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MAD families and P -points

S. Garćıa-Ferreira, P.J. Szeptycki

Abstract. The Katětov ordering of two maximal almost disjoint (MAD) families A and
B is defined as follows: We say that A ≤K B if there is a function f : ω → ω such that
f−1(A) ∈ I(B) for every A ∈ I(A). In [Garcia-Ferreira S., Hrušák M., Ordering MAD
families a la Katětov , J. Symbolic Logic 68 (2003), 1337–1353] a MAD family is called
K-uniform if for every X ∈ I(A)+, we have that A|X ≤K A. We prove that CH implies
that for every K-uniform MAD family A there is a P -point p of ω∗ such that the set of
all Rudin-Keisler predecessors of p is dense in the boundary of

S
A∗ as a subspace of

the remainder β(ω) \ ω. This result has a nicer topological interpretation:
The symbol F(A) will denote the Franklin compact space associated to a MAD

family A. Given an ultrafilter p ∈ β(ω) \ ω, we say that a space X is a FU(p)-space if
for every A ⊆ X and x ∈ clX(A) there is a sequence (xn)n<ω in A such that x = p-
limn→∞ xn (that is, for every neigborhood V of x, we have that {n < ω : xn ∈ V } ∈ p).
[CH] For every K-uniform MAD family A there is a P -point p of ω∗ such that F(A) is
a FU(p)-space. We also establish the following.
[CH] For two P -points p, q ∈ ω∗, the following are equivalent.

(1) q ≤RK p.
(2) For every MAD family A, the space F(A) is a FU(p)-space whenever it is
a FU(q)-space.
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1. Introduction

All spaces are assumed to be Tychonoff. If X is a set, then [X ]ω = {A ⊆
X : |A| = ω} and the definition of [X ]<ω should be clear. The Stone-Čech
compactification β(ω) of the countable discrete space ω is identified with the set
of all ultrafilters on ω and its remainder ω∗ = β(ω) \ ω is identified with the set

of all free ultrafilters on ω. For A ⊆ ω, Â = {p ∈ β(ω) : A ∈ p} = clβ(ω) A and

A∗ = Â ∩ ω∗. If A ⊆ [ω]ω, then A∗ = {A∗ : A ∈ A}. Recall that an infinite
family A ⊆ [ω]ω is called almost disjoint (AD) if for every two distinct A, B ∈ A
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we have that A∩B ∈ [ω]<ω. An AD family is said to be maximal almost disjoint
(MAD) if it is not contained properly in any AD family (a construction of a MAD
family of size c can be found in [7, 6Q] and [10]). For A, B ∈ [ω]ω, A ⊆∗ B means
that A \ B is finite, and A =∗ B means that A ⊆∗ B and B ⊆∗ A. Observe that
A =∗ B iff A∗ = B∗. If A ⊆ [ω]ω, then

⋃

A∗ =
⋃

{A∗ : A ∈ A} and we have that
Fr(

⋃

A∗) = ω∗ \ (
⋃

A∗). It is not difficult to see that an AD family A is maximal
iff

⋃

A∗ is a dense subset of ω∗.
For a MAD-family, I(A) will denote the ideal consisting of all subsets of ω that

can be almost covered by finitely many elements fromA and I(A)+ = P(ω)\I(A)
is the set of positive measure subsets of ω. If A is a MAD family and X ∈ I(A)+,
then A|X = {A ∩ X : A ∈ A and |A ∩ X | = ω} is a MAD family on the set X .
The Rudin-Keisler (pre)-order on ω∗ is defined by p ≤RK q if there is a function

f : ω → ω such that f(q) = p, where f : β(ω) → β(ω) denotes the Stone-Čech
extension of the function f . Given p ∈ ω∗, we let PRK(p) = {q ∈ ω∗ : q ≤RK p}.
The condition q ≤RK p and p ≤RK q is equivalent to the existence of a bijection
f : ω → ω such that f(q) = p. In this case, we write p ≈ q and say that p and q
are RK-equivalent and T (p) = {q ∈ ω∗ : p ≈ q}.
The Franklin compact space associated to a MAD-family A, denoted by F(A),

is the quotient space of β(ω) in which every A∗ is identified with a single point,
for each A ∈ A, and ω∗ \

⋃

A∗ is identified to a single point. I.e., F is the one-
point compactification of the Ψ-space Ψ(A). The Franklin compact spaces were
introduced by S.P. Franklin [3]. It is well-known that Franklin compact spaces
are sequential spaces with degree of sequentiality equal to 2 and are not Fréchet-
Urysohn. The notion of a p-limit point, for p ∈ ω∗ of a countable sequence of a
spaces provides a useful tool to study some Fréchet-Urysohn like properties of the
Franklin compact spaces. Indeed, following A.R. Bernstein [1], for p ∈ ω∗, we say
that x ∈ X is the p-limit point of a sequence (xn)n<ω if for every neighborhood
V of x we have that {n < ω : xn ∈ V } ∈ p (we write x = p-limn→∞ xn). Then,
we say that a space X is a FU(p)-space if for every x ∈ cl(A) there is a sequence
(xn)n<ω in A such that x = p-limn→∞ xn. It is clear that every Fréchet-Urysohn
space is a FU(p)-space, for all p ∈ ω∗.

