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Directoids with an antitone involution

I. CHAJDA, M. KOLARIK

Abstract. We investigate M-directoids which are bounded and equipped by a unary ope-
ration which is an antitone involution. Hence, a new operation Ll can be introduced via
De Morgan laws. Basic properties of these algebras are established. On every such an
algebra a ring-like structure can be derived whose axioms are similar to that of a gene-
ralized boolean quasiring. We introduce a concept of symmetrical difference and prove
its basic properties. Finally, we study conditions of direct decomposability of directoids
with an antitone involution.
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1. Bounded directoids with an antitone involution

The concept of directoid was introduced by J. Jezek and R. Quackenbush [6]
and independently by V.M. Kopytov and Z.I. Dimitrov [7] and B.J. Gardner and
M.M. Parmenter [5]. Recall that a directoid is an algebra D = (D;) of type (2)
satisfying the identities
(D1) zNz=ux
(D2) (xNy)Na=aNy;

(D3)  yM(zMy) =z My;
(D4) z2n((zNy)Nz)=(zNy)Nz.

Putting « < y if and only if x My = z, the relation < is an order on D, the
so-called induced order of directoid D. It was shown in [6] that My is a common
lower bound of z,y. Also conversely, if (D;<) is an ordered set where for each
z,y € D their lower bound set L(z,y) = {d € D;d < z and d < y} is non-void,
one can pick up freely an element d € L(z,y) with only one constrain: if z <y
then d must be equal to . Then, putting x My = d, the algebra (D;M) is a
directoid. We do not assume the commutativity My = y M« throughout the
paper.
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Lemma 1. A directoid D = (D;N) is a semilattice if and only if it satisfies the
condition

(S) (x<a and z<b) = z<albd.

PROOF: Of course, (S) is satisfied in every A-semilattice. Conversely, let a direc-
toid D = (D;N) satisfy (S), let a,b € D and = € L(a,b). Then, by (S), z < aMb
and hence, a M b is the greatest lower bound of a,b, i.e. aMb = inf(a,bd). Thus
(D; M) is a A-semilattice. O

In what follows, we will deal with directoids having a least element 0 and a
greatest element 1. This fact will be expressed by the notation D = (D;11,0,1).
By an antitone involution on D = (D;r1,0,1) is meant a mapping = — ' of
D — D such that 2/ = z and = < y = 3’ < 2/ where < is the induced order of
D. If D= (D;nN,0,1) has an antitone involution, we will write D = (D;,/,0,1).
Of course, 0’ = 1 and 1’ = 0 is valid in every bounded directoid with an antitone
involution. Due to [7], the operations LI and M are connected by the absorption
laws.

Let D = (D;r,,0,1). The term operation LI defined via z Ly = (2’ My’) will
be called an assigned operation of D.

Theorem 1. Let D = (D;1,/,0,1) be a directoid with an antitone involution,
let LI be the assigned operation. Then:
() 2Ny =("Uy);
(ii) zUz ==,
(zUy)Uz=zUy,
yU(zUy) =z Uy,
zU((zUy)Uz)=(zUy)Uz;
(iii) zN(zUy) =2, zU(zNy)==z, zN(yUz)==z, zU(yMNz) ==z,
(zUy)Nz =z, (zNy)Uax=2z, (yUz)Nz==z, (yNz)Uz==zx.

ProoF: (i) (' Uy') = (" ny") =xzny.

(i) zUx = (' Na) =a" =z,

(zUy) Uz = (@ Ny Uz = (' Ny) ) = (@ Ny'Y =z Uy,
yU(zUy) =yu (' Ny") = N ny)) (I ny) =ady,
rU((@Uy)Uz) =@ N (@' Ny)N2)) = (('ny)nz) = (@uy) Uz

(iii) The absorption laws were proved in [7]. For the reader’s convenience, we
present an easy proof as follows. By using (ii), we compute

\H

U(zUy)=zU(zUy)Uz)=(zUy)Uz=zUy

thus ¢ < z Uy whence z M (z Uy) = z. Similarly we can prove the remaining
absorption laws. ([l
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Remark 1. The identities 2Ly = (2/My') and zMy = (2/ Uy')’ will be referred
under the name De Morgan laws because they are formally the same as De Morgan
laws in lattices.

Due to De Morgan laws, (D;Ll) is a directoid again for any D = (D;11,,0,1)
with the assigned operation L. Clearly z <y if and only if x Ly = y.

