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A quest for nice kernels of neighbourhood assignments

R.Z. Buzyakova, V.V. Tkachuk, R.G. Wilson

Abstract. Given a topological property (or a class) P, the class P∗ dual to P (with re-
spect to neighbourhood assignments) consists of spaces X such that for any neighbour-
hood assignment {Ox : x ∈ X} there is Y ⊂ X with Y ∈ P and

S
{Ox : x ∈ Y } = X.

The spaces from P∗ are called dually P. We continue the study of this duality which
constitutes a development of an idea of E. van Douwen used to define D-spaces. We
prove a number of results on duals of some general classes of spaces establishing, in
particular, that any generalized ordered space of countable extent is dually discrete.
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1. Introduction

We take a closer look at dually discrete spaces which constitute the first natural
generalization of the class of van Douwen’s D-spaces. It is well-known that no
countably compact non-compact space is a D-space while it is not so easy to find
spaces which are not dually discrete; we give examples of such spaces. The main
result of this paper is Theorem 3.1 which states that any generalized ordered
space of countable extent is dually discrete. We also solve Problems 4.2 and 4.5
from [vMTW] as well as Problems 4.2, 4.5, 4.6, 4.7 and 4.8 from [ATW] in ZFC
and give a consistent solution of Problem 4.13 from [ATW].

All spaces under consideration are assumed to be Tychonoff. Given a space X ,
the family τ(X) is its topology. If x ∈ X , then τ(x, X) = {U ∈ τ(X) : x ∈ U}.
If O = {Ox : x ∈ X} is a neighbourhood assignment in a space X then, for any
subspace Y ⊂ X let O(Y ) =

⋃
{Ox : x ∈ Y }; if O(Y ) = X then Y is called a

kernel of O. The space D is the doubleton {0, 1} with the discrete topology and
R is the real line with the usual order topology. The rest of the notation can be
found in [En], [vMTW] and [ATW].
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2. Dual classes and their categorical behaviour

The duals of quite a few important classes proved to be interesting so we
formulate some easy results on their categorical properties and relationship with
well-known classes. It seems to be of special importance to study dually discrete
spaces because they are a straightforward generalization of van Douwen’s D-
spaces while representing a much wider class.

2.1 Proposition. (1) Any space is dually scattered.
(2) There exists a scattered space Y which is neither dually left-separated nor
dually metalindelöf. In particular, Y is not dually paracompact and hence
not every space is dually discrete (or even dually metrizable).

Proof: The proof of (1) is standard and can be omitted. It is a ZFC result (see
[To, Theorem 0.5]) that there exists a space X such that κ = hd(X) < hl(X).
Take a subspace Y = {xα : α < κ+} ⊂ X which is right-separated by the
indexation, i.e., the set Yα = {xβ : β < α} is open in Y for any α < κ+. It is
easy to show that Y is the promised example. �

2.2 Proposition. (1) If a class P is invariant under continuous images then its
dual class P∗ is also invariant under continuous images.

(2) If a class P is inverse invariant under perfect maps then so is its dual
class P∗.

(3) If κ is a cardinal and a class P is invariant under unions of at most κ-many
subspaces then so is its dual class P∗.

(4) If P is a class which is closed-invariant then P∗ is also closed-invariant.

2.3 Corollary. (1) The classes of dually Lindelöf spaces, dually σ-compact
spaces, dually Lindelöf Σ-spaces, dually K-analytic spaces and dually
(hereditarily) separable spaces are preserved by continuous mappings.

(2) The classes of dually Lindelöf spaces, dually σ-compact spaces, dually
Lindelöf Σ-spaces, dually K-analytic spaces are inverse invariant under
perfect maps.

Although the class of discrete spaces is not inverse invariant under perfect
maps, it turns out that discrete duality still behaves nicely in this situation.

2.4 Proposition. If Y is a dually discrete space and X maps perfectly onto Y
then X is also dually discrete.

2.5 Theorem. Under Jensen’s Axiom ♦, the space R
κ is not dually discrete for

any uncountable cardinal κ.

Proof: It was established in [Os] that, under ♦, there exists an S-space Y
such that |Y | = ω1. The space R being second countable, R × Y is also an S-
space. Since ♦ implies CH, we can choose a bijection ϕ : R → Y . Its graph
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X = {(x, ϕ(x)) : x ∈ R} is also an S-space which condenses on R so X is
realcompact. It is easy to see that X is not dually discrete.

