I. Chajda, M. Kolařík

Abstract. We investigate \sqcap -directoids which are bounded and equipped by a unary operation which is an antitone involution. Hence, a new operation \sqcup can be introduced via De Morgan laws. Basic properties of these algebras are established. On every such an algebra a ring-like structure can be derived whose axioms are similar to that of a generalized boolean quasiring. We introduce a concept of symmetrical difference and prove its basic properties. Finally, we study conditions of direct decomposability of directoids with an antitone involution.

Keywords: directoid, antitone involution, D-quasiring, symmetrical difference, direct decomposition

Classification: 06A12, 06A06, 06E20, 16Y99

1. Bounded directoids with an antitone involution

The concept of directoid was introduced by J. Ježek and R. Quackenbush [6] and independently by V.M. Kopytov and Z.I. Dimitrov [7] and B.J. Gardner and M.M. Parmenter [5]. Recall that a *directoid* is an algebra $\mathcal{D} = (D; \sqcap)$ of type (2) satisfying the identities

(D1)
$$x \sqcap x = x;$$

 $(D2) \quad (x \sqcap y) \sqcap x = x \sqcap y;$

$$(D3) \quad y \sqcap (x \sqcap y) = x \sqcap y;$$

 $(D4) \quad x \sqcap ((x \sqcap y) \sqcap z) = (x \sqcap y) \sqcap z.$

Putting $x \leq y$ if and only if $x \sqcap y = x$, the relation \leq is an order on D, the so-called *induced order* of directoid \mathcal{D} . It was shown in [6] that $x \sqcap y$ is a common lower bound of x, y. Also conversely, if $(D; \leq)$ is an ordered set where for each $x, y \in D$ their lower bound set $L(x, y) = \{d \in D; d \leq x \text{ and } d \leq y\}$ is non-void, one can pick up freely an element $d \in L(x, y)$ with only one constrain: if $x \leq y$ then d must be equal to x. Then, putting $x \sqcap y = d$, the algebra $(D; \sqcap)$ is a directoid. We do not assume the commutativity $x \sqcap y = y \sqcap x$ throughout the paper.

Supported by the Research and Development Council of the Czech Government via the project MSM6198959214.

Lemma 1. A directoid $\mathcal{D} = (D; \sqcap)$ is a semilattice if and only if it satisfies the condition

(S)
$$(x \le a \text{ and } x \le b) \Rightarrow x \le a \sqcap b.$$

PROOF: Of course, (S) is satisfied in every \wedge -semilattice. Conversely, let a directoid $\mathcal{D} = (D; \sqcap)$ satisfy (S), let $a, b \in D$ and $x \in L(a, b)$. Then, by (S), $x \leq a \sqcap b$ and hence, $a \sqcap b$ is the greatest lower bound of a, b, i.e. $a \sqcap b = \inf(a, b)$. Thus $(D; \sqcap)$ is a \wedge -semilattice.

In what follows, we will deal with directoids having a least element 0 and a greatest element 1. This fact will be expressed by the notation $\mathcal{D} = (D; \sqcap, 0, 1)$. By an *antitone involution* on $\mathcal{D} = (D; \sqcap, 0, 1)$ is meant a mapping $x \mapsto x'$ of $D \to D$ such that x'' = x and $x \leq y \Rightarrow y' \leq x'$ where \leq is the induced order of \mathcal{D} . If $\mathcal{D} = (D; \sqcap, 0, 1)$ has an antitone involution, we will write $\mathcal{D} = (D; \sqcap, 0, 1)$. Of course, 0' = 1 and 1' = 0 is valid in every bounded directoid with an antitone involution. Due to [7], the operations \sqcup and \sqcap are connected by the absorption laws.

Let $\mathcal{D} = (D; \sqcap, ', 0, 1)$. The term operation \sqcup defined via $x \sqcup y = (x' \sqcap y')'$ will be called an *assigned operation* of \mathcal{D} .

Theorem 1. Let $\mathcal{D} = (D; \sqcap, ', 0, 1)$ be a directoid with an antitone involution, let \sqcup be the assigned operation. Then:

(i)
$$x \sqcap y = (x' \sqcup y')';$$

(ii) $x \sqcup x = x,$
 $(x \sqcup y) \sqcup x = x \sqcup y,$
 $y \sqcup (x \sqcup y) = x \sqcup y,$
 $x \sqcup ((x \sqcup y) \sqcup z) = (x \sqcup y) \sqcup z;$
(iii) $x \sqcap (x \sqcup y) = x, \quad x \sqcup (x \sqcap y) = x, \quad x \sqcap (y \sqcup x) = x, \quad x \sqcup (y \sqcap x) = x$
 $(x \sqcup y) \sqcap x = x, \quad (x \sqcap y) \sqcup x = x, \quad (y \sqcup x) \sqcap x = x, \quad (y \sqcap x) \sqcup x = x$