Example 1. Consider the directed set whose diagram is drawn in Figure 1

1
c d
chd=a b=dMNec
0
FIGURE 1

Let us pick up ¢Md = a and dMe¢ = b. Then D = (D;M,0,1) for D =
{0,a,b,c,d, 1} is a bounded M-directoid. Further, define z — z’ on D as follows

c d 1
b a 0
It is clearly an antitone involution on D. For the assigned operation LI we have:

alb=(aNV)Y =@ne) =V =c¢,

bUa=Nd) =(cnd) =d =d.

O

The following example gives an answer to the question whether is it possible
to define an antitone involution on every M-directoid:

Example 2. Consider the M-directoid D = ({0, z,y, z,1}; M) depicted in Figure 2
where for binary operation M we have: My = 0, y Mz = z (and trivially for
comparable elements).
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1

0

FIGURE 2

We show that on this M-directoid it is not possible to define an antitone invo-
lution ’: Clearly, 0’ =1 and 1’ = 0. If we put 2’ = z, then v’ must be equal to y
but z < y implies y = 3y’ < 2/ = z, a contradiction. If we pick 2’ = y, then 2/ = 2
and z < x implies y = 2/ < 2/ = z, a contradiction. Finally, if ' = x then for
2/ =z or 2/ =y we have < z or x < y which is a contradiction again.

Note, that if a M-directoid is not commutative, it needs to have at least 2
non-comparable elements z,y such that |L(x,y)| > 2. Thus, the directoid from
Figure 2 is the smallest one which cannot have an antitone involution and hence
also the assigned operation LI. %

It can be proved dually as in Lemma 1 that a L-directoid (D;L) is a V-
semilattice if and only if it satisfies the condition

(S) (a<z and b<z) = alUb<uzx.

Lemma 1 enables us to show that when U and M are connected by a stronger
identity such as modularity or distributivity then the resulting structure is a
lattice. A similar result was already shown by J. Nieminen [9] for the so-called
x-lattices.

Theorem 2. Let D = (D;r,,0,1) be a directoid with an antitone involution
and Ul the assigned operation. If D satisfies the modularity laws

then (D;U,M) is a lattice.

PRrROOF: Suppose z,y,a € D, x,y < a. Then x = aMx, y = aMy and hence
zUy=(aNz)U(aNy)=aN(zU(aMNy)) =amN (zUy) thus 2 Uy < a. In other
words, it satisfies (S’) and hence (D; L) is a V-semilattice. Dually it can be shown
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that also (D;M) is a A-semilattice. Due to Theorem 1, M and U are connected
with the absorption laws, i.e. (D;U,M) is a lattice. O

Let D = (D;n,/,0,1) be a directoid with an antitone involution and U its
assigned operation. If M is commutative, i.e. z My = y Mz then also L is commu-
tative and (D; L, M) is the so-called A-lattice as defined in [10]. Moreover, every
x-lattice (defined in [9], [8]) is a particular case of A-lattice. In our investigation
we do not assume commutativity of M and hence our algebras are more general.
Nevertheless, we are still able to prove a result which holds for lattices, i.e.:

Theorem 3. Let D = (D;r,,0,1) be a directoid with an antitone involution
and U the assigned operation. Then

m(z,y,z) = ((zMNy)U(zMNy)) U (xNz2)

is the majority term on D and hence the congruence lattice ConD is distributive.

ProOOF: m(z,z,y) = (xNa)U (yNa))U(zNy) = (zU(yNaz)U(zNy) =

zU(xMNy) ==,

m(z,y,x) = ((zOy)U(zNy))U(zNa) = (zNy)Uz =,

m(y,,) = ((y M) U (eNa) U (y Na) = (yNa) Ue) U (y Ne) = U (yNa) = .
O

2. Derived quasirings

The concept of a (boolean) quasiring was introduced firstly for orthomodular
lattices and ortholattices and then for bounded lattices with an antitone involution
in [4], [1], [2]. We are going to introduce similar ring-like structures for directoids
with an antitone involution.

