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Bol loops with a large left nucleus

Orin Chein, Edgar G. Goodaire

Abstract. Possession of a unique nonidentity commutator/associator is a property which
dominates the theory of loops whose loop rings, while not associative, nevertheless satisfy
an “interesting” identity. Indeed, until now, with the exception of some ad hoc examples,
the only known class of Bol loops whose loop rings satisfy the right Bol identity have this
property. In this paper, we identify another class of loops whose loop rings are “strongly
right alternative” and present various constructions of these loops.
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1. Introduction

Why is a group ring associative? The argument is simple. Let α =
∑

g∈G αgg,

β =
∑

h∈G βhh, and γ =
∑

k∈G γkk be elements of a group ring RG. Then

(αβ)γ =
(

∑

g,h∈G

αgβhgh
)

∑

k∈G

γkk =
∑

g,h,k∈G

αgβhγk(gh)k,

whereas

α(βγ) =
∑

g,h,k∈G

αgβhγkg(hk).

Since (gh)k = g(hk) for all g, h, k ∈ G, it follows that (αβ)γ = α(βγ).
Does the right alternative law (yx)x = yx2 similarly “lift” from a loop L to

a loop ring RL? A small calculation shows that the repeated variable in this
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identity makes a positive answer unlikely. Replacing y by a loop element g, and
x by the sum h+ k of loop elements h and k, we have

(yx)x = (gh+ gk)(h+ k) = (gh)h+ (gh)k + (gk)h+ (gk)k

and

yx2 = g(h2 + hk + kh+ k2) = gh2 + g(hk) + g(kh) + gk2.

After cancelation, (yx)x = yx2 is equivalent to (gh)k + (gk)h = g(hk) + g(kh)
and, in the absence of associativity, there seems no reason for this to hold. In
loop theory, most interesting identities, including

(xy · z)y = x(y · zy) the (right) Moufang identity

and

(xy · z)y = x(yz · y) the (right) Bol identity,

have a repeated variable and so are unlikely to lift from a loop to any of its
loop rings. A half century ago, Lowell Paige proved, with mild restrictions on
characteristic, that if a commutative loop ring was even power associative (in
most characteristics, this is equivalent to the single identity x2x2 = x3x), then
that loop ring and hence the underlying loop as well must be associative [Pai55]
(see also [GJM96, Theorem III.1.6]). Such observations are perhaps the reason
that the loop ring in general remained an almost forgotten object until more
recent times. In the mid 1980s, a class of Moufang loops whose loop rings, in
characteristic different from 2, also satisfy the Moufang identity was discovered
[Goo83], [CG86]. Later, the authors found a larger class of loops whose loop
rings satisfy the Moufang identity in any characteristic [CG90] and, in the 1990s,
Goodaire and Robinson found a class of loops whose loop rings in characteristic 2
satisfy just the right Bol identity (they are not associative, nor do they satisfy
the Moufang identity) [GR95].
Historically, one loop theoretic property has been dominant amongst those

classes of loops whose loop rings satisfy an identity with a repeated variable —
possession of a unique nonidentity commutator/associator, that is, an element s
with the property that for all elements a, b, c in the loop,

ab = ba or ab = (ba)s(1.1)

and

(ab)c = a(bc) or (ab)c = [a(bc)]s.(1.2)



Bol loops with a large left nucleus 173

Until now, the only known classes of (nonassociative1) Bol loops2 whose loop rings
satisfy the right Bol identity have this property. Recently, the authors have found
a class of Bol loops whose loop rings satisfy the right Bol identity, but which very
well may have a commutator/associator subloop of order greater than 2.

If L is a loop and a, b, c are elements of L, we use (a, b) to denote the com-
mutator of a and b (this is the element s which appears in (1.1)) and (a, b, c) to
denote the associator of a, b, and c (this is the element s which appears in (1.2)).
(In general, these two elements need not be equal.) The commutator/associator
subloop of L is the subloop L′ generated by all commutators and associators. The
centrum of L is the set

C(L) = {a ∈ L | (a, x) = 1 for all x ∈ L}

and the left, middle and right nuclei of L are, respectively, the sets

Nλ(L) = {a ∈ L | (a, x, y) = 1 for all x, y ∈ L}

Nµ(L) = {a ∈ L | (x, a, y) = 1 for all x, y ∈ L}

Nρ(L) = {a ∈ L | (x, y, a) = 1 for all x, y ∈ L}.