PROOF: (i) $(x' \sqcup y')' = (x'' \sqcap y'')'' = x \sqcap y$. (ii) $x \sqcup x = (x' \sqcap x')' = x'' = x$, $(x \sqcup y) \sqcup x = (x' \sqcap y')' \sqcup x = ((x' \sqcap y') \sqcap x')' = (x' \sqcap y')' = x \sqcup y$, $y \sqcup (x \sqcup y) = y \sqcup (x' \sqcap y')' = (y' \sqcap (x' \sqcap y'))' = (x' \sqcap y')' = x \sqcup y$, $x \sqcup ((x \sqcup y) \sqcup z) = (x' \sqcap ((x' \sqcap y') \sqcap z')) = ((x' \sqcap y') \sqcap z')' = (x \sqcup y) \sqcup z$. (iii) The absorption laws were proved in [7]. For the reader's convenience, we present an easy proof as follows. By using (ii), we compute

$$x \sqcup (x \sqcup y) = x \sqcup ((x \sqcup y) \sqcup x) = (x \sqcup y) \sqcup x = x \sqcup y$$

thus $x \leq x \sqcup y$ whence $x \sqcap (x \sqcup y) = x$. Similarly we can prove the remaining absorption laws.

Remark 1. The identities $x \sqcup y = (x' \sqcap y')'$ and $x \sqcap y = (x' \sqcup y')'$ will be referred under the name De Morgan laws because they are formally the same as De Morgan laws in lattices.

Due to De Morgan laws, $(D; \sqcup)$ is a directoid again for any $\mathcal{D} = (D; \sqcap, ', 0, 1)$ with the assigned operation \sqcup . Clearly $x \leq y$ if and only if $x \sqcup y = y$.

Example 1. Consider the directed set whose diagram is drawn in Figure 1

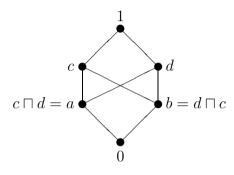


Figure 1

Let us pick up $c \sqcap d = a$ and $d \sqcap c = b$. Then $\mathcal{D} = (D; \sqcap, 0, 1)$ for $D = \{0, a, b, c, d, 1\}$ is a bounded \sqcap -directoid. Further, define $x \mapsto x'$ on D as follows

It is clearly an antitone involution on D. For the assigned operation \sqcup we have:

$$a \sqcup b = (a' \sqcap b')' = (d \sqcap c)' = b' = c,$$

 $b \sqcup a = (b' \sqcap a')' = (c \sqcap d)' = a' = d.$

 \Diamond

The following example gives an answer to the question whether is it possible to define an antitone involution on every \sqcap -directoid:

Example 2. Consider the \sqcap -directoid $\mathcal{D} = (\{0, x, y, z, 1\}; \sqcap)$ depicted in Figure 2 where for binary operation \sqcap we have: $x \sqcap y = 0, y \sqcap x = z$ (and trivially for comparable elements).

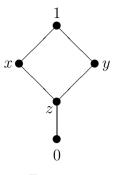


FIGURE 2

We show that on this \sqcap -directoid it is not possible to define an antitone involution ': Clearly, 0' = 1 and 1' = 0. If we put x' = z, then y' must be equal to y but $z \leq y$ implies $y = y' \leq z' = x$, a contradiction. If we pick x' = y, then z' = z and $z \leq x$ implies $y = x' \leq z' = z$, a contradiction. Finally, if x' = x then for z' = z or z' = y we have $x \leq z$ or $x \leq y$ which is a contradiction again.

Note, that if a \sqcap -directoid is not commutative, it needs to have at least 2 non-comparable elements x, y such that $|L(x, y)| \ge 2$. Thus, the directoid from Figure 2 is the smallest one which cannot have an antitone involution and hence also the assigned operation \sqcup .

It can be proved dually as in Lemma 1 that a \sqcup -directoid $(D; \sqcup)$ is a \lor -semilattice if and only if it satisfies the condition

(S')
$$(a \le x \text{ and } b \le x) \Rightarrow a \sqcup b \le x.$$

Lemma 1 enables us to show that when \sqcup and \sqcap are connected by a stronger identity such as modularity or distributivity then the resulting structure is a lattice. A similar result was already shown by J. Nieminen [9] for the so-called χ -lattices.

Theorem 2. Let $\mathcal{D} = (D; \sqcap, ', 0, 1)$ be a directoid with an antitone involution and \sqcup the assigned operation. If \mathcal{D} satisfies the modularity laws

$$\begin{aligned} x \sqcup (y \sqcap (x \sqcup z)) &= (x \sqcup y) \sqcap (x \sqcup z), \\ x \sqcap (y \sqcup (x \sqcap z)) &= (x \sqcap y) \sqcup (x \sqcap z) \end{aligned}$$

then $(D; \sqcup, \sqcap)$ is a lattice.

PROOF: Suppose $x, y, a \in D$, $x, y \leq a$. Then $x = a \sqcap x$, $y = a \sqcap y$ and hence $x \sqcup y = (a \sqcap x) \sqcup (a \sqcap y) = a \sqcap (x \sqcup (a \sqcap y)) = a \sqcap (x \sqcup y)$ thus $x \sqcup y \leq a$. In other words, it satisfies (S') and hence $(D; \sqcup)$ is a \lor -semilattice. Dually it can be shown

that also $(D; \sqcap)$ is a \land -semilattice. Due to Theorem 1, \sqcap and \sqcup are connected with the absorption laws, i.e. $(D; \sqcup, \sqcap)$ is a lattice. \square