Let C(X) be the set of all real-valued continuous functions onX ; it follows from

separability of X that |C(X)| = c = ω1. The diagonal product µ : X → R
C(X) of

the family C(X) embeds X in the space R
C(X) = R

ω1 as a closed subspace which
is not dually discrete so R

ω1 is not dually discrete either (see Proposition 2.2).
Since R

ω1 embeds in R
κ as a closed subspace, we can apply Proposition 2.2 again

to conclude that R
κ is not dually discrete. �

Recall that the Alexandroff double AD(X) of a space X is the set X ×D with
a topology τ such that all points of the set X × {1} are isolated in (AD(X), τ)
and, for any point z = (x, 0) the family {(U×D)\{(x, 1)} : U ∈ τ(x, X)} is a local
base of AD(X) at z. If π : X×D→ X is the projection then it is straightforward
that π is a perfect map.

2.6 Proposition. Given an infinite cardinal κ and a space X , if l(X) > κ then
wl(AD(X)) > κ, i.e., the weak Lindelöf number of the Alexandroff double of X
is strictly greater than κ.

Proof: Take an open cover U of the spaceX which has no subcover of cardinality
6 κ. The family V = {U × D : U ∈ U} is an open cover of AD(X). If V ′ is a
subfamily of V of cardinality at most κ then there exists U ′ ⊂ U such that |U ′| 6 κ
and V ′ = {U × D : U ∈ U ′}. Since l(X) > κ, there is a point x ∈ X\(

⋃
U ′). It is

clear that the non-empty open set {(x, 1)} witnesses that the union of the family
V ′ is not dense in AD(X) and hence wl(AD(X)) > κ. �

2.7 Proposition. Assume that κ is an infinite cardinal. Then

(a) if X a dually hereditarily κ-separable space then AD(X) is also dually
hereditarily κ-separable.

(b) If X is dually κ-separable and ext(X) 6 κ then AD(X) is dually κ-
separable.

Proof: IfX is dually hereditarily κ-separable then it follows from Proposition 2.2
that every closed subspace of X is dually hereditarily κ-separable; an immediate
consequence is that ext(X) 6 κ. Proceeding with the proof for both (a) and (b)
take any neighbourhood assignment O = {Oz : z ∈ AD(X)} of the space AD(X).
There exists a (hereditarily) κ-separable Y ⊂ X such that U = O(Y ) ⊃ X ×{0}.
The set D = AD(X)\U is closed and discrete in AD(X); if |D| > κ then |π(D)| >
κ while π(D) is closed and discrete in X because π is a perfect map. This gives
a contradiction because we have ext(X) 6 κ in both (a) and (b). Thus |D| 6 κ
so Z = Y ∪D is a (hereditarily) κ-separable kernel of O. �

The following corollary gives a negative answer to Problems 4.2 and 4.5 from
the paper [vMTW].
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2.8 Corollary. There exist dually separable spaces which are not weakly Lin-

delöf.

Proof: Take a set Q ⊂ R
ω1 homeomorphic to ω1 with its interval topology. It

is easy to see that Q is nowhere dense in R
ω1 so we can find a countable dense

subspace A ⊂ R
ω1\Q. The space X = A ∪Q is separable while ext(X) = ω and

l(X) > ω. Proposition 2.6 shows that the Alexandroff double AD(X) of the space
X is not weakly Lindelöf; applying Proposition 2.7 we conclude that the space
AD(X) is dually separable. �

The following corollary gives a consistent answer to Problem 4.6 of [ATW].

2.9 Corollary. In any model of ZFC containing an S-space there exist dually
hereditarily separable spaces which are not weakly Lindelöf.

Proof: If X is an S-space then apply Propositions 2.6 and 2.7 to see that AD(X)
is a dually hereditarily separable space which is not weakly Lindelöf. �

The corollary that follows solves Problems 4.5, 4.7 and 4.8 from [ATW].

2.10 Corollary. There exist dually σ-compact spaces which are not weakly Lin-
delöf.

Proof: It was shown in [ATW] that there exists a non-Lindelöf dually σ-compact
space X . Since AD(X) is a perfect preimage of X , the space AD(X) is dually
σ-compact by Corollary 2.3. Applying Proposition 2.6 we conclude that AD(X)
is not weakly Lindelöf. �

2.11 Proposition. Given an infinite cardinal κ, if a space X is dually κ-sepa-
rable, then l(X) 6 2κ.

Proof: For any neighbourhood assignmentO of the spaceX there exists a kernel
K for O with d(K) 6 κ and hence hl(K) 6 w(K) 6 2κ. Applying Theorem 2.8
of [vMTW] we convince ourselves that l(X) 6 2κ. �

2.12 Theorem. Suppose that X is a space of countable tightness such that any
subset A ⊂ X with |A| = ω1 has a complete accumulation point. Then X is

dually separable.