By a D-quasiring is meant an algebra R = (R;+,-,0,1) of type (2,2,0,0)
satisfying the dentities
Q1) (z-y)-z=ux-y
Q2) y-(z-y) ==y
Q3) z-((z-y)2)=(x-y) 2
(Q4) z-0=0;
(Q5) w-1=u;
(Q6) z+0=u;
Q) 1+(Q+2-y)-(1+y) =y

Remark 2. Due to (Q3) with y = z = 1 and (Q5), we obtain immediately that
a D-quasiring satisfies the identity

M vox=a.
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Hence, for every D-quasiring R = (R;+,-,0,1), (R;-,0,1) is a bounded direc-
toid with 0 and 1, thus R may be considered as a partially ordered set (R; <)
with smallest element 0 and greatest element 1 where < is the induced order of
(R;-,0,1,) i.e. for every z,y € R, the order < is defined by z < y if and only if
Ty =z

Lemma 2. Let (R;+,-,0,1) be a D-quasiring. Then x — 1+ z is an antitone
involution on R.

PROOF: Denote by 2/ = z + 1. If we put z = y in (Q7) and apply (I), we obtain
the identity
(N) 1+(1+2) =2
proving that 2" = z. Suppose z < y, i.e. x = z - y. Then, from (Q7), we have
1+(1+2)-(1+y) =y,
whence
1+Q+2)-1+y) =y

- 1+Q+0+2)-Q1+y)=1+y.

By (N) we obtain
14+z)-1+y)=1+y

which yields (1 + y) < (1 + z), i.e. ¥’ < /. Thus the operation ’ is an antitone
involution on R. 0

Theorem 4. Let R = (R;+,+,0,1) be a D-quasiring. Define
rNy=x-y, 2 =1+x and zUy=1+1+2z) (1+y).

Then D(R) = (R;N,,0,1) is a bounded directoid with an antitone involution
where U is the assigned operation.

PROOF: As mentioned in Remark 2, (R;M,0,1) is a bounded directoid. By
Lemma 2, ’ is an antitone involution on R. Further, using (N), we compute

Uy =14+042) 1+y)=14z-y=(zNy)
and

Yy =0+2)- A4+y)=14+0+0+2)-1+y) = (xUy),

thus D(R) satisfies De Morgan laws and hence LI is the assigned operation. O
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Theorem 5. Let D = (D;r,,0,1) be a directoid with an antitone involution
and U the assigned operation. Define

r+y=(xUy)N(xNy) and z-y=xMy.

Then R(D) = (D;+,-,0,1) is a D-quasiring. Moreover, R(D) satisfies the fol-
lowing correspondence identity

(Corl) 1+0142)-1+y) - Q+z-y)=x+y.

PROOF: Since (D;M,0,1) is a bounded M-directoid, the identities (Q1)—(Q5) hold.
The identity (Q6) is evident. Evidently, 1 + x = (1Uz) 1 (1MNx) =1Ma’ =2/
For (Q7) we use the properties of an antitone involution to compute

i

1+ (14z-y)-(L+y)=(any)ny) =y" =y

Using the De Morgan laws we obtain

1+Q+z)-1+y) L4z-y) =" Ny)Yn(@ny)
=(@Uy)N(zny) =z+y

which is just the identity (Corl). O

Theorem 6. Let D = (D;r,/,0,1) be a bounded directoid with an antitone
involution. Then D(R(D)) = D.

Let R = (R;+,+,0,1) be a D-quasiring satisfying the correspondence identity
(Corl). Then R(D(R)) = R.

ProOOF: Evidently, the operation meet coincides in both D(R(D)) and D. Hence,
it remains to prove U = Ll and 2* = 2’ where U is the binary operation and * the
antitone involution of D(R(D)). We have

*=14+z=>0QUz)n(1nNz) =1nz" =2’

and
rUy=1+0+2)-(1+y)=@"Ny) =2uy.

Analogously, the multiplicative operations coincide in the both R(D(R)) and R.
To prove R(D(R)) = R we need only to show that also & = + where @ is the
additive operation in R(D(R)). Applying (Corl) we compute

coy=(eUyN@ny) =0+0+z) - Q+y) - Q+z-y)=z+y.
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" and as-

Example 3. Consider the M directoid D with an antitone involution
signed operation Ll from Example 1 (see Figure 1).
The operation tables of the D-quasiring R(D) corresponding to D are as follows

(see Theorem 5):

0 a b ¢ d 1 +10 a b ¢ d 1
0(0 0 0 0 0 O 0/]0 a b ¢ d 1
al0 a 0 a a a ala a ¢ a d d
b0 O b b b b blb d b ¢ b ¢
cl0 a b ¢ a c clc a ¢ b d b
dl{0 a b b d d dld d b ¢ a a
110 a b ¢ d 1 111 d ¢ b a 0

Note that - and + are not commutative. O

Remark 3. Let us consider the directoid D = (D;1,,0,1) of Example 1. One
can pick a Ub = d and bU a = ¢ (and trivially for comparable elements). The
resulting structure (D;U) is clearly a L-directoid again but Ul is not the assigned
operation of D. Evidently, the De Morgan laws are not satisfied. On the contrary
the structure £ = (D; 1,1, ,0,1) still induces a D-quasiring R(L) via z-y = zMy
and z +y = (z Uy) M (zMNy). However, (Corl) is not satisfied and hence
R # R(L(R)).