The nucleus of L is N(L) = Nλ ∩ Nµ ∩ Nρ and the centre of L is Z(L) =
N(L) ∩ C(L). A good reference for the theory of loops, and especially Bol loops,
is the text by Hala Pflugfelder [Pfl90]. Key properties of Bol loops include their
power associativity (powers of an element are well-defined) and, more generally,
their right power alternativity: (abi)bj = abi+j for all a, b and all integers i and j.
This implies, in particular, the right inverse property: (ab)b−1 = a for all a and b.
In this paper we consider the property that the left nucleus is of index 2, show

that the loop rings of certain Bol loops of this type satisfy the right Bol identity,
and exhibit various classes of loops of the identified type.

2. A construction

Let L be a power associative loop whose left nucleus, N , is an abelian group
which, as a subloop of L, has index 2. Then, for every element u /∈ N , L = N∪Nu.
Choose a fixed element u not in N . We can then define bijections θ, φ:N → N
by

(2.1) un = (nθ)u and nφ = u(nu).

Clearly, 1θ = 1, 1φ = u2, and u2θ = u2, the latter since L is power associative.
For reasons that will become clearer in Section 5, we will be primarily interested

1In this paper, “nonassociative” always means “not associative.”
2All Bol loops in this paper are right Bol, that is, satisfy the right Bol identity.
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in the case that either θ = I, the identity map, or that φ = R(u2), the map
N → N which multiplies each element of N on the right by u2. Notice that
R(u2) = R(u)2 if L is right power alternative.

Since N is the left nucleus, the following equations show how to multiply ele-
ments from the cosets N and Nu. For n1, n2 ∈ N ,

(2.2) n1(n2u) = (n1n2)u,

(2.3) (n1u)n2 = n1(un2) = [n1(n2θ)]u,

and

(2.4) (n1u)(n2u) = n1[u(n2u)] = n1(n2φ).

With this hindsight, we outline a construction of a loop with index 2 left nucleus
that plays a prominent role in this paper.

Let N be an abelian group, v a fixed element of N and θ, φ bijections of N
such that 1θ = 1, 1φ = v and vθ = v. Let u be an indeterminate and extend
the multiplication from N to L = N ∪ Nu by equations (2.2), (2.3) and (2.4).
(Note that u2 = v.) It is not hard to see that L is a loop with N a subloop of

index 2 and, moreover, that L is power associative, with (nu)2k = nk(nφ)k and

(nu)2k+1 = [nk+1(nφ)k ]u. Furthermore, N is contained in the left nucleus of L
since

(nn1)(n2u) = (nn1n2)u = n[(n1n2)u] = n[n1(n2u)],

[n(n1u)]n2 = [(nn1)u]n2 = [nn1(n2θ)]u = n{[n1(n2θ)]u} = n[(n1u)n2]

and

[n(n1u)](n2u) = [(nn1)u](n2u) = (nn1)(n2φ) = n[n1(n2φ)] = n[(n1u)(n2u)].

In the next section, (Lemma 3.6 and Lemma 3.2 respectively), we will investigate
conditions on θ and φ that make L a Bol loop or a group.

3. Properties

Since we will be concerned with the size of the commutator/associator subloop
of a loop constructed as in the previous section, the next result will be of use
later.
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Lemma 3.1. Let L be a loop constructed as in Section 2 and suppose L is Bol,
but not associative. Then for any n ∈ N , (nθ)−1 = (n−1)θ, (nθ−1)−1 = n−1θ−1,
commutators have the form

[n(n−1θ)]θ−1 and n1(n1φ)
−1n−1

2 (n2φ),

and associators are of four types:

{

(n1θ)(n2θ)[(n1n2)
−1θ]

}

θ−1, (n1θ)(n2φ)[(n1n2)φ]
−1,

(n1φ)n2
{

[n1(n2θ)]φ
}

−1
and

{

(n1φ)n2
{

[n1(n2φ)]
−1θ

}

}

θ−1.

If θ = I, the identity map, then every commutator is of the form

n1(n1φ)
−1n−1

2 (n2φ),

every associator is of one of the forms

n1(n2φ)[(n1n2)φ]
−1 or n1(n1φ)

−1n−1
2 (n2φ),

and every commutator is an associator.