Proof: Take any neighbourhood assignment O = {Ox : x ∈ X} in the space X .
Pick a point x0 ∈ X arbitrarily; proceeding by induction assume that β < ω1 and

we have chosen points {xα : α < β} and let Fβ = {xα : α < β}. If O(Fβ) = X
then Fβ is a separable kernel of O. If not then choose a point xβ ∈ X\O(Fβ).
If O(Fβ) = X for some β < ω1 then O has a separable kernel as required. If
not, then our inductive procedure gives us a set P = {xα : α < ω1} such that
xβ /∈ O(Fβ) for any β < ω1.
By our assumption about X , the set P has a complete accumulation point x.

Since t(X) = ω, there is β < ω1 such that x ∈ Fβ ; as a consequence, O(Fβ) is
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a neighbourhood of x which does not meet the set {xα : α > β}, i.e., x is not
a complete accumulation point of P which is a contradiction. Therefore some
separable subspace Fβ is a kernel of O and hence X is dually separable. �

2.13 Corollary. Any linearly Lindelöf space of countable tightness is dually

separable.

2.14 Theorem. There exist dually σ-compact spaces that are not dually sepa-
rable. In particular, a linearly Lindelöf space need not be dually separable.

Proof: Let ξ0 = ω and ξn+1 = 2
ξn for all n ∈ ω; we will need the cardinal

ξ = sup{ξn : n ∈ ω}. Consider the subspace X = {x ∈ D
ξ : |x−1(1)| < ξ} of the

space D
ξ. It was proved in [ATW] that X is dually σ-compact. If l(X) < ξ then

there exists n ∈ ω such that l(X) 6 ξn; the point a ∈ D
ξ defined by a(α) = 1

for every α < ξ does not belong to X so there exists a Gξn
-subset H of the space

D
ξ such that a ∈ H ⊂ D

ξ\X . It is easy to see that there exists a set Q ⊂ ξ for

which |Q| 6 ξn and the set G = {x ∈ D
ξ : x(Q) = {1}} ⊂ H . If x(α) = 1 for

all α ∈ Q and x(α) = 0 whenever α ∈ ξ\Q then x ∈ G ∩ X ⊂ H ∩ X which
is a contradiction. Therefore l(X) = ξ > c = ξ1 and hence X cannot be dually
separable by Proposition 2.11. Every dually σ-compact space is linearly Lindelöf
by [vMTW, Proposition 2.7] so a linearly Lindelöf space is not necessarily dually
separable. �

The following fact shows that the positive answer to Problem 4.13 from [ATW]
is consistent with ZFC.

2.15 Proposition. In every model of ZFC in which there are no S-spaces, any
space X which is in the dual class of spaces of countable spread, is Lindelöf. In
particular, if X is first countable and every neighbourhood assignment of X has
a kernel of countable spread then |X | 6 c.

Proof: It suffices to note that, in the absence of S-spaces, every space of count-
able spread is hereditarily Lindelöf (see [Ro, Proposition 3.3]) and apply Theo-
rem 2.8 of [vMTW].

�

The result that follows gives a consistent negative answer to Problem 4.2 from
the paper [ATW].

2.16 Theorem. Denote the cardinal ωω by µ. In any model of ZFC in which
2µ = c there exists a dually Lindelöf space which is not dually Lindelöf Σ.

Proof: In the space D
µ consider the subspace L = {x : |x−1(1)| < µ} and let

I = [0, 1]. For any A ⊂ µ define a point uA ∈ D
A by uA(α) = 0 for all α ∈ A.

It was proved in [AB, Example 15] that the equality 2µ = c implies existence of
a linearly Lindelöf subspace X ⊂ L × I such that the projection p : X → I is
injective while the projection q : X → L is a surjective map.
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To see that X is dually Lindelöf consider an arbitrary neighbourhood assign-
ment O = {Ox : x ∈ X} in the space X . Since w(X) 6 µ, we can choose a
subspace Y ⊂ X such that |Y | 6 µ and X =

⋃
{Oy : y ∈ Y }. It takes a straight-

forward induction to construct an injection ϕ : Y → µ such that |q(y)−1(1)| > ωn

implies ϕ(y) > ωn. Let Yn = {y ∈ Y : ϕ(y) 6 ωn} for every n ∈ ω; then
Y =

⋃
n∈ω Yn. Fix any n ∈ ω; it follows from the choice of ϕ that |q(y)−1(1)| 6 ωn

for any y ∈ Yn. Since also |Yn| 6 ωn, we conclude that the cardinality of the set
An =

