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On modular elements of the lattice of semigroup varieties

Boris M. Vernikov

Abstract. A semigroup variety is called modular if it is a modular element of the lattice
of all semigroup varieties. We obtain a strong necessary condition for a semigroup
variety to be modular. In particular, we prove that every modular nil-variety may be
given by 0-reduced identities and substitutive identities only. (An identity u = v is called
substitutive if the words u and v depend on the same letters and v may be obtained from
u by renaming of letters.) We completely determine all commutative modular varieties
and obtain an essential information about modular varieties satisfying a permutable
identity.
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Introduction

The class of all varieties of semigroups forms a lattice under the following nat-
urally defined operations: for varieties X and Y, their join X ∨ Y is the variety
generated by the set-theoretical union of X and Y (as classes of semigroups),
while their meet X ∧ Y coincides with the set-theoretical intersection of X and Y.
Special elements of different types in lattices of varieties of semigroups and uni-
versal algebras have been examined in several articles (see [3], [4], [9], [14], [17],
for instance). Here we continue these investigations.
An element x of a lattice 〈L;∨,∧〉 is called modular if

∀ y, z ∈ L: y ≤ z −→ (x ∨ y) ∧ z = (x ∧ z) ∨ y,

and upper-modular if

∀ y, z ∈ L: y ≤ x −→ (z ∨ y) ∧ x = (z ∧ x) ∨ y.

Lower-modular elements are defined dually to upper-modular ones. An element
x ∈ L is called neutral if, for all y, z ∈ L, the elements x, y and z generate a dis-
tributive sublattice of L. For convenience, we call a semigroup variety modular
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(upper-modular, lower-modular, neutral) if it is a modular (respectively upper-
modular, lower-modular, neutral) element of the lattice SEM of all semigroup
varieties. A number of results about varieties of these four types have been ob-
tained in [4], [10]–[12], [14], [17]. In particular, some necessary conditions for a
semigroup variety to be modular, upper-modular or lower-modular were found
in [4, Proposition 1.6], [10, Theorem 1] and [11, Theorem 1] respectively; commu-
tative upper-modular and commutative lower-modular varieties were completely
determined in [10, Theorem 2] and [11, Theorem 2] respectively. Here we obtain
an essentially stronger necessary condition for semigroup varieties to be modular
than the mentioned result from [4], completely describe commutative modular
varieties and obtain an essential information about modular varieties satisfying a
permutable identity (see Theorems 2.5, 3.1 and 4.5 respectively).
The article consists of 4 sections. Section 1 contains some preliminary infor-

mation. In Sections 2, 3 and 4 we prove Theorems 2.5, 3.1 and 4.5 respectively.

1. Preliminaries

We denote by SL the variety of all semilattices. The following three lemmas
contain some properties of this variety that will be used in the sequel. The
claim (i) of the following lemma is well known (see [2], for instance), while the
claim (ii) is proved in [17, Proposition 2.4].

Lemma 1.1. The variety SL is:

(i) an atom of the lattice SEM;
(ii) a neutral element of the lattice SEM. �

Lemma 1.2 ([14, Corollary 1.5(i)]). A semigroup variety X is a modular element
of the lattice SEM if and only if so is the variety X ∨ SL. �

We denote by T the trivial semigroup variety. If V is a semigroup variety then
L(V) stands for the subvariety lattice of V . The following claim is a part of the
semigroup folklore. It may be extracted from results scattered in the articles [1],
[5], [6], [8]. But its explicit proof was not published so far, as far as we know. We
provide the proof for the sake of completeness.

Lemma 1.3. If X is a semigroup variety such that SL * X then the lattice
L(X ∨ SL) is isomorphic to the direct product of L(X ) and the 2-element chain
consisting of the varieties T and SL.

Proof: Let V ⊆ X ∨ SL. Lemma 1.1(ii) implies that

V = V ∧ (X ∨ SL) = (V ∧ X ) ∨ (V ∧ SL).