The following lemma from [6] provides a useful characterization of the non-
FU(p)-property of a Franklin compact space.

Lemma 1.1. Let p ∈ ω∗ and A a MAD-family. The space F(A) is not a FU(p)-
space iff there is C ∈ [ω]ω such that

C∗ \
⋃

A∗ 6= ∅ and PRK(p) ∩ C∗ ⊆
⋃

A∗.

Thus, to prove that a Franklin compact space F(A) is a FU(p)-space it suffices
to show that PRK(p) is dense in Fr(

⋃

A∗).
The notion of a P -point of space was introduced by W. Rudin [9]: A point x ∈

X is called a P -point if the intersection of any countable family of neighborhoods
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of x is again a neighborhood of x. It is known that p ∈ ω∗ is a P -point iff for
every partition {An : n < ω} of ω either An ∈ p for some n < ω or there is A ∈ p
such that An ∩ A is finite for all n < ω. W. Rudin proved assuming CH that ω∗

includes P -points, and S. Shelah [12] constructed a model of ZFC in which there
are no P -points in ω∗.
It is shown in [2] that every Franklin compact space is a FU(p)-space for each

non-P -point p of ω∗. It is proved in [6] that p = c implies that for every p ∈ ω∗

there is a MAD family A such that F(A) is a FU(p)-space, and, under CH, for
every P -point p ∈ ω∗ there is a MAD family A such that F(A) is not a FU(p)-
space. More precisely, we have the following result.

Theorem 1.2 [CH]. For p ∈ ω∗, the following conditions are equivalent.

(1) p is a P -point.
(2) There is a MAD family A such that F(A) is not a FU(p)-space.

Proof: The implication (1)⇒ (2) follows directly from Theorem 2.6 of [6], and
the implication (2)⇒ (1) is a consequence of Theorem 2 from [2]. �

Basing on the previous results, the question whether or not a Franklin space
is a FU(p)-space is interesting only for the case when p is a P -point of ω∗. One
of the questions posed in [6] that remains open is the following.

Question 1.3. Does CH imply that for every MAD family A there is a P -point
p such that F(A) is a FU(p)-space ?

In this paper, we show that for some class of MAD families (K-uniform MAD
families) the answer to this question is in the positive.

2. Franklin compact spaces and P -points

We start with a construction, under CH, of a MAD family with certain pro-
perties.

Theorem 2.1 [CH]. If p, q ∈ ω∗ are P -points such that q 6≤RK p, then there is
a MAD family A such that F(A) is a FU(q)-space and is not a FU(p)-space.

Proof: Assume CH. By repeating elements if it necessary, we may enumerate
PRK(p) by {pθ : θ < ω1} and [ω]

ω by {Aθ : θ < ω1} in such a way that pθ ∈ A∗
θ

for each θ < ω1 and {An : n < ω} is a partition of ω. It is known that each point
of PRK(p) is a P -point. Now, we proceed by transfinite induction. Assume that
for each γ < θ < ω1 we have defined Bγ ∈ [ω]ω and qγ ∈ T (q) such that

(1) {Bγ : γ < θ} is an AD family,
(2) for each γ < θ there is δ ≤ γ such that Aγ ∩ Bδ is infinite,
(3) pγ ∈ B∗

γ , for each γ < θ,

(4) B∗
γ ∩ cl({qδ : δ < γ}) = ∅, for each γ < θ, and

(5) if Aγ ∈ I({Bδ : δ ≤ γ})+, then qγ ∈ T (q) ∩ (A∗
γ \ (

⋃

δ≤γ B∗
δ )), for each

γ < θ.
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First, we define Bθ. If pθ ∈ B∗
γ for some γ < θ, then we put Bθ = Bγ . Assume

that pθ ∈ Fr(
⋃

{B∗
γ : γ < θ}). Since pθ is a P -point, we can choose Bθ ∈ pθ

so that Bθ ⊆ Aθ, B∗
θ ∩ cl({qγ : γ < θ}) = ∅ and {Bθ} ∪ {Bγ : γ < θ} is

AD. Thus, we have defined Bθ. Now, if Aθ ∈ I({Bγ : γ < θ})+, then we pick
qθ ∈ T (q) ∩ (A∗

