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On flat covers in varieties

David Kruml

Abstract. Flat covers do not exist in all varieties. We give a necessary condition for the
existence of flat covers and some examples of varieties where not all algebras have flat
covers.
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1. Introduction

In 2001, L. Bican, R. El Bashir and E. Enochs [2] proved flat cover conjecture
saying that each R-module has a flat cover. There is a natural question whether
flat covers exist in an arbitrary variety. M. Kilp, U. Knauer and A.V. Mikhalev
[6] generalized certain results on projective and flat objects to monoids and acts.
In contrast to the classical definition of flat object, J. Rosický [7] used the fact
that every module is flat if and only if it is a directed colimit of finitely presented
projective modules. We will follow the later approach. The main result of the
paper is a criterion for existence of flat covers. By means of the criterion we
show that flat covers do not exist in a special variety of unary algebras, as well
as in varieties of semigroups, monoids, commutative semigroups or commutative
monoids.

Recall that in varieties there are free objects and hence projective objects are
retracts of free ones. Finitely presentable objects can be defined in a purely
categorical way but in varieties we can simply say that they are generated by
finitely many generators and relations (see [1]). As mentioned, flat objects are
the directed colimits of finitely presentable projective objects. Given an object
M of a variety V , a flat object F together with a morphism f : F → M is said
to be a flat precover if any other f ′ : F ′ → M with F ′ flat factors through f , i.e.
there is (not necessarily unique) g : F ′ → F such that fg = f ′. When F = F ′

and f = f ′ implies that g must be an automorphism of F then (F, f) is called a
flat cover .
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The flat covers evidently exist in varieties with all objects flat (those are cha-
racterized in [3]) and also in varieties where flat algebras are projective [4].
In the paper we assume that V is a finitary variety, P a small full subcategory

of V consisting of representatives of finitely presentable projective objects, and
F the full subcategory of flat objects. But more generally, we could only require
that V is a finitely accessible category, P some small full subcategory of finitely
presentable objects, and F a closure of P in V under directed colimits.
Note that the existence of a flat precover of object M is equivalent to the

existence of a weakly terminal object in the comma-category F ↑ M . From
Theorem 2.5 of [8] it follows that in varieties the existence of flat precovers implies
the existence of flat covers.

2. δ-objects

From our considerations it follows that for any object M of V the comma-
category F ↑ M has (at least) weak coproducts. If there is a family of objects
Fi in F ↑ M such that each F in F ↑ M factorizes through some Fi then the
weak coproduct of Fi is a weakly terminal object. Thus the case that the weakly
terminal object does not exist implies that we can construct a proper class of
objects in F ↑ M not factorizing through anything “smaller”.
For an arbitrary set X , the poset (FinX,⊆) of non-empty finite subsets of X

is a typical example of directed set. We will represent FinX in P ↑ M by the
following construction.

2.1 Definition. A diagramD : ∆δ → P , where ∆δ consists of objects ∆0,∆1, . . .

and morphisms generated by ∆δ(∆n−1,∆n) = {δ
(n)
0 , . . . δ

(n)
n } satisfying rules

δ
(n+1)
i δ

(n)
j = δ

(n+1)
j+1 δ

(n)
i

for each 0 ≤ i ≤ j ≤ n, is called a δ-cosimplicial object , or shortly δ-object of P .
The letter δ emphasizes that we use only the embeddings (in contrast to the
standard definition of cosimplicial object).

The segment from ∆0 to ∆n will be denoted by ∆
(n)
δ and the corresponding

diagram D(n) : ∆
(n)
δ → P will be called a δ(n)-object .

2.2 Remark. Given a linearly ordered set X , we assign ∆n for every (n + 1)-

element subset and δ
(n)
i for the embedding (x0, . . . , xi−1, xi+1, . . . , xn) ⊆

(x0, . . . , xn) where x0 < · · · < xn. It gives a functor E : FinX → ∆δ. It
means that every δ-diagram ∆δ → P can be expanded to a directed diagram
FinX → P .

2.3 Definition. A δ(n)-object D is called degenerated if Dδ
(k)
i = Dδ

(k)
j for all

0 ≤ i < j ≤ k ≤ n. A natural transformation θ : C → D of two δ(n)-objects
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C, D is called a degeneration if D is degenerated. A δ-object D : ∆δ → P is said
to be finitely degenerable if for every n there is a degeneration of the restriction

D(n) : ∆
(n)
δ → P .

2.4 Theorem. If F ↑ M has a weakly terminal object then every δ-object of

P ↑ M is finitely degenerable.