In view of Lemma 1.1(i), V is the join of some subvariety of X and one of the
varieties T or SL. It remains to verify that there exists a unique decomposition
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of X of such a form. Let Y1,Y2 ∈ {T ,SL} and Z1,Z2 ⊆ X . Suppose that
Y1 ∨ Z1 = Y2 ∨ Z2. We have to check that Y1 = Y2 and Z1 = Z2. Suppose
that Y1 6= Y2. We may assume without any loss that Y1 = T and Y2 = SL.
Then Y1 ∨ Z1 = Z1 + SL while Y2 ∨ Z2 ⊇ SL, whence Y1 ∨ Z1 6= Y2 ∨ Z2.
Now let Y1 = Y2. If Y1 = Y2 = T then Z1 = Y1 ∨ Z1 = Y2 ∨ Z2 = Z2.
Finally, if Y1 = Y2 = SL then the desired equality Z1 = Z2 follows from the
following claim that was proved independently in [5] and [8]: if X + SL then the
map ξ:L(X ) 7−→ SEM given by the rule ξ(M) =M∨SL for every M ⊆ X is
one-to-one. �

We denote by F the free semigroup over a countably infinite alphabet. The
equality relation on F is denoted by ≡. If u ∈ F then c(u) stands for the set
of letters occuring in u. Clearly, if w ∈ F then a semigroup S satisfies the
identity system wu = uw = w, where u runs over F , if and only if S contains a
zero element 0 and all values of the word w in S equal 0. We adopt the usual
convention of writing w = 0 as a short form of such a system and referring to the
expression w = 0 as to a single identity. Such identities are called 0-reduced .
A semigroup S with 0 is said to be a nilsemigroup if, for every s ∈ S, there

exists a positive integer n with sn = 0. A semigroup variety V is called a nil-
variety if each member of V is a nilsemigroup. We need the following two well
known technical remarks about identities of nil-varieties.

Lemma 1.4. Let V be a nil-variety.

(i) If V satisfies an identity u = v with c(u) 6= c(v) then V satisfies also the
identity u = 0.

(ii) If V satisfies an identity of the form u = v where u is a proper subword
of v then V satisfies also the identity u = 0. �

2. Arbitrary varieties

We denote by SEM the variety of all semigroups. The following result is in
fact a reformulation of [4, Proposition 1.6]1.

Proposition 2.1. If a semigroup variety V is a modular element of the lattice
SEM then either V = SEM or V = X ∨N where X is one of the varieties T or
SL, while N is a nil-variety.

Proof: Suppose that V is a modular semigroup variety and V 6= SEM. Trans-
lating [4, Proposition 1.6] from the language of equational theories to the varietal

1One should note that the paper [4] has dealt with the lattice of equational theories of
semigroups, that is, the dual of SEM rather than the lattice SEM itself. When reproducing
results from [4], we adapt them to the terminology of the present article. Note that the definition
of a modular element of a lattice is selfdual, whence modular elements of the lattice of equational
theories precisely correspond to modular varieties.
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language, we have V ⊆ SL ∨M for some nil-variety M. Lemma 1.1(ii) implies
that

V = V ∧ (SL ∨M) = (V ∧ SL) ∨ (V ∧M).

By Lemma 1.1(i), V ∧ SL is one of the varieties T or SL. Since the variety
N = V ∧M is a nil-variety, we are done. �

Note that Proposition 2.1 and Lemma 1.2 reduce the problem of description of
modular varieties to the nil-case.
If Σ is a system of identities then varΣ stands for the variety of all semigroups

satisfying Σ. The length of a word u is denoted by ℓ(u). We say that a word u is a
prefix of a word v if there exists a (may be empty) word w such that v ≡ uw; if the
word w is non-empty then u is said to be a proper prefix of v. For words u and v,
we write u ≈ v if v may be obtained from u by renaming of letters. We call a non-
trivial identity u = v substitutive if c(u) = c(v) and u ≈ v. In [3], Ježek describes
modular elements of the lattice of all varieties (more precisely, all equational
theories) of any given type. In particular, it follows from [3, Lemma 6.3] that if a
nil-variety V is a modular element of the lattice of all groupoid varieties then V
may be given by 0-reduced and substitutive identities only. This does not imply
directly the same conclusion for modular nil-varieties because a modular element
of SEM need not be a modular element of the lattice of all groupoid varieties.
Nevertheless, the following proposition shows that the ‘semigroup analogue’ of
the mentioned result by Ježek is the case.

Proposition 2.2. If a nil-variety N is a modular element of the lattice SEM and
N satisfies a non-substitutive identity u = v then N satisfies also the identity

u = 0.