⋃
{q(y)−1(1) : y ∈ Yn} does not exceed ωn and hence the compact set

Kn = D
An ×{uµ\An

} is contained in L. The set Mn = (Kn × I)∩X is closed in

X so it is linearly Lindelöf; since also w(Mn) 6 ωn, every space Mn is Lindelöf.
Furthermore, Yn ⊂ Mn for all n ∈ ω so Y ⊂M =

⋃
n∈ω Mn while M is Lindelöf

and O(M) ⊃ O(Y ) = X , i.e., M is a Lindelöf kernel of O.
Finally observe that if every neighbourhood assignment O in the space X has

a Lindelöf Σ-kernel K then p|K condenses K onto a subset of I; an immediate
consequence is that nw(K) 6 ω and, in particular, K is hereditarily Lindelöf so
it follows from [vMTW, Theorem 2.8] that X is Lindelöf and hence L is Lindelöf
being a continuous image of X . Since L is pseudocompact (see [AB, Example 15])
and not compact, we obtain a contradiction which shows that the space X is not
dually Lindelöf Σ. �

2.17 Corollary. If, for the cardinal µ = ωω, we have 2
µ = c then a dually dually

σ-compact space need not be dually Lindelöf Σ. This gives a partial answer to
Problem 4.15 from [ATW].

Proof: Since any Lindelöf space is dually countable, any dually Lindelöf space
is dually dually countable and hence dually dually σ-compact. We saw that,
under our assumptions, there exists a dually Lindelöf space X which is not dually
Lindelöf Σ. Therefore X is the promised example. �

3. Dual discreteness in generalized ordered spaces

Recall that X is a generalized ordered space (or GO space) if it is embeddable
in a linearly ordered topological space. It was proved in [vMTW, Example 2.3]
that the ordinal ω1 with its interval topology is dually discrete. It turns out that
this result holds for a much wider class of generalized ordered spaces.

3.1 Theorem. Any GO space of countable extent is dually discrete.

Proof: Suppose thatX is a GO space with ext(X) = ω. It is standard that there
exists a compact linearly ordered space (K, <) such that X is densely embedded
in K and, for any z ∈ K\X , the point z can be only reached from X from one
side, i.e., either z has a successor in K or z is a successor of a point from K.
Consider the space Y = X ∪ {x ∈ K\X : χ(x, K) > ω}; then Y is realcompact

(because the complement of the union of Gδ-subsets of a realcompact space is
realcompact) so Y is paracompact by [Lu, Theorem 4.4]. It is an easy consequence
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of countability of extent of X and collectionwise normality of Y that ext(Y ) = ω
and hence Y is actually Lindelöf but this will not be needed.

Fix an arbitrary neighbourhood assignment O = {Ox : x ∈ X} in the space X .
We can consider, without loss of generality, that every Ox is the intersection with
X of a convex open subset Bx of the space Y . We want to extend the family
{Bx : x ∈ X} to a neighbourhood assignment on the space Y so fix a point
y ∈ Y \X . By our choice of K, we have a symmetric situation about the side
from which y can be reached from X so we can consider that y does not have a
predecessor and hence it does not belong to the closure of the set (y,→)K . We
claim that

(∗) there exists a point ay < y, ay ∈ X and a discrete subspace Cy ⊂ X∩(←, y)K
such that Cy is cofinal in (←, y)K and (ay, z]X ⊂ Oz for any z ∈ Cy .

Let us show first that there exists a point a < y and a set A ⊂ (←, y)K ∩X
such that a ∈ X , the set A is cofinal in (←, y)K and (a, z]X ⊂ Oz for all z ∈ A.
Indeed, if this is false then, for any x < y there exists a point b ∈ (x, y)K ∩ X
such that Oz ⊂ (x,→)X for any z ∈ (b, y)K ∩X .

It follows from χ(y, K) > ω that no countable subset of X ∩ (←, y)K is cofinal
in (←, y)K and (x, y)K ∩ X is non-empty for any x < y so we can construct
inductively an ω1-sequence B = {bα : α < ω1} ⊂ (←, y)K ∩X such that α < β <
ω1 implies bα < bβ and Oz ⊂ (bα,→)X for any α < ω1 and z ∈ X ∩ (bβ , y)K .
It follows from ext(X) 6 ω that we can find a cluster point x ∈ X for the set
B. Since B is increasing, the point x does not belong to the closure of the set
(x,→)X ∩B so x is a cluster point of the set (←, x)X ∩B. Therefore we can find
α, β ∈ ω1 such that bα < bβ < x and {bα, bβ} ⊂ Ox. It follows from the choice of
B that we must have Ox ⊂ (bα,→) which is a contradiction. The space K being
discretely generated (see [DTTW, Theorem 3.10]) we can choose a point ay < y,
ay ∈ X and a discrete subspace Cy ⊂ (←, y]K ∩X which contains y in its closure
and (ay, x]X ⊂ Ox for any x ∈ D, i.e., (∗) is proved.