If φ = R(u2), then every commutator is of the form

[n(n−1θ)]θ−1,

every associator is of one of the forms

n(n−1θ) or {n(n−1θ)}θ−1 or
{

(n1θ)(n2θ)[(n1n2)
−1θ]

}

θ−1.

and every commutator is an associator.

Proof: For any n ∈ N , the left nucleus of L, nθ ∈ N , so [(nθ)−1u]n =
(nθ)−1(un) = (nθ)−1[(nθ)u] = [(nθ)−1(nθ)]u = u. Thus, by the right inverse
property, (nθ)−1u = un−1 = (n−1θ)u. Thus, (nθ)−1 = (n−1)θ. Replacing n by
nθ−1 in this identity gives the second identity of the lemma.
Let n1, n2 ∈ N . The commutator (n1, n2u) is the element c defined

by n1(n2u) = [(n2u)n1]c. Thus c is in N and (n1n2)u = [n2(n1θ)u]c =
[n2(n1θ)(cθ)]u. So we have n1n2 = n2(n1θ)(cθ) and, since N is an abelian group,

c = [n1(n1θ)
−1]θ−1 = [n1(n

−1
1 θ)]θ−1. Since (a, b)−1 = (b, a) in a Bol loop, the

commutator (n1u, n2) = (n2, n1u)
−1 = {[n2(n

−1
2 θ)]θ−1}−1 = [n−1

2 (n2θ)]θ
−1,

which is of the same form as (n1, n2u). Similarly, one can show that the commu-

tator (n1u, n2u) = n1(n1φ)
−1n−1

2 (n2φ).
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Let n, n1, n2 ∈ N and let x = nu, y = n1, z = n2. The associator (x, y, z) is
the element a satisfying (xy)z = [x(yz)]a. We have

(xy)z = [(nu)n1]n2 = [n(n1θ)(n2θ)]u

and

[x(yz)]a = [(nu)(n1n2)]a = {[n(n1n2)θ]u}a = [n(n1n2)θaθ]u,

so a is in N , n(n1θ)(n2θ) = n(n1n2)θ(aθ) and

(nu, n1, n2) = a

=
{

(n1θ)(n2θ)[(n1n2)θ]
−1

}

θ−1 =
{

(n1θ)(n2θ)[(n1n2)
−1θ]

}

θ−1.

Similarly,

(nu, n1, n2u) = (n1θ)(n2φ)[(n1n2)φ]
−1,

(nu, n1u, n2) = (n1φ)n2{[n1(n2θ)]φ}
−1,

and (nu, n1u, n2u) =
{

[(n1φ)n2]{[n1(n2φ)]
−1θ}

}

θ−1.

If θ = I, commutators of the first type become trivial, as do associators of
the first type. Associators of the second type become n1(n2φ)[(n1n2)φ]

−1 and
so do associators of the third type (with n1 and n2 interchanged). Associa-

tors of the fourth type become n1(n1φ)
−1n−1

2 (n2φ). Clearly the commutator

n1(n1φ)
−1n−1

2 (n2φ) is also an associator.

If φ = R(u2), then commutators of the second type become trivial. Commuta-
tors of the first type and associators of the first type are not changed. Associators
of the second type become n−1

1 (n1θ) and those of the third type become n2(n
−1
2 θ).

Both of these are of the form n(n−1θ). Associators of the fourth type become
{(n1n2u

2)[(n1n2u
2)−1θ]}θ−1, which is of the form [n(n−1θ)]θ−1.

Once again it is clear that every commutator {n(n−1θ)}θ−1 is also an associ-
ator. �

In much of what is to follow, it is often necessary to know whether or not a
certain loop is a group. In this regard, the next lemma is critical.

Lemma 3.2. Let L, N , u, θ and φ be as described in Section 2 and assume that
L is a Bol loop.

i. θ is a homomorphism of N if and only if (u, n1, n2) = 1 for all n1, n2
in N .

ii. φ = θR(u2) if and only if (u, n, u) = 1 for all n ∈ N .
iii. L is a group if and only if θ is a homomorphism of N , θ2 = I, and

φ = θR(u2).
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Proof: At the outset, we note that if n ∈ N , then nxy is unambiguous without
parentheses to denote order of multiplication because N ⊆ Nλ. We use this fact
without further comment below.