Proof: If c(u) 6= c(v) then Lemma 1.4(i) applies. Now let c(u) = c(v). Since the
identity u = v is non-substitutive, we have u 6≈ v. We may assume without any
loss that ℓ(u) ≤ ℓ(v). Let

Y = var{u = u2, v = v2} and Z = var{v = v2}.

The variety N ∧ Z satisfies the identity v = v2. Since N ∧ Z is a nil-variety,
Lemma 1.4(ii) implies that this variety satisfies the identities u = v = 0, and
therefore the identity u = u2. We have N ∧ Z ⊆ Y , whence (N ∧ Z) ∨ Y = Y.
Since the variety N is modular and Y ⊆ Z, we have (N ∨ Y) ∧ Z = Y. In par-
ticular, the variety (N ∨ Y) ∧ Z satisfies the identity u = u2. Hence there exists
a deduction of this identity from the identities of the varieties N ∨ Y and Z. In
particular, there exists a word w such that w 6≡ u and the identity u = w holds
in one of the varieties N ∨ Y or Z.
Suppose at first that u = w holds in Z. This means that there exists an

endomorphism ξ of the semigroup F such that one of the following holds:

1) the word u contains a subword a ≡ ξ(v) and the word w is obtained from
u by a substitution of a2 for a;
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2) the word u contains a subword a ≡ (ξ(v))2 and the word w is obtained
from u by a substitution of ξ(v) for a.

In the case 1) ℓ(u) ≥ ℓ(ξ(v)) ≥ ℓ(v) ≥ ℓ(u), whence ℓ(u) = ℓ(ξ(v)) = ℓ(v). Since
ξ(v) is a subword of u, we have u ≡ ξ(v). Furthermore, the equality ℓ(ξ(v)) = ℓ(v)
implies that ξ is a permutation on the set c(v). Thus u ≈ v, a contradiction. In
the case 2) ℓ(u) ≥ ℓ((ξ(v))2) > ℓ(ξ(v)) ≥ ℓ(v) ≥ ℓ(u), a contradiction. We see
that none of the cases 1) and 2) is possible. Hence the identity u = w holds in
the variety N ∨ Y.
Let us verify that u is a proper prefix of w. Note that this claim is the analogue

of [3, Lemma 6.2]. The identity u = w holds in the variety Y. Hence there exists
a sequence of words v0, v1, . . . , vn such that v0 ≡ u, vn ≡ w, and, for each
i = 1, 2, . . . , n, there exists an endomorphism ξi of the semigroup F such that one
of the following holds:

1) the word vi−1 contains a subword ai such that either ai ≡ ξi(u) or ai ≡
ξi(v), and the word vi is obtained from vi−1 by a substitution of a

2
i for ai;

2) the word vi−1 contains a subword ai ≡ (ξi(u))
2 (respectively ai ≡ (ξi(v))

2)
and the word vi is obtained from vi−1 by a substitution of ξi(u) (respec-
tively ξi(v)) for ai.

We may assume that the words v0, v1, . . . , vn are pairwise different. Now we are
going to verify that u is a proper prefix of vi for all i = 1, 2, . . . , n. We prove this
claim by induction on i.

Induction basis. Let i = 1. Then ui−1 ≡ u0 ≡ u. The case 2) is impossible
here because ℓ((ξ1(v))

2) ≥ ℓ((ξ1(u))
2) > ℓ(ξ1(u)) ≥ ℓ(u). Therefore the case 1)

holds. Since ℓ(ξ1(v)) ≥ ℓ(v) ≥ ℓ(u) and u 6≈ v, the case a1 ≡ ξ1(v) is impossible,
whence a1 ≡ ξ1(u). But a1 is a subword of u and ℓ(ξ1(u)) ≥ ℓ(u). Therefore
a1 ≡ ξ1(u) ≡ u. Hence v1 ≡ u2 and we are done.

