γ}}. Suppose on the other hand that
sup{iw((ai, bi)) : i < γ} = |κ|. Since |κ| = iw(κ) ≥ iw(κ \ C) ≥ sup{iw((ai, bi)) :
i < γ}, then iw(κ \ C) = |κ| = max{iw(Dγ), sup{iw((ai, bi)) : i < γ}}. �

Corollary 15. The i-weight of Dκ is log(κ).

Proof: From Theorem 4.2 in [3], we know that for any Hausdorff topology on X ,

|X | ≤ w(X)ψ(X) ≤ w(X)w(X) = 2w(X). This gives us a means of bounding the

i-weight of a space, in particular, κ ≤ 2iw(Dκ). So iw(Dκ) ∈ {λ : 2λ ≥ κ}. Notice
that for each λ so that 2λ ≥ κ, we may consider κ to be a subset of 2λ. Then
under the product topology on 2λ, the weight of 2λ is λ. Also in the product
topology, the set of all limit ordinals less than κ are a discrete space of cardinality
κ and is therefore homeomorphic to Dκ. Which means that iw(Dκ) ≤ λ. So

iw(Dκ) = min{λ : 2λ ≥ κ} = log(κ). �

Lemma 16. If X is a locally compact linearly ordered space so that for each
pair a, b ∈ X with a < b the set [a, b] is compact, then iw(X) = w(X). Moreover,
for such a space X , i-weight reflects all cardinals.

Proof: Let X be as above. Then pick a ∈ X . Either (−∞, a] or [a,∞) has the
same weight as X . Without loss of generality, let w([a,∞)) = w(X).

We intend to show that w([a,∞))= iw([a,∞))=max{cf([a,∞)), sup{w([a, b]) :
b > a}}.

First, suppose that B is a base for a Tychonoff topology on [a,∞) which is
coarser than the order topology. Since weight equals i-weight for compact Haus-
dorff spaces, we know that iw([a, b]) = w([a, b]) and by monotonicity of weight, we
know that w([a,∞)) ≥ sup{w([a, b]) : b > a}. Also, suppose that cf([a,∞)) = κ.
We construct a set C that is homeomorphic to κ. Let c0 = a. Suppose that for
j ≤ i each cj has been defined, and pick ci+1 > ci. If α is a limit ordinal so
that for each j < α, cj has been defined, define cα = sup{cj : j < α}. Since the
cofinality of [a,∞) is κ, ci is defined for each i < κ. Let C = {ci : i < κ}. If i is a
successor ordinal, (ci−1, ci+1)∩C = {ci} and is open. If α is a limit ordinal then
(ci, cα]∩C = {cj : i < j ≤ α} is open for i < α. We map C homeomorphically to
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κ by h(ci) = i. Then the i-weight of C is κ, the i-weight of κ. This implies that
iw([a,∞)) ≥ κ = cf([a,∞)).
Next, we observe that w([a,∞)) ≤ max{cf([a,∞)), sup{w([a, b]) : b > a}}.

Let K be a cofinal subset of [a,∞) of cardinality cf([a,∞)); so K = {ki : i < κ}
and ki < kj iff i < j. The set {[a, κα) : α < κ} is an open cover of [a,∞).
Also, w([a, κα)) ≤ w([a, κα]). Let Bα be a base for [a, κα) under the subspace
topology for the order topology on [a,∞). Then B =

⋃
α<κ Bα is a base for

[a,∞). The cardinality of B is less than max{κ, sup{w([a, kα)) : α < κ}} ≤
max{κ, sup{w([a, kα]) : α < κ}} ≤ max{κ, sup{w([a, b]) : b > a}}.
So w([a,∞)) = iw([a,∞)).
Now we will show that i-weight reflects. Suppose that γ ≤ iw([a,∞)). Then

consider several quick cases.

(1) If γ ≤ cf([a,∞)), then let C be the cofinal subset above in this proof.
Then Y = {ci : i < γ} is a subset of [a,∞) that is homeomorphic to γ,
hence Y has i-weight γ.

(2) If there is a b > a so that iw([a, b]) ≥ γ, then take Y to be a subset of
[a, b] that reflects γ.

(3) Now assume that γ > cf([a,∞)) and that iw([a, b]) < γ for each b > a.
Then let Yi ⊆ [a, ki] so that |Yi| ≤ iw([a, ki]) = iw(Yi). Take Y =⋃
i<κ Yi. We claim iw([a,∞)) ≥ iw(Y ) ≥ sup{w([a, ki]) : i < κ} =
sup{w([a, b]) : b > a} = γ. It is clear that sup{w([a, ki]) : i < κ} =
sup{w([a, b]) : b > a} since K is cofinal. To verify that sup{w([a, b]) :
b > a} = γ recall that w([a, b]) = iw([a, b]) and that iw([a, b]) < γ ≤
iw([a,∞)), so sup{w([a, b]) : b > a} = γ. So iw(Y ) ≥ γ, because iw(Y ) =
max{κ, sup{iw([a, κi]) : i < κ}} = max{κ, λ} and κ ≤ λ.

Therefore, for [a,∞), i-weight reflects all cardinals. Recall, that w([a,∞)) =
w(X) ≥ iw(X) ≥ iw([a,∞)) = w([a,∞)). So the i-weight of X is the i-weight of
[a,∞); therefore, i-weight reflects for the space X . �

Theorem 17. Let X be a locally compact linearly ordered space. Then iw(X) =
max{iw(DE(X)), sup{iw(ã) : a ∈ X}} = max{log(e(X)), sup{iw(ã) : a ∈ X}}.