Proof: Let T → M be a weakly terminal object and C : I → P expression of
T as a directed colimit of elements from P . Let λ = max{card I, cardP ,ℵ0}, D

be a δ-object and n a natural number. We will show that D(n) degenerates. Let
us put κ = (expn! λ)+ and choose a set X with cardinality κ. By 2.2 D can be
expanded to a directed diagram B : FinX → P . Let F be the colimit of B and
t : F → T a morphism to a weakly terminal object T .
We will show that there is a functor A : FinX → I such that t “decomposes”

to a natural transformation θ : B → CA, i.e. t(BY → F ) = (CAY → T )θY
for each finite Y . Since the elements of P are finitely presented, for each finite
Y ⊆ X the morphism BY → F → T factors through some fY : BY → CiY . If
Y is one-element there is nothing else to do and we put AY = iY and θY = fY .
Assume that we have constructed AY and θY for all at most (j − 1)-element
subsets Y and they work as a natural transformation. Let Y be a j-element set.
I is directed, thus we can replace iY by an upper bound of all AZ, ∅ 6= Z ⊆ Y .

For ∅ 6= Z ⊆ Y the composites BZ → BY
fY−→ CiY and BZ

θZ−→ CAZ → CiY
are generally different, but we can prolongate the diagram by some CiY → Ci′Y
to be equal and improve iY by i′Y and fY by (CiY → Ci′Y )fY . In this way we
improve iY , fY for each ∅ 6= Z ⊆ Y and find AY and θY extending the natural
transformation θ.
By a pigeon-hole principle there is subset X0 ⊆ X of cardinality κ0 = κ such

that all pairs A{x}, θ{x} for x ∈ X0 are equal. Let us restrict to elements of X0
and put θ0 = θ{x} and D′∆0 = CA{x}. Now for any two-element subset {x, y} ⊆

X0 we consider the image A{x} = A{y} ≤ A{x, y} together with morphisms
θ{x} = θ{y} and θ{x,y} as a coloring of {x, y}. By Erdös–Rado theorem

(expn! λ)+ → ((expn!/2! λ)+)2λ,

thus there is a homogenous subset X1 ⊆ X0 of cardinality κ1 = (exp
n!/2! λ)+, i.e.

θ1 = θ{x,y} and D∆1 = CA{x, y} do not depend on {x, y} ⊆ X1. Consequently,

θ1Dδ
(1)
0 = (CA{x} → CA{x, y})θ0 = (CA{y} → CA{x, y})θ0 = θ1Dδ

(1)
1 , i.e. we

have found a degeneration for the segment ∆
(1)
δ .

Similarly, for every finite Y ⊆ X we consider the collection {(AZ , θZ) | ∅ 6= Z ⊆
Y } as a coloring of Y and by induction construct homogenous subsets X2, . . . , Xn

of cardinalities κj = (exp
n!/j! λ)+ due to

(expn!/(j−1)! λ)+ → ((expn!/j! λ)+)
j
λ.



22 D.Kruml

At the end we obtain a set Xn of cardinality λ+ homogenous for all j-element
subsets where 1 ≤ j ≤ n + 1. Thus θ restricted to Xn yields a degeneration

of D(n). �

2.5 Remark. If V is not finitary, we should solve two problems. One is that ∆δ
should be extended by objects and morphisms corresponding to infinite ordinals.
The second problem is that the existence of infinitary homogenous sets depends
on set theory.

Another open problem is whether the statement of 2.4 can be inverted, that
is, whether degeneration of δ-objects implies the existence of a weakly terminal
object.

3. Examples

3.1 Proposition. Let V be a variety of unary algebras with operations a0, a1, . . .
satisfying identities

aiaj(x) = aj+1ai(x) for i ≤ j.

Then V does not have flat covers.

Proof: The variety can be considered also as a variety of S-sets, i.e. sets with ac-
tion of semigroup S generated by elements a0, a1, . . . modulo the above relations.
Then V becomes a finitary (two-sorted) variety. The assignments ∗ 7→ ai(∗) of
a generator ∗ define endomorphisms fi : F1 → F1 on the free algebra with one

generator. Obviously the assignment D∆i = F1, Dδ
(n)
i = fi defines a δ-object.

The endomorphisms of F1 can be identified with terms on a0, a1, . . . , thus they
are injective. Since every projective P is a retract of free FX and the projec-
tion X → {∗} extends to a homomorphism FX → F1, we get a composition
F1 → P → FX → F1 and deduce that all F1 → P are injective too. Hence
no part of the δ-diagram D can be degenerated and F does not have a weakly
terminal object. In other words, the terminal algebra {∗} of V does not have a
flat precover. �

3.2 Proposition. Let V be a variety of all semigroups, commutative semigroups,
monoids, or commutative monoids. Then V does not have flat covers.