3. Symmetrical difference

Definition 1. Let D = (D;1,/,0,1) be a directoid with an antitone involution
and Ul the assigned operation. Let a,b € D. The element a is called a complement
of bifamb=0and alUb=1.

Remark 4. If a is a complement of b then b need not be a complement of a; see
the following

Example 4. A bounded M-directoid with an antitone involution ’ is depicted in
Figure 3 where cMd=a,dMNc=0and 0' =1,a =d, ' =c.
Then a is a complement of b but b is not a complement of a since

alb=(a'MV) =@nec) =0 =1,

but
bUua=Nd) =(cnd) =d =d.
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aldb=1

O0=dne

FIGURE 3

Analogously, d is a complement of ¢ but not vice versa. On the other hand, b is
a complement of ¢ and c is a complement of b. Of course, 0 is a complement of 1
and 1 is a complement of 0. O

Lemma 3. Let D = (D;1,,0,1) be a directoid with an antitone involution and
Ll the assigned operation. Let R(D) = (D;+,-,0,1) be the induced D-quasiring.
Then

(a) a+b=1if and only if a is a complement of b;

(b) a+b=albifand only if aUb <da' UV;

(c) if a<bthena+b=>bMad.

PROOF: (a) Assume a +b = 1. Then (aUb)M(aMb) =1, ie. allb=1and
(amb) =1, hence alb =0 thus a is a complement of b. The converse is trivial.
(b)Ifalb=a+b=(alUb)M(aMb) then allb < (aMb) =ada LY. The
converse is evident.
(c)Ifa<bthena+b=(aUb)M(alb) =blad. O

Definition 2. Let D = (D;1,/,0,1) be a directoid with an antitone involution
and U the assigned operation. By a symmetrical difference of x,y is meant the
term function

rAy = (@ NMy)u (zny).
We can get a mutual relationship between the symmetrical difference and the
operation + of the induced D-quasiring as follows:

Lemma 4. Let D = (D;r1,,0,1) be a directoid with an antitone involution and
U the assigned operation. Then z/A\y = (x + ') and x +y = (zAy')".

ProOOF: Using the De Morgan laws, we infer directly

(zOy) = (@' Ny YU (eny) =@uy) N(zny) =z+y

563
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and

(z+y) =(zuy)n@ny)) =@uy) uny)

= (@' Ny)u(zny) =zAy.
O

Lemma 5. Let D = (D;1,,0,1) be a directoid with an antitone involution and
U the assigned operation. Then
(a) zAy = 0 if and only if 2’ is a complement of y;
(b) zAz =0 if and only if 2’ Az’ = 0 if and only if x’ is a complement of z;
(c) 1Az =zl = 2.

PROOF: (a) Assume Ay = 0. Then (z/ My) U (xMy’) = 0 thus also 2/ My = 0
and z My = 0, whence 2’ Uy = (zMy) =0 =1, ie. 2’ is a complement of
y. Conversely, if 2’ is a complement of y then 2’ My = 0 and 2’ Uy = 1, i.e.
xMy = (z’Uy) =1 =0 and hence zAy = 0.

(b) The first implication follows directly from the definition of symmetrical
difference and (a) immediately yields the second.

(c) 1Az = (' Mz) U (1Ma') = 2'; analogously zA1 = z'. O

We are able to show that the symmetrical difference can also serve as an addi-
tive operation in a certain induced D-quasiring.

Theorem 7. Let D = (D;r,,0,1) be a directoid with an antitone involution
and U the assigned operation. Let /\ be the symmetric difference. Then R*(D) =
(D; A,1M,0,1) is a D-quasiring.