Proof: By monotonicity, we know that iw(X) ≥ max{iw(DE(X)), sup{iw(ã) :

a ∈ X}}. Now suppose that λ = sup{iw(ã) : a ∈ X}. Then there is a con-
densation of X into DE(X) × Iλ, which has i-weight max{iw(DE(X)), λ}. So

iw(X) = max{iw(DE(X)), sup{iw(ã) : a ∈ X}}.

Also iw(DE(X)) = log |E(X)| = log(e(X)), therefore, iw(X)= max{log(e(X)),

sup{iw(ã) : a ∈ X}}. �

Theorem 18. Let X be a locally compact linearly ordered space. If iw(X) =
iw(DE(X)) = log(e(X)), then i-weight reflects the cardinal κ if and only if either

2λ < κ for all λ < κ or κ ≤ sup{iw(ã) : a ∈ X}. Hence, if iw(X) = sup{iw(ã) :
a ∈ X}, then i-weight reflects all cardinals.
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Proof: Suppose first that X is as above, and iw(X) = iw(DE(X)). Assume

that i-weight reflects the cardinal κ and κ > sup{iw(ã) : a ∈ X}. There is a Y
contained in X so that |Y | ≤ κ and iw(Y ) ≥ κ. Since iw(Y ∩ ã) ≤ iw(ã) we have
that iw(Y ∩ ã) < κ for each a ∈ X . Also, since |Y | ≤ κ, Y ∩ ã is nonempty for
only κ-many different equivalence classes. So let {ãi : i < κ} = {ã : ã ∩ Y 6= ∅}.

Then for we may condense Y into κ × Isup{iw(ãi):i<κ}, which has i-weight iw(k)
since κ > sup{iw(ã) : a ∈ X}. Therefore, κ = iw(Y ) ≤ iw(κ) ≤ κ. So, for each

λ < κ, we have 2λ < κ; else, if 2λ ≥ κ for some λ < κ, the i-weight of κ would
be λ.

Next, assume that i-weight reflects κ and 2λ ≥ κ for some λ < κ. Aiming for a
contradiction, further assume that κ > sup{iw(ã) : a ∈ X}. Since i-weight reflects
κ, there is a set Y so that |Y | ≤ κ and iw(Y ) ≥ κ. Then Y can be condensed

into κ × Isup{iw(ã):a∈X} which has i-weight max{λ, sup{iw(ã) : a ∈ X}} ≤ κ,
contradiction.

Now we prove the reverse direction.

Assume that 2λ < κ for all λ < κ and κ ≤ iw(X) = iw(E(X)) ≤ E(X). Pick
κ-many different ai so that {ãi : i < κ} is a collection of pairwise disjoint open
sets. Then for each i < κ, pick yi ∈ ãi and define Y = {yi : i < κ}. So Y is a
discrete space of cardinality κ, so the i-weight of Y is log(κ) = κ.

If κ ≤ sup{iw(ã) : a ∈ X}, then consider two cases. First, if κ < sup{iw(ã) :
a ∈ X}, then let x ∈ X be so that iw(x̃) ≥ κ. Then for x̃, i-weight reflects κ.

Suppose that κ > iw(ã) for each a ∈ X . Then for some γ ≤ κ let {ai : i < γ}
be a subset of X so that {iw(ãi) : i < γ} is cofinal in κ. Then for each i < γ
pick Yi ⊆ ãi so that |Y | ≤ iw(ãi) = iw(Yi). Let Y =

⋃
i<γ Yi. Then |Y | ≤ κ and

iw(Y ) = sup{iw(ãi) : i < γ} = κ. �

By examining the proof above we can see that for all spaces if κ < log(e(X))

and 2λ < k for all λ < κ, then i-weight reflects the cardinal κ.

Next, we present some examples of linearly ordered spaces for which i-weight
does not reflect some cardinal, which is possible because E(X) > iw(X). So the
conditions on E(X) in the preceding theorem may not be omitted. On the other
hand, we can also see that D2κ×(κ+1) is an example of a locally compact linearly
ordered space for which E(X) = 2κ > iw(X) = κ and yet i-weight will reflect all
cardinals less than κ.

Lemma 19. Any infinite discrete space is homeomorphic to a linearly ordered

space.

Theorem 20 (GCH). There is a locally compact linearly ordered space X with
iw(X) = ω1, yet for X i-weight does not reflect ω1.

Proof: Consider X = D2ω1 . Then by [3], we know that 2
ω1 ≤ 2iw(X). Since the

order topology is coarser than the discrete topology, iw(X) = ω1.
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Take any subset Y of X so that |Y | ≤ ω1. Since Y is discrete, Y may be
condensed onto a subset of the real line. Thus iw(Y ) = ω. �

We may eliminate the need for GCH if we are willing to allow the i-weight
to exceed ω1. Instead, let X = D22ω1 , then iw(X) ≥ ω1, yet each subset of
cardinality ω1 will have i-weight ω.

Acknowledgment. The author would like to thank the referee for suggesting
the notation used throughout the discussion of trees; the referee’s notation is
superior to the notation the author originally used.

References

[1] Engelking R., General Topology, Helderman, Berlin, 1989.
[2] Hajnal A., Juhász I., Having a small weight is determined by the small subspaces, Proc.
Amer. Math. Soc. 79 (1980), no. 4, 657–658.

[3] Hodel R., Cardinal functions I, in: K. Kunen, J. Vaughan (Eds.), Handbook of Set-Theoretic
Topology, North-Holland, Amsterdam, 1984, pp. 1–61.

[4] Hodel R.E., Vaughan J.E., Reflection theorems for cardinal functions, Topology Appl. 100
(2000), 47–66.
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