Let $\mathcal{D} = (D; \sqcap, ', 0, 1)$ be a directoid with an antitone involution and \sqcup its assigned operation. If \sqcap is commutative, i.e. $x \sqcap y = y \sqcap x$ then also \sqcup is commutative and $(D; \sqcup, \sqcap)$ is the so-called λ -lattice as defined in [10]. Moreover, every χ -lattice (defined in [9], [8]) is a particular case of λ -lattice. In our investigation we do not assume commutativity of \sqcap and hence our algebras are more general. Nevertheless, we are still able to prove a result which holds for lattices, i.e.:

Theorem 3. Let $\mathcal{D} = (D; \sqcap, ', 0, 1)$ be a directoid with an antitone involution and \sqcup the assigned operation. Then

$$m(x, y, z) = ((x \sqcap y) \sqcup (z \sqcap y)) \sqcup (x \sqcap z)$$

is the majority term on \mathcal{D} and hence the congruence lattice Con \mathcal{D} is distributive.

 $\begin{array}{l} \text{PROOF:} \quad m(x,x,y) \,=\, ((x \sqcap x) \sqcup (y \sqcap x)) \sqcup (x \sqcap y) \,=\, (x \sqcup (y \sqcap x)) \sqcup (x \sqcap y) \,=\, x \sqcup (x \sqcap y) = x, \\ m(x,y,x) \,=\, ((x \sqcap y) \sqcup (x \sqcap y)) \sqcup (x \sqcap x) \,=\, (x \sqcap y) \sqcup x = x, \\ m(y,x,x) \,=\, ((y \sqcap x) \sqcup (x \sqcap x)) \sqcup (y \sqcap x) \,=\, ((y \sqcap x) \sqcup x) \sqcup (y \sqcap x) \,=\, x \sqcup (y \sqcap x) = x. \end{array}$

2. Derived quasirings

The concept of a (boolean) quasiring was introduced firstly for orthomodular lattices and ortholattices and then for bounded lattices with an antitone involution in [4], [1], [2]. We are going to introduce similar ring-like structures for directoids with an antitone involution.

By a *D*-quasiring is meant an algebra $\mathcal{R} = (R; +, \cdot, 0, 1)$ of type (2, 2, 0, 0) satisfying the dentities

- $(Q1) \quad (x \cdot y) \cdot x = x \cdot y;$
- (Q2) $y \cdot (x \cdot y) = x \cdot y;$
- (Q3) $x \cdot ((x \cdot y) \cdot z) = (x \cdot y) \cdot z;$
- $(\mathbf{Q4}) \quad x \cdot \mathbf{0} = \mathbf{0};$
- $(\mathbf{Q5}) \quad x \cdot \mathbf{1} = x;$
- $(\mathbf{Q6}) \quad x + \mathbf{0} = x;$
- (Q7) $1 + (1 + x \cdot y) \cdot (1 + y) = y.$

Remark 2. Due to (Q3) with y = z = 1 and (Q5), we obtain immediately that a *D*-quasiring satisfies the identity

(I)
$$x \cdot x = x$$

Hence, for every *D*-quasiring $\mathcal{R} = (R; +, \cdot, 0, 1)$, $(R; \cdot, 0, 1)$ is a bounded directoid with 0 and 1, thus \mathcal{R} may be considered as a partially ordered set $(R; \leq)$ with smallest element 0 and greatest element 1 where \leq is the induced order of $(R; \cdot, 0, 1,)$ i.e. for every $x, y \in R$, the order \leq is defined by $x \leq y$ if and only if $x \cdot y = x$.

Lemma 2. Let $(R; +, \cdot, 0, 1)$ be a *D*-quasiring. Then $x \mapsto 1 + x$ is an antitone involution on *R*.

PROOF: Denote by x' = x + 1. If we put x = y in (Q7) and apply (I), we obtain the identity

(N)
$$1 + (1 + x) = x$$

proving that x'' = x. Suppose $x \leq y$, i.e. $x = x \cdot y$. Then, from (Q7), we have

$$1 + (1+x) \cdot (1+y) = y,$$

whence

$$(1 + (1 + x) \cdot (1 + y))' = y',$$

i.e.

$$1 + (1 + (1 + x) \cdot (1 + y)) = 1 + y.$$

By (N) we obtain

$$(1+x) \cdot (1+y) = 1+y$$

which yields $(1 + y) \leq (1 + x)$, i.e. $y' \leq x'$. Thus the operation ' is an antitone involution on R.

Theorem 4. Let $\mathcal{R} = (R; +, \cdot, 0, 1)$ be a *D*-quasiring. Define

$$x \sqcap y = x \cdot y, \quad x' = 1 + x \quad and \quad x \sqcup y = 1 + (1 + x) \cdot (1 + y).$$

Then $\mathcal{D}(R) = (R; \Box, ', 0, 1)$ is a bounded directoid with an antitone involution where \sqcup is the assigned operation.

