
Comment.Math.Univ.Carolin. 49,1 (2008)155–161 155

On monotone Lindelöfness of countable spaces

Ronnie Levy, Mikhail Matveev

Abstract. A space is monotonically Lindelöf (mL) if one can assign to every open cover
U a countable open refinement r(U) so that r(U) refines r(V) whenever U refines V .
We show that some countable spaces are not mL, and that, assuming CH, there are
countable mL spaces that are not second countable.
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1. Introduction

When saying that a family of sets A refines a family of sets B (or that B is
coarser than A) we only mean that every element of A is a subset of an element
of B; we do not assume that

⋃
A =

⋃
B. If A refines a family of sets B, we

write A ≺ B. A space is monotonically Lindelöf (or mL for short) [2], [9], [10] if
there is a function r, henceforth called a mL operator, that assigns to every open
cover U a countable open cover r(U) which refines U in such a way that r(U)
is coarser than r(V) whenever U is coarser than V . There are two properties,
countability and second countability, that trivially imply Lindelöfness. That all
second countable spaces are monotonically Lindelöf is straightforward: given a
countable base B, put r(U) = {O : O ∈ B and there is a U ∈ U such that
O ⊂ U}. With countability, this is not so trivial. One can present examples of
countable spaces which are easily seen not to be monotonically Lindelöf. (We do
so in Section 2.) Then we discuss consistent examples of monotonically Lindelöf
countable spaces that are not second countable. (The existence of ZFC examples
remains an open question.) Then we show that having one such example one can
get some others. But first, we discuss a reduction.
Let (X, T ) be a space, and p ∈ X . Denote by Tp the topology on X generated

by T ∪ {{q} : q 6= p}.

Proposition 1. A countable T1 space (X, T ) is monotonically Lindelöf iff (X, Tp)
is monotonically Lindelöf for every p ∈ X .

Proof: Let r be a mL operator for (X, T ), and let p ∈ X . For an open cover U
of (X, Tp), put s(U) = {U ∈ U : p ∈ U}∪{X\{p}}. Then s(U) is an open cover of
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(X, T ), and s is monotonic. Put rp(U) = {V ∈ s(U) : p ∈ V }∪{{q} : q ∈ X\{p}}.
Then rp is a mL operator for (X, Tp).
On the other hand, for every p ∈ X , let rp be a mL operator for (X, Tp), and

let U be an open cover of (X, T ). Put r(U) =
⋃
{{V ∈ rp(U) : p ∈ V } : p ∈ X}.

Then r is a mL operator for (X, T ). �

Say that X is mL at p ∈ X if there is an operator rp assigning to every non
empty family F of neighborhoods of p a non empty countable family rp(F) of
neighborhoods of p so that rp(F) refines F and rp(F) refines rp(G) whenever F
refines G. It is clear that a T1 mL space is mL at every point. Proposition 1 can
now be restated as follows:

Proposition 2. A countable T1 space is mL iff it is mL at every point.

The referee has observed that the axiom T1 (omitted in the original version of
the paper) is essential in Propositions 1 and 2. The counterexample suggested by
the referee is the following: let X be a countable space which is not mL, and let
y /∈ X . Topologize Y = X ∪ {y} declaring X (with its original topology) open
while the only neighborhood of y is Y . Then Y is mL while for some p ∈ X , X
is not mL at p, and hence Y is not mL at p.
Propositions 1 and 2 show that the problem we consider can be reduced to

spaces with unique non isolated point.

2. ZFC counterexamples

Here we show that some countable spaces are not monotonically Lindelöf. By
a subbase of neighborhoods of a point p we mean a family B of neighborhoods of
p such that finite intersections of B form a base of neighborhoods of p. The proof
of the next proposition is similar to an argument from [8].

Proposition 3. Let B be a subbase of neighborhoods of a point p in a space X .
Suppose there is a cardinal κ such that the following two conditions hold:

(1) for every neighborhood U of p, |{B ∈ B : U ⊂ B}| < κ;
(2) every subfamily of B which is still a subbase at p has cardinality > κ.