i. If θ is a homomorphism, then, for all n1, n2 ∈ N , u(n1n2) = (n1n2)θu =
[n1θn2θ]u = n1θ(n2θu) = n1θ(un2) = (n1θu)n2 = (un1)n2, so (u, n1, n2) = 1.
Conversely, if (u, n1, n2) = 1 for all n1, n2 ∈ N , then (n1θn2θ)u = (n1θ)(un2) =
(n1θu)n2 = (un1)n2 = u(n1n2) = (n1n2)θu, so that θ is a homomorphism.

ii. If φ = θR(u2), then, for all n ∈ N , u(nu) = nφ = nθu2 = (nθu)u = (un)u,
that is, (u, n, u) = 1. Conversely, if (u, n, u) = 1 for all n, then nφ = u(nu) =
(un)u = (nθu)u = nθR(u)2 for any n, so φ = θR(u2).

iii. Suppose L is a group. Then (u, n1, n2) = (u, n, u) = 1 for any n, n1, n2
in N , so θ is a homomorphism and φ = θR(u2) by parts i and ii. Furthermore,
for any n ∈ N , we have nu2 = u2n = u(un) = u[(nθ)u] = [u(nθ)]u = nθ2u2, so
nθ2 = n. Thus θ2 = I.
Conversely, suppose θ is a homomorphism, θ2 = I and φ = θR(u2). Let x, y

and z be three elements of L. We wish to show that (xy)z = x(yz). This is clear
if x ∈ N , so it is sufficient to consider just four cases, with x ∈ Nu and y, z in
N or Nu. For x = nu, (xy)z = [(nu)y]z = [n(uy)]z = n[(uy)z] and, similarly,
x(yz) = n[u(yz)], so (xy)z = x(yz) if and only if (uy)z = u(yz). In other words,
there is no loss of generality if we assume that n = 1. Our four cases become

Case 1: x = u, y = n1, z = n2;
Case 2: x = u, y = n1, z = n2u;
Case 3: x = u, y = n1u, z = n2;
Case 4: x = u, y = n1u, z = n2u.

In Case 1, (xy)z = (un1)n2 = (n1θu)n2

= (n1θn2θ)u = [(n1n2)θ]u = u(n1n2) = x(yz).

In Case 2, (xy)z = (un1)(n2u) = (n1θu)(n2u)

= n1θn2φ = n1θn2θR(u
2)

= (n1n2)θR(u
2) = (n1n2)φ = u(n1n2u) = x(yz).

In Case 3, (xy)z = [u(n1u)]n2 = n1φn2

= n1θR(u
2)n2 = (n1θ)u

2n2 = n1θn2u
2

= (n1θ)(n2θ
2)u2 = [n1(n2θ)]θR(u

2)

= [n1(n2θ)]φ = u[n1(n2θ)u]

= u[n1(un2)] = u[(n1u)n2] = x(yz).
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In Case 4, we make use of the fact that R(u2) and θ commute, so that φθ =
θR(u2)θ = R(u2). To see this, note that u2θ = u2 by power associativity. So, for
n ∈ N , nR(u2)θ = (nu2)θ = nθu2θ = nθu2 = nθR(u2), so R(u2)θ = θR(u2) as
claimed. Now

(xy)z = [u(n1u)](n2u) = (n1φn2)u = [(n1θu
2n2)u = [n1θ(n2u

2)]u

= [n1θ(n2R(u
2))]u = [n1θ(n2φ)θ]u = {[n1(n2φ)]θ} u

= u[n1(n2φ)] = u {n1[u(n2u)]} = u[(n1u)(n2u)] = x(yz).

In all cases, (xy)z = x(yz), so L is a group. �

Remark 3.3. A nonassociative loop with a normal nucleus of prime index cannot
be power associative [GR82] (Theorem 1.1 and subsequent remarks). In particu-
lar, a Moufang loop cannot have a left nucleus of index 2 (in a Moufang loop, the
nucleus and left nucleus coincide and this subloop is normal), so there is no hope
of adapting techniques of this paper to Moufang loops. Of more significance here,
though, is the observation that a Bol loop with left nucleus of index at most 2 is
a group if and only if it is Moufang, so part iii of Lemma 3.2 can and will be used
in the sequel to provide assurance that certain Bol loops are not Moufang.

Our next lemma gives information about the centre and nucleus of the loops
we construct in this paper.