Induction step. Now let 1 < i ≤ n. By the induction assumption, vi−1 ≡
uv′i−1 for some non-empty word v′i−1. If ai is a subword of v′i−1 then clearly

vi ≡ uv′′i−1 for some non-empty word v′′i−1 and we are done. Suppose that ai is
a subword of u. The same arguments as in the previous paragraph show that
then the case 1) holds and ai ≡ ξi(u) ≡ u. Therefore vi ≡ u2v′i−1 and we are
done again. Finally, suppose that ai is neither a subword of u nor a subword of
v′i−1. This means that there exist words b1, b2, b3, b4 such that u ≡ b1b2, v

′

i−1 ≡
b3b4, ai ≡ b2b3 and the words b2, b3 are non-empty. Clearly, vi−1 ≡ b1b2b3b4.
In the case 1) vi ≡ b1(b2b3)

2b4 ≡ ub3b2b3b4 and we are done. Finally, in the
case 2) vi−1 ≡ b1c

2b4 and vi ≡ b1cb4 where c coincides with either ξi(u) or ξi(v).
Note that ℓ(ξi(v)) ≥ ℓ(ξi(u)) ≥ ℓ(u), whence ℓ(c) ≥ ℓ(u). Since u is a prefix of
vi−1 ≡ b1c

2b4 and ℓ(b1) < ℓ(u), we have that the word u is a prefix of b1c. If
ℓ(u) < ℓ(b1cb4) then we are done. Suppose that ℓ(u) = ℓ(b1cb4). Since ℓ(c) ≥ ℓ(u),
this means that the words b1 and b4 are empty and ℓ(u) = ℓ(c). Thus u is a prefix
of c and ℓ(u) = ℓ(c), whence u ≡ c. Then vi ≡ b1cb4 ≡ c ≡ u ≡ v0. But this is
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not the case because the words v0, v1, . . . , vn are pairwise different.

We have proved that u is a proper prefix of vi for all i = 1, 2, . . . , n. In
particular, u is a proper prefix of the word w ≡ vn. Since a nil-variety N satisfies
the identity u = w, Lemma 1.4(ii) applies with the desired conclusion that u = 0
holds in N . �

We need some additional notation. Let u be a word and π a permutation
on the set c(u). We denote by π[u] the word that is obtained from the word u
by changing of every letter x ∈ c(u) on the letter xπ. Obviously, if u = v is a
substitutive identity then there exists a unique permutation π on the set c(u) with
v ≡ π[u]. If u is a word and x is a letter then we denote by ℓx(u) the number of
occurences of x in u.
There are many ways to deduce a non-substitutive identity from a substitutive

one. In view of Proposition 2.2, this means that, within a modular nil-variety,
a substitutive identity implies numerous 0-reduced identities. In particular, we
have the following

Corollary 2.3. Let a nil-variety V be a modular element of the lattice SEM.
Suppose that V satisfies a substitutive identity u = v and x ∈ c(u).

(i) Let π be the permutation on the set c(u) such that v ≡ π[u]. If x 6≡ xπ
then V satisfies the identities ux = xu = 0.

(ii) If ℓx(u) 6= ℓx(v), y is a letter with y /∈ c(u) and u′ is the word that is
obtained by a substitution of either xy or yx for x in the word u then V
satisfies the identity u′ = 0.

Proof: (i) The identities ux = vx and xu = xv follow from the identity u = v.
In view of Proposition 2.2, it suffices to verify that these two identities are not
substitutive. Arguing by contradiction, suppose that the identity ux = vx is
substitutive. Then vx ≡ σ[ux] for some permutation σ on the set c(ux) = c(u).
It is evident that v ≡ σ[u], whence σ = π. Therefore xσ 6≡ x. On the other hand,
xσ ≡ x because x is the last letter in both the words ux and σ[ux] ≡ vx. We
have a contradiction. Analogous arguments show that the identity xu = xv is not
substitutive as well.

(ii) Let u′ = v′ be the identity that is obtained by a substitution of either xy or
yx for x in the identity u = v. Then V satisfies the identity u′ = v′. It is evident
that both the parts of a substitutive identity have the same length. Therefore

ℓ(u′) = ℓ(u) + ℓx(u) = ℓ(v) + ℓx(u) 6= ℓ(v) + ℓx(v) = ℓ(v′),

whence the identity u′ = v′ is not substitutive. Now Proposition 2.2 applies. �

Proposition 2.2 gives a necessary condition for a nil-variety to be modular.
It is interesting to compare it with the following sufficient condition that have
been obtained independently in [4, Proposition 1.1] and [12, Corollary 3] (in fact,
it immediately follows from [3, Proposition 2.2] but was not mentioned in [3]
explicitly).
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Proposition 2.4. If a semigroup variety is given by 0-reduced identities only
then it is a modular element of the lattice SEM. �

Note that the necessary condition given by Proposition 2.2 is not a sufficient
one, while the sufficient condition given by Proposition 2.4 is not a necessary one
(see Theorem 3.1 below).
The first main result of the article is the following

Theorem 2.5. If a semigroup variety V is a modular element of the lattice SEM
then either V = SEM or V = X ∨N where X is one of the varieties T or SL,
while N is a nil-variety given by 0-reduced and substitutive identities only.