Then X is not mL at p.

Proof: Let r be a mL operator for X at p. We construct a sequence of covers
Uα = Cα∪{X \ {p}} (where Cα is a family of neighborhoods of p) and subfamilies
Bα ⊂ B for α < κ+. Put B0 = B and C0 = {U : U is an open neighborhood of p
and there is B ∈ B0 such that U ⊂ B}. If Bβ , Cβ have been constructed for all
β < α, put Bα = B \ {B ∈ B : there are β < α and U ∈ r(Uβ) such that U ⊂ B}
and Cα = {U : U is an open neighborhood of p and there is B ∈ Bα such that
U ⊂ B}. By condition (2), Bα and Cα are well defined for all α < κ+, however,
at step α = k we get a contradiction with (1). �
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Example 1. Let A be an uncountable almost disjoint family of subsets of ω,⋃
A = ω. Topologize X = ω ∪ {p}, where p /∈ ω, as follows: the points of ω are
isolated while a set U ⊂ X that contains p is open if and only if X \U is contained
in the union of a finite subfamily of A.

X is not mL at p: to apply Proposition 3, take κ = ω, and B = {X\A : A ∈ A}.

Example 2. Let ω1 ≤ κ ≤ c, and let X be a dense countable subspace in 2κ.

To observe that X is not mL at any p ∈ X , put κ = ω and B = {{x ∈ X :
x(i) = p(i)} : i ∈ κ}, and apply Proposition 3.

Remark. Proposition 3 can be applied to uncountable spaces as well. Thus, it
is easy to see, for example, that the one point compactification of an uncountable
discrete space is not mL, and neither is the one point Lindelöfication of a discrete
space of cardinality ≥ ω2.

3. A consistent example from (↑)

Henceforward by an example we mean a non metrizable countable mL space.
We use the notation from [3] for small uncountable cardinals, ⊃∗, and so on.
Let κ > 0 be a cardinal. Say that a sequence {Tα : α < κ} of infinite subsets

of ω is a pretower if Tα ⊇∗ Tβ and Tα 6=∗ Tβ whenever α < β < κ. A pretower
is a tower [3] when it does not have infinite pseudointersection. Naturally, κ is
called the height of the pretower. Let p /∈ ω and let T = {Tα : α < k} be a
pretower. Denote by XT the set ω ∪ {p} with the topology TT generated by the
base {{n} : n ∈ ω} ∪ {{p} ∪ (Tα \ A) : α < κ and |A| < ω}.
For an open cover U of XT and α < κ, put sα(U) = {{p} ∪ (Tα \ A) : |A| < ω,

{{p} ∪ (Tα \ A)} ≺ U and {{p} ∪ (Tα \ A)} 6≺
⋃
{sβ(U) : β < α}}. Set

r(U) =
⋃
{sα(U) : α < κ} ∪ {{n} : n ∈ ω}.

Say that a pretower T = {Tα : α < κ} is good if every cofinal subsequence of T
contains a pair of elements related with respect to “real” inclusion (i.e. for every
cofinal subsequence of T , there are α < β < κ such that Tα and Tβ are in this
subsequence, and Tα ⊃ Tβ).

Proposition 4. (0) For every pretower T , r is a monotonic operator, that is,
r(U) is coarser than r(V) whenever U is coarser than V .

(1) If cf(κ) > ω, and T is a good pretower, then for every open cover U the
families sα(U) are eventually empty.

(2) If κ ≤ ω1 and T is a good pretower, then r is a mL operator on X .