PROOF: As mentioned in Remark 2, $(R; \Box, 0, 1)$ is a bounded directoid. By Lemma 2, ' is an antitone involution on R. Further, using (N), we compute

$$x' \sqcup y' = 1 + (1 + x') \cdot (1 + y') = 1 + x \cdot y = (x \sqcap y)'$$

and

$$x' \sqcap y' = (1+x) \cdot (1+y) = 1 + (1+(1+x) \cdot (1+y)) = (x \sqcup y)',$$

thus $\mathcal{D}(R)$ satisfies De Morgan laws and hence \sqcup is the assigned operation. \Box

Theorem 5. Let $\mathcal{D} = (D; \sqcap, ', 0, 1)$ be a directoid with an antitone involution and \sqcup the assigned operation. Define

$$x + y = (x \sqcup y) \sqcap (x \sqcap y)' \quad and \quad x \cdot y = x \sqcap y.$$

Then $\mathcal{R}(D) = (D; +, \cdot, 0, 1)$ is a D-quasiring. Moreover, $\mathcal{R}(D)$ satisfies the following correspondence identity

(Cor1)
$$(1 + (1 + x) \cdot (1 + y)) \cdot (1 + x \cdot y) = x + y.$$

PROOF: Since $(D; \sqcap, 0, 1)$ is a bounded \sqcap -directoid, the identities (Q1)-(Q5) hold. The identity (Q6) is evident. Evidently, $1 + x = (1 \sqcup x) \sqcap (1 \sqcap x)' = 1 \sqcap x' = x'$. For (Q7) we use the properties of an antitone involution to compute

$$1 + (1 + x \cdot y) \cdot (1 + y) = ((x \sqcap y)' \sqcap y')' = y'' = y.$$

Using the De Morgan laws we obtain

$$(1 + (1 + x) \cdot (1 + y)) \cdot (1 + x \cdot y) = (x' \sqcap y')' \sqcap (x \sqcap y)'$$
$$= (x \sqcup y) \sqcap (x \sqcap y)' = x + y$$

which is just the identity (Cor1).

Theorem 6. Let $\mathcal{D} = (D; \sqcap, ', 0, 1)$ be a bounded directoid with an antitone involution. Then $\mathcal{D}(\mathcal{R}(D)) = \mathcal{D}$.

Let $\mathcal{R} = (R; +, \cdot, 0, 1)$ be a *D*-quasiring satisfying the correspondence identity (Cor1). Then $\mathcal{R}(\mathcal{D}(R)) = \mathcal{R}$.

PROOF: Evidently, the operation meet coincides in both $\mathcal{D}(\mathcal{R}(D))$ and \mathcal{D} . Hence, it remains to prove $\cup = \sqcup$ and $x^* = x'$ where \cup is the binary operation and * the antitone involution of $\mathcal{D}(\mathcal{R}(D))$. We have

$$x^{\star} = 1 + x = (1 \sqcup x) \sqcap (1 \sqcap x)' = 1 \sqcap x' = x'$$

and

$$x \cup y = 1 + (1+x) \cdot (1+y) = (x' \sqcap y')' = x \sqcup y.$$

Analogously, the multiplicative operations coincide in the both $\mathcal{R}(\mathcal{D}(R))$ and \mathcal{R} . To prove $\mathcal{R}(\mathcal{D}(R)) = \mathcal{R}$ we need only to show that also $\oplus = +$ where \oplus is the additive operation in $\mathcal{R}(\mathcal{D}(R))$. Applying (Cor1) we compute

$$x \oplus y = (x \sqcup y) \sqcap (x \sqcap y)' = (1 + (1 + x) \cdot (1 + y)) \cdot (1 + x \cdot y) = x + y.$$

Example 3. Consider the \sqcap directoid \mathcal{D} with an antitone involution ' and assigned operation \sqcup from Example 1 (see Figure 1).

The operation tables of the *D*-quasiring $\mathcal{R}(D)$ corresponding to \mathcal{D} are as follows (see Theorem 5):

•	0	a	b	c	d	1	+	0	a	b	c	d	1
0	0	0	0	0	0	0	0	0	a	b	С	d	1
a	0	a	0	a	a	a	a	a	a	c	a	d	d
b	0	0	b	b	b	b	b	b	d	b	c	b	c
c	0	a	b	c	a	С	c	c	a	c	b	d	b
d	0	a	b	b	d	d	d	d	d	b	c	a	a
1	0	a	b	c	d	1	1	1	d	c	b	a	0

Note that \cdot and + are not commutative.

Remark 3. Let us consider the directoid $\mathcal{D} = (D; \sqcap, ', 0, 1)$ of Example 1. One can pick $a \sqcup b = d$ and $b \sqcup a = c$ (and trivially for comparable elements). The resulting structure $(D; \sqcup)$ is clearly a \sqcup -directoid again but \sqcup is not the assigned operation of \mathcal{D} . Evidently, the De Morgan laws are not satisfied. On the contrary the structure $\mathcal{L} = (D; \sqcup, \sqcap, ', 0, 1)$ still induces a *D*-quasiring $\mathcal{R}(\mathcal{L})$ via $x \cdot y = x \sqcap y$ and $x + y = (x \sqcup y) \sqcap (x \sqcap y)'$. However, (Cor1) is not satisfied and hence $\mathcal{R} \neq \mathcal{R}(\mathcal{L}(R))$.

3. Symmetrical difference

Definition 1. Let $\mathcal{D} = (D; \Box, ', 0, 1)$ be a directoid with an antitone involution and \sqcup the assigned operation. Let $a, b \in D$. The element a is called a *complement* of b if $a \Box b = 0$ and $a \sqcup b = 1$.