Lemma 3.4. Suppose L is a Bol loop (but not a group) constructed as in Sec-
tion 2. Then the centrum of L is

C(L) = {n ∈ N | nθ = n},

the nucleus is

N(L) = {n ∈ N |

(nx)θ = nθ · xθ, (nx)φ = nθ · xφ, (x · nθ)φ = xφ · n for all x ∈ N}

and hence the centre of L is

Z(L) = {n ∈ N | nθ = n, (nx)θ = n · xθ, (nx)φ = n · xφ for all x ∈ N}.

Proof: In this proof, we use tacitly many expressions for commutators and
associators displayed in the proof of Lemma 3.1.
We first argue that C(L) ⊆ N and, for this, assume nu ∈ C(L) for some n ∈ N .

Then, for any x ∈ N , (nu, x) = 1 = (x−1 · xθ)θ−1. Since 1θ = 1, we have xθ = x
for all x, so θ = I. Also, 1 = (nu, xu) for all x, so n(nφ)−1x−1(xφ) = 1 for all x.
Setting x = 1 and remembering that 1φ = u2 gives n(nφ)−1u2 = 1, so nφ = nu2.
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Thus n(nu2)−1x−1(xφ) = 1 for all x, and x−1 · xφ = u2 for all x ∈ N , hence
φ = R(u2). Then, however, by part iii of Lemma 3.2, L is a group, which is not
true. Hence, C(L) ⊆ N , as claimed.
Let n ∈ C(L). Then (xu, n) = 1 for all x ∈ N implies (n−1 · nθ)θ−1 = 1 and

hence nθ = n. Conversely, if nθ = n for some n ∈ N , then (xu, n) = 1 for all
x ∈ N , so n commutes with all elements of Nu, and also with all elements of N
(because N is an abelian group), so C(L) is as stated.
Now let n ∈ N(L), the nucleus of L. (So n ∈ N because N(L) ⊆ Nλ = N .)

Then (u, n, x) = 1 for x ∈ N gives
{

nθ · xθ · (nx)−1θ
}

θ−1 = 1. Since 1θ = 1, we

get nθ · xθ · (nx)−1θ = 1 and since y−1θ = (yθ)−1 for any y ∈ N (Lemma 3.1),
(nx)θ = nθ · xθ. Also (u, n, xu) = 1, so nθ · xφ[(nx)φ]−1 = 1 and (nx)φ = nθ · xφ
for all x ∈ N . Finally, (u, xu, n) = 1 for x ∈ N gives [xφ · n][(x · nθ)φ]−1 = 1 and
(x ·nθ)φ = xφ ·n. Thus N(L) is contained in the set described in the lemma. On
the other hand, since N is abelian, it is straightforward to show that if n satisfies
the conditions specified in the set alleged to be N(L), then for any x, y ∈ N , each
of the associators (xu, n, y), (xu, n, yu), (xu, y, n), (xu, yu, n) is trivial. Thus
N(L) is indeed the specified set.
Since the centre of a loop is the intersection of the nucleus and centrum, to

find Z(L), we put nθ = n in the conditions defining the nucleus to get the result.
�

A ring is strongly right alternative if it satisfies the right Bol identity which,
in general, is stronger than the right alternative law. Kunen has shown that a
loop ring can be strongly right (but not left) alternative only in characteristic 2
[Kun98] and Goodaire and Robinson proved the existence of such rings in this
case. A (necessarily Bol) loop whose loop rings in characteristic 2 are strongly
right alternative is called an SRAR loop. Such loops are characterized as fol-
lows [GR95].
A Bol loop L is SRAR, if and only if it is not associative and, for every

x, y, z, w ∈ L, at least one of the following holds:

(3.1)

D(x, y, z, w): [(xy)z]w = x[(yz)w] and [(xw)z]y = x[(wz)y]

E(x, y, z, w): [(xy)z]w = x[(wz)y] and [(xw)z]y = x[(yz)w]

F (x, y, z, w): [(xy)z]w = [(xw)z]y and x[(yz)w] = x[(wz)y]

Our recent discovery, and the justification for this article, is this.

Theorem 3.5. Let L, N , u, θ and φ be as described in Section 2 and suppose
that L is a Bol loop. Then

(1) (u, n) = 1 for all n ∈ N if and only if θ = I.
(2) The following are equivalent:
(a) n1(n2φ) = (n1n2)φ for all n1, n2 ∈ N .
(b) φ = R(u2).
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(c) (u, nu) = 1 for all n ∈ N .
(3) If L is not associative, then, given (1) or (2), L is SRAR.