γ \ (
⋃

γ≤θ B∗
γ)). If not, just chose any qθ ∈ T (q). We let A =

{Bγ : γ < ω1}. It is evident from the construction that A is a MAD family.
As PRK(p) ⊆

⋃

θ<ω1
B∗

θ , by Lemma 1.1, F(A) cannot be a FU(p)-space. Take
A ∈ [ω]ω so that A∗ ∩ Fr(

⋃

A∗) 6= ∅. Choose θ < ω1 such that A = Aθ . By the
fifth clause, we know that qθ ∈ T (q)∩(A∗

θ \(
⋃

γ≤θ B∗
δ )), and clause (4) guarantees

that qθ /∈ B∗
γ for any θ < γ < ω1. So, qθ ∈ T (q) ∩ A∗

θ ∩ (Fr(
⋃

A∗)). Therefore,

according to Lemma 1.1, F(A) is a FU(q)-space. �

By combining Theorem 2.1 and Corollary 2.2 from [4] we get the following
statement.

Corollary 2.2 [CH]. For two P -points p, q ∈ ω∗, the following are equivalent.

(1) q ≤RK p.
(2) For every MAD family A, the space F(A) is a FU(p)-space whenever it is
a FU(q)-space.

Given two MAD families A and B, we say that A ≤K B if there is a function
f : ω → ω such that f−1(A) ∈ I(B) for every A ∈ I(A). This relation is called
the Katětov ordering of MAD families and was studied in [5]. A reformulation
of the Katětov ordering that will be used implicity several times below is the
following.

Theorem 2.3. For two MAD families A and B, the following conditions are
equivalent.

(1) A ≤K B.
(2) There is a function f : ω → ω such that f [Fr(

⋃

B∗)] ⊆ Fr(
⋃

A∗).

Proof: (1) ⇒ (2). Let p ∈ Fr(
⋃

B∗) and put q = f(p). Then, we have that
p ⊆ I(B)+. Assume that q ∈

⋃

A∗. Then, q ∈ B∗ for some B ∈ A. Hence,
f−1(B) ∈ p ⊆ I(B)+, which is impossible.
(2) ⇒ (1). Suppose that f−1(I) ∈ I(B)+ for some I ∈ I(A). Choose

p ∈ f−1(I)∗ ∩ Fr(
⋃

B∗). By assumption, f(p) = q ∈ Fr(
⋃

A∗), but this is a
contradiction since q ∈ I∗ ∩ Fr(

⋃

A∗) implies that I ∈ I(A)+. �

In the article [5], the authors also considered the following class of MAD fami-
lies.

Definition 2.4. A MAD family is called K-uniform if for every X ∈ I(A)+, we
have that A|X ≤K A.

We should understand that the condition A|X ≤K A means that there is a
function f : ω → X such that f−1(A ∩X) ∈ I(A), for all A ∈ A. It shows in [5],
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that the condition t = c implies the existence of a K-uniform MAD family. The
existence of a K-uniform family in ZFC is still unknown. Our next task is to
prove the main result of the paper. To do that we need to prove some preliminary
lemmas.

The next lemma is due to J. Dočkálková (see [11]) and A.R.D. Mathias [8]. To
make the paper self-contained we shall include a proof of the lemma.

Lemma 2.5. Let A be a MAD family. If {An : n < ω} is a countable family of
elements of I(A)+ with the property that the intersection of every finite subfamily
lies in I(A)+, then there is A ∈ I(A)+ for which A∗ ⊆

⋂

n<ω A∗
n.

Proof: Without loss of generality, we may assume that A∗
n+1 ⊆ A∗

n, for each
n < ω. We know that int(

⋂

n<ω A∗
n) 6= ∅ and hence int(

⋂

n<ω A∗
n) ∩ (

⋃

A∗) 6= ∅.
Let us assume that the set

B =
{

X ∈ A : X∗ ∩ int(
⋂

n<ω

A∗
n) 6= ∅

}

consists only of the sets {Xi : i < k} for some k < ω. That is,

int
(

⋂

n<ω

A∗
n

)

∩
(

⋃

A∗
)

⊆
⋃

i<k

X∗
i .