Proof: (0) Let U and V be two open covers of XT , U being coarser than V , and
let V ∈ r(V). We have to find an U ∈ r(U) such that U ⊃ V . If V = {n} for
n ∈ ω, then U = V = {n} ∈ r(U), so let V = {p} ∪ (Tα \ A) for some α < k and
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some finite A ⊂ ω. If V ∈ sα(U), put U = V . If V /∈ sα(U), then by definition of
sα, there are β < α and an U ∈ sβ(U) such that V ⊂ U .
(1) Assume the contrary. Then there is a U such that the set B = {α < κ :

sα(U) 6= ∅} is cofinal in k. For each α ∈ B, pick Oα = Tα \ Aα ∈ sα(U) where
Aα is a finite subset of ω. Since cf(κ) > ω, there are a finite A ⊂ ω and a cofinal
subset C ⊂ B such that Aα = A for all α ∈ C. Since T is good, there are
α, β ∈ C, α < β such that Tα ⊃ Tβ . Then we have Oα ⊃ Oβ which contradicts
the definition of the operators sα.
(3) If k is countable, then XT is second countable, hence mL. If κ = ω1, then

it follows from (1) that r(U) is countable for every U . So it follows from (0) that
r is a mL operator. �

It is shown in [5] that the following combinatorial principle follows from CH:

(↑) : There is a good pretower of height ω1.

Together with the trivial observation that χ(XT , p) = cf(κ), this implies the
following:

Corollary 1. (↑) There is a non metrizable countable mL space.

4. The countable fan as an example

Recall that the countable fan is the space Vω = (ω × ω) ∪ {p} in which the
points of ω × ω are isolated while a basic neighborhood of p is of the form Uf =
{p} ∪ {(m, n) : m ∈ ω and n > f(m)} where f ∈ ωω.

Lemma 1 ([11]). Let P denote the collection of non-decreasing elements

of ωω. Suppose F is cofinal in P the <∗ ordering of P . Then there exist d, f ∈ F
such that d < f .

Then identification of ω × ω and ω provides

Corollary 2. (CH) Vω is mL.

5. Getting more examples from existing examples

First of all, it is clear that the discrete sum of countably many examples is
again an example. The next step is to consider the simplest possible quotient
spaces.

Question 1. Let Z1 and Z2 be countable mL spaces with unique non isolated
points p1 and p2 respectively, and Z the quotient space obtain by identifying p1
and p2. Must Z be mL?

Question 2. Must the product of two countable mL spaces be mL?

We give only partial answers.
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Proposition 5. If X is countable and mL, and Y is countable and second count-
able, then X × Y is mL.

Proof: Following Proposition 1, it is enough to consider X×(ω+1) with unique
non isolated point 〈p, ω〉 where p is the unique non isolated point of X . Let r
be a mL operator for (X, Tp), and let U be an open cover of X × (ω + 1). For
n ∈ ω, let Vn = {V ⊂ X : V ∋ p, V is open in X , and there is U ∈ U such
that V × [n, ω] ⊂ U} ∪ {{q} : q ∈ X \ {p}}. Put s(U) = {W × [n, ω] : p ∈ W ∈
r(Vn), n ∈ ω} ∪ {〈x, y〉 ∈ X × (ω+1) : x 6= p or y 6= ω}. Then s is a mL operator
for X × (ω + 1). �

Remark. It follows from Proposition 5 that, consistently, a countable mL space
need not be monotonically normal. Indeed, ifX×(ω+1) is monotonically normal,
then X is stratifiable [G].

Proposition 6. Let Z = ω∪{p} be a mL space with unique non isolated point p.
Then all finite powers of X are mL.