Proof: Let V be a modular semigroup variety and V 6= SEM. By Proposi-
tion 2.1, V = X ∨N where X is one of the varieties T or SL, while N is a
nil-variety. Lemma 1.2 implies that N is a modular variety. Finally, Proposi-
tion 2.2 shows that N may be given by 0-reduced and substitutive identities only.

�

3. Commutative varieties

The second main result of the article is the following

Theorem 3.1. For a commutative semigroup variety V the following are equiv-
alent:

(a) V is a modular element of the lattice SEM;
(b) V is a modular and an upper-modular element of the lattice SEM;
(c) V = X ∨N where X is one of the varieties T or SL, while N is a variety
satisfying the identities xy = yx and x2y = 0.

Proof: The implication (c) =⇒ (b) is proved in [14, Theorem 1], while the im-
plication (b) =⇒ (a) is evident. It remains to prove the implication (a) =⇒ (c).
According to Proposition 2.1 and Lemma 1.2, it suffices to verify that a commu-
tative modular nil-variety satisfies the identity x2y = 0. This claim immediately
follows from Proposition 2.2 and the fact that a commutative variety satisfies the
identity x2y = yx2. (Note that we may apply here Corollary 2.3(i) rather than
Proposition 2.2. Indeed, the commutative law is the identity xy = π[xy] where
π is the transposition on the set {x, y}. Since x 6≡ xπ, it remains to note that
x2y ≡ x · xy.) �

In particular, Theorem 3.1 shows that a commutative modular variety is upper-
modular. For arbitrary varieties, this is not the case. For instance, the variety
var{x3 = 0} is modular by Proposition 2.4 but is not upper-modular by [10,
Theorem 1] or [14, Theorem 2].
Theorem 3.1 and results of the article [15] imply that a commutative modular

variety has a distributive subvariety lattice. Below we obtain a stronger result
(see Corollary 4.7). One more corollary of Theorem 3.1 is the following
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Corollary 3.2. If a commutative semigroup variety is a modular element of the

lattice SEM then so is every its subvariety. �

4. Permutable varieties

A simplest but very important particular type of substitutive identities is per-
mutable identities, that is identities of the form

(1) x1x2 · · ·xn = x1πx2π · · ·xnπ

where π is a non-trivial permutation on the set {1, 2, . . . , n}. The number n is
called a length of the identity (1). A semigroup variety is called permutable if it
satisfies some permutable identity. Theorems 2.5 and 3.1 inspire the following

Problem 4.1. Describe permutable varieties that are modular elements of the

lattice SEM.

Corollary 2.3(i) implies that if a modular nil-variety V satisfies a permutable
identity of length n then it satisfies also an identity of the form u = 0 for some
word u of length n+1 depending on n letters (namely, if V satisfies an identity of
the form (1) then it satisfies also the identities xix1x2 · · ·xn = x1x2 · · ·xnxi = 0
for each i with 1 ≤ i ≤ n and iπ 6= i). To obtain a stronger result (see Theorem 4.5
below), we need some additional notation and auxiliary results.
Let V be a semigroup variety and u ∈ F . We denote by Su the full permutation

group on the set c(u) and put

Permu(V) =
{

π ∈ Su | V satisfies the identity u = π[u]
}

.

Obviously, Permu(V) is a subgroup in Su. We denote the subgroup lattice of a
group G by Sub(G).
The following lemma is the semigroup analogue of [3, Lemma 6.10]. We provide

its proof for the sake of completeness.

Lemma 4.2. If a semigroup variety V is a modular element of the lattice SEM
and u ∈ F then the group Permu(V) is a modular element of the lattice Sub(Su).