Remark 4. If a is a complement of b then b need not be a complement of a; see the following

Example 4. A bounded \sqcap -directoid with an antitone involution ' is depicted in Figure 3 where $c \sqcap d = a$, $d \sqcap c = 0$ and 0' = 1, a' = d, b' = c.

Then a is a complement of b but b is not a complement of a since

$$a \sqcup b = (a' \sqcap b')' = (d \sqcap c)' = 0' = 1,$$

but

$$b \sqcup a = (b' \sqcap a')' = (c \sqcap d)' = a' = d.$$

 \Diamond

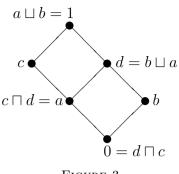


FIGURE 3

Analogously, d is a complement of c but not vice versa. On the other hand, b is a complement of c and c is a complement of b. Of course, 0 is a complement of 1 and 1 is a complement of 0.

Lemma 3. Let $\mathcal{D} = (D; \sqcap, ', 0, 1)$ be a directoid with an antitone involution and \sqcup the assigned operation. Let $\mathcal{R}(D) = (D; +, \cdot, 0, 1)$ be the induced D-quasiring. Then

- (a) a + b = 1 if and only if a is a complement of b;
- (b) $a + b = a \sqcup b$ if and only if $a \sqcup b \le a' \sqcup b'$;
- (c) if $a \leq b$ then $a + b = b \sqcap a'$.

PROOF: (a) Assume a + b = 1. Then $(a \sqcup b) \sqcap (a \sqcap b)' = 1$, i.e. $a \sqcup b = 1$ and $(a \sqcap b)' = 1$, hence $a \sqcap b = 0$ thus a is a complement of b. The converse is trivial.

(b) If $a \sqcup b = a + b = (a \sqcup b) \sqcap (a \sqcap b)'$ then $a \sqcup b \le (a \sqcap b)' = a' \sqcup b'$. The converse is evident.

(c) If $a \le b$ then $a + b = (a \sqcup b) \sqcap (a \sqcap b)' = b \sqcap a'$.

Definition 2. Let $\mathcal{D} = (D; \sqcap, ', 0, 1)$ be a directoid with an antitone involution and \sqcup the assigned operation. By a symmetrical difference of x, y is meant the term function

$$x \triangle y = (x' \sqcap y) \sqcup (x \sqcap y').$$

We can get a mutual relationship between the symmetrical difference and the operation + of the induced D-quasiring as follows:

Lemma 4. Let $\mathcal{D} = (D; \sqcap, ', 0, 1)$ be a directoid with an antitone involution and \sqcup the assigned operation. Then $x \triangle y = (x + y')'$ and $x + y = (x \triangle y')'$.

PROOF: Using the De Morgan laws, we infer directly

$$(x \triangle y')' = ((x' \sqcap y') \sqcup (x \sqcap y))' = (x \sqcup y) \sqcap (x \sqcap y)' = x + y$$

and

$$(x+y')' = ((x \sqcup y') \sqcap (x \sqcap y')')' = (x \sqcup y')' \sqcup (x \sqcap y')$$
$$= (x' \sqcap y) \sqcup (x \sqcap y') = x \triangle y.$$

Lemma 5. Let $\mathcal{D} = (D; \sqcap, ', 0, 1)$ be a directoid with an antitone involution and \sqcup the assigned operation. Then

(a) $x \triangle y = 0$ if and only if x' is a complement of y;

(b) x∆x = 0 if and only if x'∆x' = 0 if and only if x' is a complement of x;
(c) 1∆x = x∆1 = x'.

PROOF: (a) Assume $x \triangle y = 0$. Then $(x' \sqcap y) \sqcup (x \sqcap y') = 0$ thus also $x' \sqcap y = 0$ and $x \sqcap y' = 0$, whence $x' \sqcup y = (x \sqcap y')' = 0' = 1$, i.e. x' is a complement of y. Conversely, if x' is a complement of y then $x' \sqcap y = 0$ and $x' \sqcup y = 1$, i.e. $x \sqcap y' = (x' \sqcup y)' = 1' = 0$ and hence $x \triangle y = 0$.

(b) The first implication follows directly from the definition of symmetrical difference and (a) immediately yields the second.

(c)
$$1 \triangle x = (1' \sqcap x) \sqcup (1 \sqcap x') = x'$$
; analogously $x \triangle 1 = x'$.

We are able to show that the symmetrical difference can also serve as an additive operation in a certain induced *D*-quasiring.

Theorem 7. Let $\mathcal{D} = (D; \sqcap, ', 0, 1)$ be a directoid with an antitone involution and \sqcup the assigned operation. Let \bigtriangleup be the symmetric difference. Then $\mathcal{R}^*(D) = (D; \bigtriangleup, \sqcap, 0, 1)$ is a D-quasiring.