Proof: We give the proof for Z2. Let r be a mL operator for Z. Let U be an open
cover of Z2. Let sp,p(U) = {U : U is open in Z, p ∈ U and U×U ≺ U}∪{{n} : n ∈
ω}. Then sp,p(U) is an open cover of Z and sp,p is a monotonic operation. Put
Rp,p(U) = {V × V : V ∈ r(sp,p(U)) and p ∈ V }. For n ∈ ω, let sp,n(U) = {U : U
is open in Z, U ∋ p and {p} × U ≺ U} ∪ {{n} : n ∈ ω} and sn,p(U) = {U : U is
open in Z, U ∋ p and U × {p} ≺ U} ∪ {{n} : n ∈ ω}. Put Rp,n(U) = {{p} × V :
V ∈ r(sp,n(U)) and V ∋ p} and Rn,p(U) = {V ×{p} : V ∈ r(sn,p(U)) and V ∋ p}.
Finally, put R(U) = Rp,p(U)∪

⋃
{Rn,p(U)∪Rp,n(U) : n ∈ ω}∪{{(n, n)} : n ∈ ω}.

�

Proposition 7. Suppose {Xa : a ∈ A} where |A| = ω, be a family of countable
spaces, and all finite subproducts in the product P =

∏
{Xa : a ∈ A} are mL.

Then a σ-product in P is mL.

Proof: Let S be a σ-product in P with base point x = (xa : a ∈ A). It is enough
to show that S is mL at x. Moreover, it is enough to show that P is mL at x.
For B ⊂ A, we denote XB =

∏
{Xa : a ∈ B} and xB = (xa : a ∈ B) = πB(x).

For finite B, let rB be operators witnessing that XB is mL at xB . Let us say that

a subset U ⊂ P is B-standard, where B ⊂ A, if U = π−1
B (πB(U)). Let U be a

nonempty family of neighborhoods of x in P . For finite B ⊂ A, let sB(U) = {U : U
is B-standard and x ∈ U ≺ U} and tB(U) = {πB(O) : O ∈ sB(U)}. Put B(U) =

{B ⊂ A : |B| < ω and sB(U) 6= ∅} and r(U) = {π−1
B (V ) : V ∈ rB(tB(sB(U))),

B ∈ B(U)}. Then r witness that P is mL at x. �

Corollary 3. Let Z = ω ∪ {p} be a mL space with unique non isolated point p.
Then a σ-product in Zω is mL.

Consistently, Corollary 3 gives an example without isolated points. Alterna-
tively, one can get such an example using the Pixley-Roy exponent. Recall that
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the Pixley-Roy space PR(X) over a topological space (X, T ) is the set of all
nonempty finite subsets of X with basic open sets of the form

[F, V ] = {G ∈ PR(X) : F ⊆ G ⊆ V }

where F ∈ PR(X) and F ⊂ V ∈ T (see [3]).

Proposition 8. If X is a countable mL space, then PR(X) is mL.

Proof: Let r be a mL operator for X . We construct a mL operator R for PR(X)
in the form

R(U) =
⋃
{RF (U) : F ∈ PR(X)}

where U is an open cover of PR(X). Let F ∈ PR(X). Put

UF = {[F, V ] : V ∈ T , F ⊂ V, [F, V ] ≺ U},

VF = {V : [F, V ] ∈ UF }, OF = VF ∪ {X \ F}

(the latter is an open cover of X),

WF = {W ∈ r(OF ) :W ∩ F 6= ∅}, W̃F = {
⋂
A : A ∈ [WF ]

<ω},

˜̃
WF = {

⋃
B : B ∈ [W̃F ]

<ω and
⋃
B ⊃ F and (∃V ∈ VF )(

⋃
B ⊂ V )},

RF (U) = {[F, O] : O ∈
˜̃
WF }.

�

6. Final questions

Question 3. Is it consistent that every countable mL space is metrizable?

Question 4. Does the existence of a non-metrizable countable mL space imply
the existence of a good tower (of uncountable height)?

Question 5. How many pairwise non homeomorphic countable mL spaces with
unique non isolated point are there?

Question 6. Let X be a countable mL space with unique non isolated point p.

Consider X embedded into 2w(X) so that p = 0. Denote G the subgroup of 2w(X)

generated by X . Is G mL?

Question 7. Let X be a countable mL space with unique non isolated point.
Are the free topological group F (X) and free Abelian topological group A(X)
mL?
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