Analogously, if the point y ∈ K\X is a successor then we can choose a discrete
subspace Cy ⊂ (y,→)X and ay > y, ay ∈ X such that y ∈ Cy and [x, ay)X ⊂ Ox

for any x ∈ Cy .

If y ∈ K\X has a successor then let By = (ay , y]Y ; if y is a successor then
By = [y, ay)Y . The neighbourhood assignment {By : y ∈ Y } has a closed discrete
kernel D because Y is a D-space by [vDL, Theorem 1.2]. Since Y is collectionwise
normal, we can choose a discrete familyW = {Wd : d ∈ D} of convex open subsets
of Y such that d ∈ Wd for any d ∈ D. It is an easy exercise that the subspace
E = (D ∩X) ∪ (

⋃
{Cy ∩Wy : y ∈ D\X}) is a discrete kernel of O so X is dually

discrete. �

3.2 Corollary. Any countably compact GO space is dually discrete.

3.3 Corollary. Every locally compact GO space is dually discrete.



696 R.Z.Buzyakova, V.V.Tkachuk, R.G.Wilson

Proof: Let X be a locally compact GO space; we can assume that X is a dense
subspace of a compact linearly ordered space (K, <). Let us prove first that

(1) ext(U) = ω for every convex open set U in the space (K, <).

Assume toward a contradiction that D ⊂ U is an uncountable closed and
discrete subset of U . There is no loss of generality to assume that there exists
a point a ∈ U such that the set D′ = D ∩ (a,→)U is uncountable. For any
b ∈ (a,→)U the set [a, b]U = [a, b]K is compact so D′ ∩ [a, b]U is finite. Now, it is
easy to construct by induction a set E = {dn : n ∈ ω} ⊂ D′ such that dn < dn+1

for all n ∈ ω.
If E is not cofinal in the set U then E ⊂ [a, b]U for some b ∈ (a,→)U which

is a contradiction. Thus the set E is cofinal in (U, <) so we have the equality
[a,→)U = [a, d0]U ∪ (

⋃
{[di, di+1]U : i ∈ ω}). This, together with D′ ⊂ [a,→)U

shows that either D′ ∩ [a, d0]U is uncountable or |[di, di+1]U ∩D′| > ω for some
i ∈ ω. Since we obtain a contradiction in all possible cases, the property (1) is
proved.
It follows from local compactness of X that X is open in K so we have the

equality X =
⋃
{Xt : t ∈ T } for some disjoint family {Xt : t ∈ T } of open

convex subsets of K. The property (1) shows that ext(Xt) 6 ω and hence Xt

is dually discrete for every t ∈ T . Finally, observe that X is homeomorphic to⊕
{Xt : t ∈ T } so X is also dually discrete. �

3.4 Corollary. If α is an ordinal with its interval topology then α is dually
discrete.

4. Open problems

As usual, the more problems one solves, the more unsolved problems arise.
The topic of this paper is by no means an exception; to illustrate this, we present
below a list of problems which might require new methods for their solution.

4.1 Problem. Is any linearly ordered space dually discrete?

4.2 Problem. Is any GO space dually discrete?

4.3 Problem. Must every monotonically normal space be dually discrete?

4.4 Problem. Suppose that X is a GO space of locally countable extent, i.e.,
every x ∈ X has a neighbourhood of countable extent. MustX be dually discrete?

4.5 Problem. Must every dually metrizable space be dually discrete?

4.6 Problem. Suppose that X is first countable and every neighbourhood as-
signment in a space X has a kernel of countable spread. Is it true in ZFC that
|X | 6 c?
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4.7 Problem. Is there a model of ZFC in which R
ω1 is dually discrete?

4.8 Problem. Suppose that a space X is dually discrete. Must every perfect
image of X be dually discrete?

4.9 Problem. Suppose that X =
⋃

n∈ω Xn and every Xn is a discrete subspace

of X . Must X be dually discrete?

4.10 Problem. Must any Lindelöf monotonically normal space be a D-space?

4.11 Problem. Must any paracompact monotonically normal space be a D-
space?

4.12 Problem. Suppose that a space X is dually finally discrete, i.e., any neigh-
bourhood assignment inX has a kernel which is a finite union of discrete subspaces
of X . Must X be dually discrete?
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