PROOF: It is trivial to verify the axioms (Q1)-(Q5). For (Q6) we have

$$x \triangle 0 = (x' \sqcap 0) \sqcup (x \sqcap 0') = 0 \sqcup x = x.$$

It remains to prove (Q7). By Lemma 5 (c) we have

$$1 \triangle (1 \triangle (x \sqcap y)) \sqcap (1 \triangle y) = ((x \sqcap y)' \sqcap y')' = y'' = y.$$

Lemma 6. Let $\mathcal{D} = (D; \Box, ', 0, 1)$ be a directoid with an antitone involution and \sqcup the assigned operation. The *D*-quasiring $\mathcal{R}^*(D) = (D; \triangle, \cdot, 0, 1)$ with $x \cdot y = x \Box y$ satisfies the identity

(Cor2)
$$1 \triangle (1 \triangle (1 \triangle x) \cdot y) \cdot (1 \triangle x \cdot (1 \triangle y)) = x \triangle y.$$

PROOF: By using Lemma 5 (c) and the De Morgan laws we compute

$$1 \triangle (1 \triangle (1 \triangle x) \cdot y) \cdot (1 \triangle x \cdot (1 \triangle y)) = ((x' \sqcap y)' \sqcap (x \sqcap y')')'$$
$$= (x' \sqcap y) \sqcup (x \sqcap y') = x \triangle y.$$

The following result is a counterpart of Theorem 6 and can be proved analogously:

Theorem 8. Let $\mathcal{D} = (D; \Box, ', 0, 1)$ be a directoid with an antitone involution, \sqcup the assigned operation and \triangle the symmetrical difference. Then $\mathcal{D}(\mathcal{R}^*(D)) = \mathcal{D}$. Let $\mathcal{R} = (R; \triangle, \cdot, 0, 1)$ be a *D*-quasiring satisfying (Cor2). Then $\mathcal{R}^*(\mathcal{D}(R)) = \mathcal{R}$.

4. A decompositions of directoids

Define a C b if $b = (b \sqcap a) \sqcup (b \sqcap a')$. An element $a \in D$ is called **central** if a C x and a' C x for each $x \in D$. Denote by C(D) the set of all central elements of a directoid $\mathcal{D} = (D; \sqcap, ', 0, 1)$. Hence,

(C)
$$a \in C(D)$$
 iff $x = (x \sqcap a) \sqcup (x \sqcap a') = (x \sqcap a') \sqcup (x \sqcap a)$

for each $x \in D$.

Lemma 7. Let $\mathcal{D} = (D; \sqcap, ', 0, 1)$ be a directoid with an antitone involution and \sqcup the assigned operation. Then

- (a) if $b \leq a$ then a C b;
- (b) $0, 1 \in C(D);$
- (c) if $a \in C(D)$ then a' is a complement of a and a is a complement of a';
- (d) if $a \in C(D)$ then

$$(x \sqcup a') \sqcap (x \sqcup a) = x = (x \sqcup a) \sqcap (x \sqcup a')$$

for each $x \in D$.

PROOF: (a) If $b \le a$ then $(b \sqcap a) \sqcup (b \sqcap a') = b \sqcup (b \sqcap a') = b$.

- (b) Of course, $x = (x \sqcap 1) \sqcup (x \sqcap 0) = (x \sqcap 0) \sqcup (x \sqcap 1)$ for each $x \in D$.
- (c) Take x = 1 in (C). Then

$$1 = (1 \sqcap a) \sqcup (1 \sqcap a') = a \sqcup a'$$

and

$$1 = (1 \sqcap a') \sqcup (1 \sqcap a) = a' \sqcup a.$$

Due to De Morgan laws, we have that a' is a complement of a and vice versa.

(d) We compute

$$(x \sqcup a') \sqcap (x \sqcup a) = (x' \sqcap a)' \sqcap (x' \sqcap a')' = ((x' \sqcap a) \sqcup (x' \sqcap a'))' = x'' = x.$$

The second equation can be shown analogously.

Definition 3. Let $\mathcal{D} = (D; \sqcap, ', 0, 1)$ be a directoid with an antitone involution and \sqcup the assigned operation. Denote by Is(D) the set of all elements $a \in D$ such that

- (i) $(x \sqcap y) \sqcap a = (x \sqcap a) \sqcap (y \sqcap a), (x \sqcap y) \sqcap a' = (x \sqcap a') \sqcap (y \sqcap a');$
- (ii) $(x \sqcup y) \sqcap a = (x \sqcap a) \sqcup (y \sqcap a), (x \sqcup y) \sqcap a' = (x \sqcap a') \sqcup (y \sqcap a').$

It is clear that $0, 1 \in \text{Is}(D)$ in any case.

Remark 5. It is immediate that $a \in \text{Is}(D)$ if and only if $a' \in \text{Is}(D)$ and $a \in C(D)$ if and only if $a' \in C(D)$.

Lemma 8. Let $\mathcal{D} = (D; \sqcap, ', 0, 1)$ be a directoid with an antitone involution and \sqcup the assigned operation. Then

- (a) if $a \in \text{Is}(D)$ then $x \leq y \Rightarrow x \sqcap a \leq y \sqcap a$;
- (b) if $a \in C(D) \cap \text{Is}(D)$ then

$$(x \sqcap a)' \sqcap a = x' \sqcap a \quad and \quad (x \sqcap a')' \sqcap a' = x' \sqcap a'.$$

PROOF: (a) If $x \leq y$ then $x \sqcap y = x$ and, by (i) of Definition 3, $x \sqcap a = (x \sqcap y) \sqcap a = (x \sqcap a) \sqcap (y \sqcap a)$ thus $x \sqcap a \leq y \sqcap a$.