Proof: For brevity, put V = Permu(V). Let H and K be subgroups of Su with
H ⊆ K. We have to verify that (V ∨ H) ∧K = (V ∧K) ∨H . It suffices to check
that (V ∨ H) ∧ K ⊆ (V ∧ K) ∨ H because the opposite inclusion is evident. Let
π ∈ (V ∨ H) ∧ K. We need to verify that π ∈ (V ∧ K) ∨ H .
Let us denote by H (respectively by K) the semigroup variety given by all

identities of the form u = σ[u] with σ ∈ H (respectively σ ∈ K). It is evident
that K ⊆ H. Since V is modular, we have (V ∧ H) ∨K = (V ∨ K) ∧H. Further,
π ∈ V ∨H , whence π = ν1η1ν2η2 · · · νmηm for some permutations ν1, ν2, . . . , νm ∈
V and η1, η2, . . . , ηm ∈ H . Put u0 ≡ u, vi ≡ νi[ui−1] and ui ≡ ηi[vi] for all i =
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1, 2, . . . , m. Then um ≡ π[u0]. For every i = 1, 2, . . . , m, the identities ui−1 = vi

and vi = ui hold in the varieties V and H respectively. Therefore u0 = um holds
in V ∧ H. Besides that, u0 = um holds in K because π ∈ K. Therefore the variety
(V ∨ K) ∧H = (V ∧ H) ∨ K also satisfies the identity u0 = um. Hence there exists
a sequence of words w0, w1, . . . , wk such that w0 ≡ u0 ≡ u, wk ≡ um ≡ π[u] and,
for each i = 0, 1, . . . , k − 1, the identity wi = wi+1 holds in one of the varieties
V ∨ K or H.
Suppose that wi 6≈ u for some i. Let i be the least index with such a property.

It is clear that i > 0. Then wi−1 ≈ u and the identity wi−1 = wi holds in one of
the varieties V ∨ K or H. Therefore it holds in one of the varieties K or H. The
choice of these two varieties shows that wi ≈ wi−1 ≈ u, a contradiction with the
choice of i.
Thus wi ≈ u for all i = 0, 1, . . . , k. This means that, for every i = 0, 1, . . . , k−1,

there exists a permutation σi ∈ Su such that wi+1 ≡ σi[wi]. It follows from
the choice of the words w0, w1, . . . , wk that, for every i = 0, 1, . . . , k − 1, the
permutation σi lies in one of the groups V ∧K or H . Since wk ≡ π[w0], we have
π = σ0σ1 · · ·σk−1. Therefore π ∈ (V ∧ K) ∨ H , as desired. �

Let n be a positive integer. We denote by Sn the full permutation group on
the set {1, 2, . . . , n}. For a semigroup variety V , we put

Permn(V) =
{

π ∈ Sn | V satisfies the identity (1)
}

.

Obviously, Sn
∼= Sx1x2···xn

and Permn(V) ∼= Permx1x2···xn
(V). Lemma 4.2

implies the following

Corollary 4.3. If a semigroup variety V is a modular element of the lattice SEM
and n is a positive integer then the group Permn(V) is a modular element of the
lattice Sub(Sn). �

We denote by An the alternating subgroup of Sn and by V4 the Klein four
group. The following fact immediately follows from [3, Propositions 3.1 and 3.8].

Lemma 4.4. Let G be a non-singleton subgroup of the group Sn with n ≥ 4.
The group G is a modular element of the lattice Sub(Sn) if and only if one of the
following holds:

(i) n = 4 and G ⊇ V4;
(ii) n ≥ 5 and G ⊇ An. �

Let u be a word of length n, say u ≡ y1y2 · · · yn where y1, y2, . . . , yn are (not
necessarily different) letters. For every i = 1, 2, . . . , n, we put λi(u) ≡ yi. Clearly,
if u ≈ v and λi(u) ≡ λj(u) for some 1 ≤ i, j ≤ n then λi(v) ≡ λj(v). Further,
if π ∈ Sn then we denote by uπ the word y1πy2π · · · ynπ. It is evident that
the identity (1) implies the identity u = uπ. For every i = 1, 2, . . . , n, we put
Stabn(i) = {π ∈ Sn | iπ = i}. Clearly, Stabn(i) is a subgroup of Sn.
The third main result of the article is the following
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Theorem 4.5. Let a semigroup variety V be a modular element of the lattice
SEM and let V satisfy a non-trivial identity of the form (1). Then V satisfies also:

(i) all permutable identities of length n+ 1;
(ii) all permutable identities of length n whenever n ≥ 5 and the permutation

π is odd.