PROOF: It is trivial to verify the axioms (Q1)—(Q5). For (Q6) we have
zA0= (2’ M0)U(xzM0) =0z = .
It remains to prove (Q7). By Lemma 5 (c) we have

IAAA(NY) N (1AY) = (e Ny) Ny =" =y.
O

Lemma 6. LetD = (D;r,,0,1) be a directoid with an antitone involution and L)
the assigned operation. The D-quasiring R*(D) = (D; A,-,0,1) withx-y = My
satisfies the identity

(Cor2) IAIA(AZ) - y) - 1Az - (1AY)) = 2 Ay.
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PROOF: By using Lemma 5 (c¢) and the De Morgan laws we compute
IA(IA(LAZ) - y) - (1Az - (14y)) = (@' Ny) N (z Ny

= (@' Ny)u(zny) =zAy. O

The following result is a counterpart of Theorem 6 and can be proved analo-
gously:

Theorem 8. Let D = (D;M,,0,1) be a directoid with an antitone involution, LI
the assigned operation and /\ the symmetrical difference. Then D(R*(D)) = D.
Let R = (R; A, -,0,1) be a D-quasiring satisfying (Cor2). Then R*(D(R)) = R.

4. A decompositions of directoids

Define aC'bif b= (bMa)ULi(bMa’). An element a € D is called central if a C =
and o’ C z for each € D. Denote by C(D) the set of all central elements of a
directoid D = (D;1,,0,1). Hence,

(©) acC(D) iff z=(zNa)U(zNd)=(xNd)U(zMNa)
for each z € D.

Lemma 7. Let D = (D;r1,,0,1) be a directoid with an antitone involution and
U the assigned operation. Then

(a) if b < a then a C'b;

(b) 0,1 € C(D);

(c) if a € C(D) then @ is a complement of a and a is a complement of a’;
(d) if a € C(D) then

(zUd)N(zUa) =2 = (zUa)N (zLad)
for each x € D.

PRrROOF: (a) If b < a then (bMa)U (bMa’)=bU(bMad')=h.
(b) Of course, z = (M 1)U (zM0) = (zM0)U (xM1) for each z € D.
(c) Take x =1 in (C). Then

l=(1nau(lnd)=aud

and
l=(1nd)u(1na)=d Ua.

Due to De Morgan laws, we have that a’ is a complement of a and vice versa.
(d) We compute

(zUud)N(zUa)= (' Na) NE' Nd) = (@ Na)u (@' Nd)) =2" =2

The second equation can be shown analogously. (I
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Definition 3. Let D = (D;1,/,0,1) be a directoid with an antitone involution
and U the assigned operation. Denote by Is(D) the set of all elements a € D such
that
(i) (xNy)Na=(xNa)N(yNa), (zMNy)MNa =
(i) (zUy)Na=(xMNa)U(yMa), (xUy)MNa =

—~
8
3
@\
~——
3
~~
<
3
S
:.>

It is clear that 0,1 € Is(D) in any case.

Remark 5. It is immediate that a € Is(D) if and only if a’ € Is(D) and a € C(D)
if and only if o’ € C(D).

Lemma 8. Let D = (D;1,,0,1) be a directoid with an antitone involution and
U the assigned operation. Then

(a) if a €Is(D) thenz <y=zxMNa<yNa;

(b) if a € C(D)NIs(D) then

/ /

(xMa)MNa=2"Na and (xzNd) Nd =2'Md.

PRrROOF: (a) If < y then My = z and, by (i) of Definition 3, zMa = (zMy)MNa =
(xMa)M(yNa) thus x Na < yMNa.
(b) Of course, (zMa) Ma = (/' Ua’)Ma. By (ii) of Definition 3, we have

(" Ud)Ma = (2 Ma)U(a Ma) and, due to Lemma 7(c), @’ Ma = 0. Hence
(xMa) Ma =2’ Ma. The second equality is established similarly. O

Theorem 9. Let D = (D;r,,0,1) be a directoid with an antitone involution
and U the assigned operation. Let a € C(D)NIs(D). Define

*=2'MNa and z7 =2'N4d.
Then D1 = ((a];M,*,0,a) and Dy = ((a’];M,7,0,a’) are bounded directoids with
an antitone involution and D is isomorphic to D1 x Do where the isomorphism is
defined by p(x) = (xMa,zMNd).
Conversely, let D be isomorphic with D1 x Dy where D1, Dy are directoids
with an antitone involution. Then there exists a € C(D) NIs(D) such that
Dy = ((a],M,*,0,a) and Ds = ((a'],11,%,0,d’).