It is evident that An \ (
⋃

i<k Xi) is infinite and (An+1 \ (
⋃

i<k Xi))
∗ ⊆ (An \

(
⋃

i<k Xi))
∗, for each n < ω. Hence,

∅ 6= int
(

⋂

n<ω

(

An \
(

⋃

i<k

Xi

))∗)

∩
(

⋃

A∗
)

= int
(

⋂

n<ω

(

A∗
n \

(

⋃

i<k

X∗
i

)))

∩
(

⋃

A∗
)

⊆
(

int
(

⋂

n<ω

A∗
n

)

∩
(

⋃

A∗
))

\
(

⋃

i<k

X∗
i

)

,

which is impossible. Thus, we must have that B is infinite. Take a countable
infinite subset {Xk : k < ω} of B. Now, for each k < ω choose Bk ∈ [ω]ω so
that B∗

k ⊆ X∗
k ∩ int(

⋂

n<ω A∗
n) and Bk ⊆

⋂

i<k Ai. Define A =
⋃

k<ω Bk. By

construction, we have that A ∈ I(A)+ and A \ An ⊆
⋃

i≤n(Bi \ An), for each

n < ω. Thus, A∗ ⊆
⋂

n<ω A∗
n. �

Lemma 2.6 [CH]. For every MAD family A and each A ∈ I(A)+, there is a
P -point p ∈ ω∗ such that p ∈ A∗ ∩ Fr(

⋃

A∗).

Proof: Enumerate [ω]ω as {Bξ : ξ < ω1}. Inductively, we shall construct a

family {Aξ : ξ < ω1} of sets from I(A)+ such that

(1) A0 = A,
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(2) A∗
ξ ⊆ A∗

ζ whenever ζ < ξ < ω1, and

(3) for each ξ < ω1, we have that either Aξ ⊆∗ Bξ or Aξ ⊆∗ ω \ Bξ .

Suppose that for each ξ < θ < ω1 we have defined Aξ ∈ I(A)+ satisfying the
three conditions. Let us consider the family C = {Aξ : ξ < θ}. Since either

Bθ ∈ I(A)+ or ω \ Bθ ∈ I(A)+, without loss of generality, we may assume that
Bθ ∈ I(A)+. Let us consider two cases:

Case I. C ∩ Bθ ∈ I(A)+ for all C ∈ C. According to Lemma 2.5, we can find
Aθ ∈ I(A)+ so that A∗

θ ⊆ (
⋂

ξ<θ A∗
ξ) ∩ B∗

θ .

Case II. There is ξ < θ such that Aξ ∩ Bθ ∈ I(A). In this case it follows that

Aξ \ Bθ ∈ I(A)+. Thus, ω \ Bθ ∈ I(A)+. Applying again Lemma 2.5, there is

Aθ ∈ I(A)+ so that A∗
θ ⊆ (

⋂

ξ<θ A∗
ξ) ∩ (ω \ Bθ)

∗.

Since the family B = {Aθ : θ < ω1} has the finite intersection property, there
is p ∈ ω∗ such that B ⊆ p. It follows from (1)–(3) that B is a base for p, p is a
P -point and p ∈ A∗. �

Theorem 2.7 [CH]. If A is a K-uniform MAD family, then there is a P -point
p such that the set of all RK-predecessors of p is dense in Fr(

⋃

A∗). Hence, F(A)
is a FU(p)-space.

Proof: According to Lemma 2.6, we can find a P -point p ∈ ω∗ such that p ∈
Fr(

⋃

A∗) since ω ∈ I(A)+. In particular, we have that p ⊆ I(A)+. Fix X ∈
I(A)+ and choose a function f : ω → X witnessing the fact A|X ≤K A. Let q =
f(p). By definition q ≤RK p and q ∈ X∗. It remains to show that q ∈ Fr(

⋃

A∗).
Suppose that q ∈ A∗ for some A ∈ A. Then q ∈ A∗ ∩ X∗ = (A ∩ X)∗. That is,
A∩X ∈ q and hence f−1(A∩X) ∈ p, but this is a contradiction. Thus, we must
have that q ∈ X∗ ∩ Fr(

⋃

A∗). This shows that PRK(p) is dense in Fr(
⋃

A∗). �

We can deduce from Theorem 2.3 that if A ≤K B, for two MAD families A
and B, then

(∗) for every p ∈ Fr(
⋃

B∗) there is q ∈ Fr(
⋃

A∗) such that q ≤RK p.

In a model of ZFC without P -points (for a model like this see [12]) condition
(∗) holds for any two MAD families and we know that for every MAD family A
exists, in ZFC, a MAD family B with A 6≤K B ([5, Proposition 3]). Thus, in such
a model of ZFC condition (∗) is not equivalent to Katětov ordering. This suggests
the question whether or not condition (∗) implies Katětov ordering in a model of
ZFC + CH.
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