If, besides that, V is a nil-variety then it satisfies also:

(iii) an arbitrary identity of the form u = 0, where u is a word of length n
depending on n − 1 letters, whenever n ≥ 4;

(iv) the identities xyx = xy2 = 0 (respectively x2y = xy2 = 0, x2y = xyx = 0,
x2y = xyx = xy2 = 0) whenever n = 3 and π = (12) (respectively
π = (13), π = (23), π = (123)).

Proof: (i) In view of Proposition 2.1 and Lemma 1.2, we may assume that V is
a nil-variety. If n = 2 then the claim is evident. Let n = 3. Results of [7] implies
that Perm4(V) ⊇ Stab4(i) for some i (more precisely, Perm4(V) ⊇ Stab4(4)
whenever π = (12), Perm4(V) ⊇ Stab4(1) whenever π = (23), and Perm4(V) =
S4 whenever π is one of the permutations (23) or (123)). On the other hand,
Perm4(V) ⊇ V4 by Lemma 4.4. Since the join of Stab4(i) and V4 in the lattice
Sub(S4) coincides with the whole group S4, we are done. Finally, if n ≥ 4 then
the desired conclusion immediately follows from Lemma 4.4 and [7, Theorem 1].

(ii) As in the proof of the previous claim, we may assume that V is a nil-variety.
The desired conclusion immediately follows then from Lemma 4.4 and the fact
that An is a coatom in the lattice Sub(Sn).

(iii) Let u be a word of length n depending on n−1 letters, say u ≡ y1y2 · · · yn,
where y1, y2, . . . , yn are letters, yi ≡ yj for some 1 ≤ i < j ≤ n, and letters
y1, . . . , yj−1, yj+1, . . . , yn are pairwise different. Since n ≥ 4, there exist numbers
k and ℓ with 1 ≤ k < ℓ ≤ n and k, ℓ /∈ {i, j}. Put π = (ik)(jℓ). Corollary 4.3
and Lemma 4.4 imply that π ∈ Permn(V). Whence the variety V satisfies the
identity u = uπ. Since

λi(u) ≡ yi ≡ yj ≡ λj(u) but λi(u
π) ≡ yk 6≡ yℓ ≡ λj(u

π),

we have u 6≈ uπ. It remains to refer to Proposition 2.2.

(iv) The identity (1) with n = 3 and π = (12) (respectively π = (13), π = (23),
π = (123)) implies xyx = yx2 (respectively x2y = yx2, x2y = xyx, x2y = xyx =
yx2). Now Proposition 2.2 applies. �

To obtain a corollary of Theorem 4.5, we need some information about nil-
varieties with distributive subvariety lattices. Such varieties were completely de-
scribed in [16] (see also [13, Proposition 4.2] where the description was reproved
in a simpler and shorter way). In particular, this result immediately implies the
following
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Lemma 4.6. Let V be a nil-variety.

(i) If the lattice L(V) is distributive then V satisfies a permutable identity of
length 3.

(ii) If V satisfies a permutable identity of length 3 and one of the identities
x2y = 0 or xy2 = 0 then the lattice L(V) is distributive. �

Corollary 4.7. Let a semigroup variety V be a modular element of the lattice
SEM. If V satisfies a permutable identity of length 3 then the lattice L(V) is
distributive.

Proof: In view of Proposition 2.1 and Lemma 1.3, we may assume that V
is a nil-variety. The desired conclusion follows then from Theorem 4.5(iv) and
Lemma 4.6(ii). �

Analogues of Corollaries 3.2 and 4.7 for arbitrary semigroup varieties fail: an
evident example is provided by the variety SEM. Moreover, such analogues
are not the case even for proper semigroup varieties (that is, varieties V with
V 6= SEM). Indeed, put X = var{x3 = 0} and Y = var{x3 = 0, xy = yx}. The
variety X is modular by Proposition 2.4. But its subvariety Y is not modular by
Theorem 3.1 and the lattice L(X ) is not distributive by Lemma 4.6(i).

Acknowledgments. The author sincerely thanks Professor M.V. Volkov for
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