Proof: Put D∆n = F{x0, . . . , xn} and generate morphisms Dδ
(n)
i by

Dδ
(n)
i (xk) =











xk for i > k,

xkxk+1 for i = k,

xk+1 for i < k.
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Then

Dδ
(n+1)
i Dδ

(n)
j (xk) =























































Dδ
(n+1)
i (xk) = xk for k < i ≤ j,

Dδ
(n+1)
i (xk) = xkxk+1 for i = k < j,

Dδ
(n+1)
i (xk) = xk+1 for i < k < j,

Dδ
(n+1)
i (xkxk+1) = xkxk+1xk+2 for i = k = j,

Dδ
(n+1)
i (xkxk+1) = xk+1xk+2 for i < k = j,

Dδ
(n+1)
i (xk+1) = xk+2 for i ≤ j < k,

and

Dδ
(n+1)
j+1 Dδ

(n)
i (xk) =



























































Dδ
(n+1)
j+1 (xk) = xk for k < i ≤ j,

Dδ
(n+1)
j+1 (xkxk+1) = xkxk+1 for i = k < j,

Dδ
(n+1)
j+1 (xk+1) = xk+1 for i < k < j,

Dδ
(n+1)
j+1 (xk+1) = xkxk+1xk+2 for i = k = j,

Dδ
(n+1)
j+1 (xkxk+1) = xk+1xk+2 for i < k = j,

Dδ
(n+1)
j+1 (xk+1) = xk+2 for i ≤ j < k,

thus D is a δ-diagram. Let S = {0, 12 , 1} be a three-element chain considered
as a meet-semilattice, thus S is a commutative monoid with unit 1. (In case of
semigroups or commutative semigroups S can be considered without 1.)
Let us consider homomorphisms fn : D∆n → S generated by

fn(xk) =

{

0 for k = 0,
1
2 otherwise.

Thus for any term t we have fn(t) = 0 iff t contains x0. On the other hand, for
any morphism δ in ∆δ we have that Dδ(t) contains x0 iff t does so. Hence the
morphisms fn are compatible with those of D and they together form a δ-object
in P ↑ S. It remains to show that it is not finitely degenerable and we will do

that for D(1). Assume that g(x0x1) = gDδ
(0)
0 (x0) = gDδ

(0)
1 (x0) = g(x0) for some

homomorphism g : D∆1 → P with P projective and there is h : P → S such that
hg = f1. Since a projective object is a retract of a free one, P can be considered
free. Then the equality g(x0x1) = g(x0) can be interpreted as a solution of
equation x0x1 = x0 in a free object. But such a solution in (commutative)
semigroups does not exist, while in (commutative) monoids there is just a trivial

solution with g(x1) = 1 contradictory to hg(x1) = f1(x1) =
1
2 . �
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3.3 Remark. (1) The comma-categories of R-modules are not longer additive
but they are affine in sense that for given morphisms f, g, h : M → N in V the
morphism f − g + h : M → N belongs to V . This leads to a notion of naturally
Malcev variety (see [5]). The author can prove that in a naturally Malcev variety
every δ-object is finitely degenerable. The basic idea is that

(Dδ
(2)
0 − Dδ

(2)
1 +Dδ

(2)
2 )Dδ

(1)
0 = D(δ

(2)
0 δ

(1)
0 )− D(δ

(2)
1 δ

(1)
0 ) +D(δ

(2)
2 δ

(1)
0 )

= D(δ
(2)
2 δ

(1)
0 )

= D(δ
(2)
0 δ

(1)
1 )

= (Dδ
(2)
0 − Dδ

(2)
1 +Dδ

(2)
2 )Dδ

(1)
1 ,

i.e. Dδ
(2)
0 − Dδ

(2)
1 +Dδ

(2)
2 is a degeneration for D(1). The degeneration is more

complicated in higher dimension.
(2) Abelian groups are Z-modules and hence flat covers exist. An open question

is if it holds in the variety of all groups.
(3) The semigroup S in proof of 3.2 is not a group but it is a band (i.e.

idempotent semigroup) and hence an inverse semigroup. It is interesting to see
that in a free inverse semigroup the equation x0x1 = x0 may have non-trivial
solutions, e.g. g(x0) = ab, g(x1) = b−1b, and consequently it is possible to show
that D is finitely degenerable. Thus existence of flat covers in inverse semigroups
is also open and it seems to be a promising variety for further studying. Natural
questions are how much general our example is and whether our problem reduces
to a specific equational problem in free algebras.
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