(As a result of Lemma 3.2, it is not possible to have both (1) and (2), for then
L would be a group.)

Proof: 1. The equivalence of the two assertions is a direct consequence of the
definition of θ.

2. To justify the equivalence of the assertions, suppose that n1(n2φ) = (n1n2)φ
for all n1, n2 ∈ N . In particular then, nu2 = n(1φ) = nφ, so φ = R(u2).
Conversely, if φ = R(u2), then n1(n2φ) = n1(n2u

2) = (n1n2)u
2 = (n1n2)φ for

all n1, n2 ∈ N . Furthermore, if φ = R(u2) and n ∈ N , then u(nu) = nφ =
nu2 = (nu)u, giving (u, nu) = 1. On the other hand, if (u, nu) = 1, then
nφ = u(nu) = (nu)u = nu2, so that φ = R(u2).

3. If x ∈ N , then [(xy)z]w = [x(yz)]w = x[(yz)w] and [(xw)z]y = [x(wz)]y =
x[(wz)y], so that D(x, y, z, w) holds. If x = nu with n ∈ N , then [(xy)z]w =
{[(nu)y]z}w = {[n(uy)]z}w = {n[(uy)z]}w = n{[(uy)z]w}. Similarly x[(yz)w] =
n{u[(yz)w]}, [(xw)z]y = n{[(uw)z]y} and x[(wz)y] = n{u[(wz)y]}, so that, when
attempting to verify conditions D, E or F of (3.1) with x ∈ Nu, there is no loss
of generality if we assume that x = u. This leaves eight cases:

(3.2)

Case 1: x = u, y = n1, z = n2, w = n3

Case 2: x = u, y = n1, z = n2, w = n3u

Case 3: x = u, y = n1, z = n2u, w = n3

Case 4: x = u, y = n1, z = n2u, w = n3u

Case 5: x = u, y = n1u, z = n2, w = n3

Case 6: x = u, y = n1u, z = n2, w = n3u

Case 7: x = u, y = n1u, z = n2u, w = n3

Case 8: x = u, y = n1u, z = n2u, w = n3u.

Since interchanging w and y changes [(xy)z]w to [(xw)z]y, and x[(yz)w] to
x[(wz)y], and vice versa, Case 5 is essentially the same as Case 2, and Case 7 is
essentially the same as Case 4, so we are left with six cases to consider.
We use the fact that the left nucleus is an abelian group to freely eliminate

parentheses and commute elements of N , when possible. We will also use the
multiplication laws (2.2), (2.3) and (2.4) without further comment.

In Case 1, [(xy)z]w = [(un1)n2]n3 = [(n1θu)n2]n3 = [(n1θn2θ)u]n3

= (n1θn2θn3θ)u,

x[(yz)w] = u(n1n2n3) = (n1n2n3)θu,
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[(xw)z]y = [(un3)n2]n1 = [(n3θu)n2]n1 = [(n2θn3θ)u]n1

= (n1θn2θn3θ)u,

and x[(wz)y] = u(n3n2n1) = u(n1n2n3) = (n1n2n3)θu.

Thus, [(xy)z]w = [(xw)z]y and x[(yz)w] = x[(wz)y], and so F (x, y, z, w) holds,
regardless of θ and φ.

In Case 2, [(xy)z]w = [(un1)n2](n3u)

= [(n1θu)n2](n3u) = [(n1θn2θ)u](n3u)

= n1θn2θn3φ,

x[(yz)w] = u[(n1n2)(n3u)] = u[(n1n2n3)u] = (n1n2n3)φ,

[(xw)z]y = {[u(n3u)]n2}n1 = (n3φ)n2n1 = n1n2(n3φ),

and x[(wz)y] = u{[(n3u)n2]n1} = u{[(n2θn3)u]n1}

= u[(n1θn2θn3)u] = (n1θn2θn3)φ.

If θ = I, [(xy)z]w = n1n2(n3φ) = [(xw)z]y and x[(yz)w] = (n1n2n3)φ =
x[(wz)y], giving F (x, y, z, w). On the other hand, if φ = R(u2), then n1(n2φ) =
(n1n2)φ, so [(xy)z]w = (n1θn2θ)(n3φ) = x[(wz)y] and x[(yz)w] = (n1n2n3)φ =
[(xw)z]y, giving E(x, y, z, w).