(b) Of course, $(x \sqcap a)' \sqcap a = (x' \sqcup a') \sqcap a$. By (ii) of Definition 3, we have $(x' \sqcup a') \sqcap a = (x' \sqcap a) \sqcup (a' \sqcap a)$ and, due to Lemma 7(c), $a' \sqcap a = 0$. Hence $(x \sqcap a)' \sqcap a = x' \sqcap a$. The second equality is established similarly. \Box

Theorem 9. Let $\mathcal{D} = (D; \Box, ', 0, 1)$ be a directoid with an antitone involution and \sqcup the assigned operation. Let $a \in C(D) \cap Is(D)$. Define

$$x^* = x' \sqcap a \quad and \quad x^+ = x' \sqcap a'.$$

Then $\mathcal{D}_1 = ((a]; \Box, *, 0, a)$ and $\mathcal{D}_2 = ((a']; \Box, +, 0, a')$ are bounded directoids with an antitone involution and \mathcal{D} is isomorphic to $\mathcal{D}_1 \times \mathcal{D}_2$ where the isomorphism is defined by $\varphi(x) = (x \Box a, x \Box a')$.

Conversely, let \mathcal{D} be isomorphic with $\mathcal{D}_1 \times \mathcal{D}_2$ where \mathcal{D}_1 , \mathcal{D}_2 are directoids with an antitone involution. Then there exists $a \in C(D) \cap \operatorname{Is}(D)$ such that $\mathcal{D}_1 \cong ((a], \Box, ^*, 0, a)$ and $\mathcal{D}_2 \cong ((a'], \Box, ^+, 0, a')$.

PROOF: Evidently, if $x, y \in (a]$ then $x \sqcap y \leq x \leq a$ thus also $x \sqcap y \in (a]$, i.e. $((a]; \sqcap)$ is a directoid as well as $((a']; \sqcap)$.

Let $x \in (a]$. Then $x \leq a$, i.e. $x \sqcup a = a$ and, by Lemma 7(d),

$$x^{**} = (x' \sqcap a)' \sqcap a = (x \sqcup a') \sqcap (x \sqcup a) = x.$$

Thus $\mathcal{D}_1 = ((a]; \Box, *, 0, a)$ is a bounded directoid with the involution *. Since $x \leq y$ implies $y' \leq x'$ and $a \in \mathrm{Is}(D)$, also

$$y^* = y' \sqcap a \le x' \sqcap a = x^*$$

by (a) of Lemma 8, thus this involution is antitone. Similarly it can be shown for $\mathcal{D}_2 = ((a'); \Box, +, 0, a').$

Now, define $\varphi : D \to D_1 \times D_2$ by $\varphi(x) = (x \sqcap a, x \sqcap a')$. Moreover, define $\psi : D_1 \times D_2 \to D$ by $\psi((x, y)) = x \sqcup y$. Since $a \in C(D)$, we infer

$$\psi(\varphi(x)) = (x \sqcap a) \sqcup (x \sqcap a') = x,$$

i.e., φ is an injective mapping. Suppose $(x, y) \in D_1 \times D_2$. Then $x \leq a, y \leq a'$ and by (ii) of Definition 3, we have

$$\varphi(\psi((x,y))) = \varphi(x \sqcup y) = ((x \sqcup y) \sqcap a, (x \sqcup y) \sqcap a')$$
$$= ((x \sqcap a) \sqcup (y \sqcap a), (x \sqcap a') \sqcup (y \sqcap a')) = (x \sqcup (y \sqcap a), (x \sqcap a') \sqcup y).$$

Since $a, a' \in Is(D), y \leq a'$ we obtain (according to (a) of Lemma 8) that

$$y \sqcap a \le a' \sqcap a = 0$$

and therefore $y \sqcap a = 0$. Analogously, $x \sqcap a' = 0$. Hence, $\varphi(\psi((x, y))) = (x \sqcup 0, 0 \sqcup y) = (x, y)$. Thus, φ is a bijection and $\psi = \varphi^{-1}$.

It remains to prove that φ is a homomorphism. Clearly,

$$\begin{aligned} \varphi(b) \sqcap \varphi(c) &= (b \sqcap a, b \sqcap a') \sqcap (c \sqcap a, c \sqcap a') \\ &= ((b \sqcap a) \sqcap (c \sqcap a), (b \sqcap a') \sqcap (c \sqcap a')) = ((b \sqcap c) \sqcap a, (b \sqcap c) \sqcap a') = \varphi(b \sqcap c) \end{aligned}$$

according to (i) of Definition 3. Further, using of Lemma 8(b), we obtain

$$\varphi(b)' = (b \sqcap a, b \sqcap a')' = ((b \sqcap a)^*, (b \sqcap a')^+) = ((b \sqcap a)' \sqcap a, (b \sqcap a')' \sqcap a') = (b' \sqcap a, b' \sqcap a') = \varphi(b').$$

Hence, φ is an isomorphism of \mathcal{D} onto $\mathcal{D}_1 \times \mathcal{D}_2$.