Proor: Evidently, if z,y € (a] then 2 My < & < a thus also z My € (al, ie.
((a];M) is a directoid as well as ((a’];1).
Let = € (a]. Then x < a, i.e. zUa = a and, by Lemma 7(d),

™ =@'Na)Na=(xud)N(zUa) =2.

Thus D; = ((a];M,*,0,a) is a bounded directoid with the involution *. Since
r <y implies ¢/ < 2’ and a € Is(D), also

vy =y Na<z'Na=2z*
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by (a) of Lemma 8, thus this involution is antitone. Similarly it can be shown for
Dy = ((a'];1,7,0,a).

Now, define ¢ : D — Dj x Dy by ¢(z) = (x Ma,zMa’). Moreover, define
¥ : D1 x Do — D by ¥((z,y)) =z Uy. Since a € C(D), we infer

U(p(x)) = (MNa)U(zMa’) =,

i.e., ¢ is an injective mapping. Suppose (z,y) € D1 X Da. Then z < a, y < d’
and by (ii) of Definition 3, we have

e(((x,y) = ¢z Uy) = ((xUy) MNa, (zUy) Na)
=((zNa)U(yMa),(znd)u(ynd)) = (xU(yna)(znd)Uy).

Since a,a’ € Is(D), y < a’ we obtain (according to (a) of Lemma 8) that
yMNa<dNa=0

and therefore yMa = 0. Analogously, zMa’ = 0. Hence, p(¢((x,y))) = (zU0,0U

y) = (z,y). Thus, ¢ is a bijection and ¢ = ¢~ 1.

It remains to prove that ¢ is a homomorphism. Clearly,

e®)Np(e) = (bNa,bMNad )N (cMa,cna)
=((bna)N(cna),®na)n(cna))=(bnec)Na,(bNec)na)=ebMNc)

according to (i) of Definition 3. Further, using of Lemma 8(b), we obtain

o) = (bMa,bMNd) = ((bMa)*, (bMad)™)
(bMa) Na,(bnd) na)= 0 Ma, b Nad) = e®).

Hence, ¢ is an isomorphism of D onto D; X Ds.

Conversely, let Dy = (D;M,*,01,11) and Dy = (D;M, 7,09, 13) be directoids
with antitone involutions and D is isomorphic to D; x Da. It is an easy exercise to
verify that elements a = (11, 02) and (01, 12) belong to C(D1 x D2)NIs(Dy x Da)
and (01,12) = @’ in Dy x Dy. Of course, D1 = Dy = ((al;M,*,(01,02),a) and
Dy 2Dy = ((a’];M,7,(01,02),a’) and hence also D = Dy x Ds. O

Remark 6. If D = (D;,/,0,1) is a semilattice with an antitone involution then
every element satisfies (i) of Definition 3 and (a) of Lemma 8.

567



568

I. Chajda, M. Kolafik

Example 5. Let D = (D;1,,0,1) be the M-directoid with an antitone involution
as shown in Example 4 (see Figure 3). Let Ll be its assigned operation. Then
b ¢ C(D) and ¢ ¢ C(D), because

d# (@dnb)u(dnd)y=bU0=0
and
d# (dne)u(dnd)=0uUb=b.
Due to Lemma 7(c) also a ¢ C(D), d ¢ C(D). Further, elements ¢ and d do not
belongs to Is(D), since
a=alNec=(aNd)Ne#(aMNe)N(dMe)=amn0=0
and
d=1Nd=(aUb)Nd# (aNd)U(bNd)=allb=1.

Hence also b = ¢/ ¢ Is(D) and a = d’ ¢ Is(D). Thus C(D) =Is(D) = {0, 1}.

On the contrary, let Figure 3 be now the Hasse diagram of the lattice £ =
(L; A, V) with a two binary operations join and meet. Then L is as a direct
product of the two-element and three-element chains.

For the non-trivial decomposition of directoid let us see the following

Example 6. Consider the MM-directoid D = (D;M) whose diagram is drawn in
Figure 4 where mMn =k, nMm =1, sMNt = q, tMs = r and trivially for the
other couples.

o P

FIGURE 4
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[10]

Directoids with an antitone involution

Define an antitone involution z — &’ on D as follows

x H 0O kIl p q r

H 1 ¢ s o n m
One can easily check that a = p, a’ = 0 € C(D) NIs(D). Therefore, D =
x Do for D1 = ((a],M,*,0,a) and Dy = ((a],N,7,0,a’).
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