Conversely, let $\mathcal{D}_1 = (D; \sqcap, *, 0_1, 1_1)$ and $\mathcal{D}_2 = (D; \sqcap, +, 0_2, 1_2)$ be directoids with antitone involutions and \mathcal{D} is isomorphic to $\mathcal{D}_1 \times \mathcal{D}_2$. It is an easy exercise to verify that elements $a = (1_1, 0_2)$ and $(0_1, 1_2)$ belong to $C(D_1 \times D_2) \cap \operatorname{Is}(D_1 \times D_2)$ and $(0_1, 1_2) = a'$ in $\mathcal{D}_1 \times \mathcal{D}_2$. Of course, $\mathcal{D}_1 \cong \overline{\mathcal{D}}_1 = ((a]; \sqcap, *, (0_1, 0_2), a)$ and $\mathcal{D}_2 \cong \overline{\mathcal{D}}_2 = ((a']; \sqcap, +, (0_1, 0_2), a')$ and hence also $\mathcal{D} \cong \overline{\mathcal{D}}_1 \times \overline{\mathcal{D}}_2$.

Remark 6. If $\mathcal{D} = (D; \Box, ', 0, 1)$ is a semilattice with an antitone involution then every element satisfies (i) of Definition 3 and (a) of Lemma 8.

Example 5. Let $\mathcal{D} = (D; \sqcap, ', 0, 1)$ be the \sqcap -directoid with an antitone involution as shown in Example 4 (see Figure 3). Let \sqcup be its assigned operation. Then $b \notin C(D)$ and $c \notin C(D)$, because

$$d \neq (d \sqcap b) \sqcup (d \sqcap b') = b \sqcup 0 = b$$

and

$$d \neq (d \sqcap c) \sqcup (d \sqcap c') = 0 \sqcup b = b$$

Due to Lemma 7(c) also $a \notin C(D)$, $d \notin C(D)$. Further, elements c and d do not belongs to Is (D), since

$$a = a \sqcap c = (a \sqcap d) \sqcap c \neq (a \sqcap c) \sqcap (d \sqcap c) = a \sqcap 0 = 0$$

and

$$d = 1 \sqcap d = (a \sqcup b) \sqcap d \neq (a \sqcap d) \sqcup (b \sqcap d) = a \sqcup b = 1.$$

Hence also $b = c' \notin \operatorname{Is}(D)$ and $a = d' \notin \operatorname{Is}(D)$. Thus $C(D) = \operatorname{Is}(D) = \{0, 1\}$.

On the contrary, let Figure 3 be now the Hasse diagram of the lattice $\mathcal{L} = (L; \wedge, \vee)$ with a two binary operations join and meet. Then \mathcal{L} is as a direct product of the two-element and three-element chains.

For the non-trivial decomposition of directoid let us see the following

Example 6. Consider the \sqcap -directoid $\mathcal{D} = (D; \sqcap)$ whose diagram is drawn in Figure 4 where $m \sqcap n = k$, $n \sqcap m = l$, $s \sqcap t = q$, $t \sqcap s = r$ and trivially for the other couples.

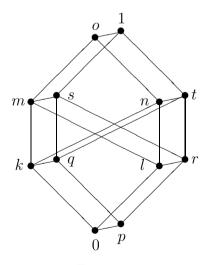


Figure 4

Define an antitone involution $x \mapsto x'$ on D as follows

One can easily check that a = p, $a' = o \in C(D) \cap Is(D)$. Therefore, $\mathcal{D} \cong \mathcal{D}_1 \times \mathcal{D}_2$ for $\mathcal{D}_1 = ((a], \Box, ^*, 0, a)$ and $\mathcal{D}_2 = ((a'], \Box, ^+, 0, a')$.

References

- Chajda I., Pseudosemirings induced by ortholattices, Czechoslovak Math. J., 46 (1996), 405–411.
- [2] Chajda I., Eigenthaler G., A note on orthopseudorings and Boolean quasirings, Österr. Akad. Wiss. Math.-Natur., Kl., Sitzungsber. II, 207 (1998), 83–94.
- [3] Dorfer D., Dvurečenskij A., Länger H., Symmetrical difference in orthomodular lattices, Math. Slovaca 46 (1996), 435–444.
- [4] Dorminger D., Länger H., Mączyński M., The logic induced by a system of homomorphisms and its various algebraic characterizations, Demonstratio Math. 30 (1997), 215–232.
- [5] Gardner B.J., Parmenter M.M., Directoids and directed groups, Algebra Universalis 33 (1995), 254–273.
- [6] Ježek J., Quackenbush R., Directoids: algebraic models of up-directed sets, Algebra Universalis 27 (1990), 49–69.
- [7] Kopytov V.M., Dimitrov Z.I., On directed groups, Siberian Math. J. 30 (1989), 895–902;
 (Russian original: Sibirsk. Mat. Zh. 30 (1988), no. 6, 78–86).
- [8] Leutola K., Nieminen J., Posets and generalized lattices, Algebra Universalis 16 (1983), 344–354.
- [9] Nieminen J., On distributive and modular χ-lattices, Yokohama Math. J. 31 (1983), 13–20.
- [10] Snášel V., λ-lattices, Math. Bohemica 122 (1997), 367–372.

Department of Algebra and Geometry, Palacký University Olomouc, Tomkova 40, 779 00 Olomouc, Czech Republic

E-mail: chajda@inf.upol.cz kolarik@inf.upol.cz

(Received December 7, 2006, revised February 19, 2007)