In Case 3, [(xy)z]w = [(un1)(n2u)]n3 = [(n1θu)(n2u)]n3

= (n1θ)(n2φ)n3,

x[(yz)w] = u{[n1(n2u)]n3} = u{[(n1n2)u]n3}

= u{[n1n2(n3θ)]u} = [n1n2(n3θ)]φ,

[(xw)z]y = [(un3)(n2u)]n1 = [(n3θu)(n2u)]n1

= n3θn2φn1 = n1(n2φ)(n3θ),

and x[(wz)y] = u{[n3(n2u)]n1} = u{[(n2n3)u]n1}

= u{[n2n3(n1θ)]u} = [(n1θ)n2n3]φ.

Again, if θ = I, then [(xy)z]w = n1(n2φ)n3 = [(xw)z]y and x[(yz)w] =
(n1n2n3)φ = x[(wz)y] and so F (x, y, z, w) holds. And if φ = R(u2), then
(n1n2)φ = n1(n2φ) and [(xy)z]w = [(n1θ)n2n3]φ = x[(wz)y] and x[(yz)w] =
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[n1n2(n3θ)]φ = [(xw)z]y, giving E(x, y, z, w).

In Case 4, [(xy)z]w = [(un1)(n2u)](n3u) = [(n1θu)(n2u)](n3u)

= (n1θn2φ)(n3u) = [(n1θ)(n2φ)n3]u,

x[(yz)w] = u{[n1(n2u)](n3u)} = u{[(n1n2)u](n3u)}

= u[n1n2(n3φ)] = [n1n2(n3φ)]θu,

[(xw)z]y = {[u(n3u)](n2u)}n1 = [(n3φ)(n2u)]n1

= {[n2(n3φ)]u}n1 = [(n1θ)n2(n3φ)]u,

and x[(wz)y] = u{[(n3u)(n2u)]n1} = u[n3(n2φ)n1]

= [n1(n2φ)n3]θu.

If θ = I, we find [(xy)z]w = [n1(n2φ)n3]u = x[(wz)y] and x[(yz)w] =
[n1n2(n3φ)]u = [(xw)z]y, so E(x, y, z, w) holds, while if φ = R(u2), then
n1(n2φ) = (n1n2)φ, [(xy)z]w = [(n1θ)n2n3]φu = [(xw)z]y and x[(yz)w] =
(n1n2n3)φθu = x[(wz)y], giving F (x, y, z, w).

In Case 6, [(xy)z]w = {[u(n1u)]n2}(n3u) = (n1φn2)(n3u)

= (n1φn2n3)u,

x[(yz)w] = u{[(n1u)n2](n3u)} = u[{[n1(n2θ)]u}(n3u)]

= u[n1(n2θ)(n3φ)] = [n1(n2θ)(n3φ)]θu,

[(xw)z]y = {[u(n3u)]n2}(n1u) = (n3φn2)(n1u)

= [n1n2(n3φ)]u,

and x[(wz)y] = u{[(n3u)n2](n1u)} = u[{[(n2θ)n3]u}(n1u)]

= u[(n2θ)n3(n1φ)] = [(n1φ)(n2θ)n3]θu.

If θ = I, we have [(xy)z]w = [(n1φ)n2n3]u = x[(wz)y] and x[(yz)w] =
[n1n2(n3φ)]u = [(xw)z]y, so E(x, y, z, w) holds, while if φ = R(u2), then
n1(n2φ) = (n1n2)φ, [(xy)z]w = (n1n2n3)φu = [(xw)z]y and x[(yz)w] =
[n1(n2θ)n3]φθu = x[(wz)y], so F (x, y, z, w) holds.

In Case 8, [(xy)z]w = {[u(n1u)](n2u)}(n3u) = [(n1φ)(n2u)](n3u)

= {[(n1φ)n2]u}(n3u) = (n1φ)n2(n3φ),

x[(yz)w] = u{[(n1u)(n2u)](n3u)} = u{[n1(n2φ)](n3u)}

= u{[n1(n2φ)n3]u} = [n1(n2φ)n3]φ,
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[(xw)z]y = {[u(n3u)](n2u)}(n1u) = [(n3φ)(n2u)](n1u)

= {[(n3φ)n2]u}(n1u) = (n3φ)n2(n1φ)

= (n1φ)n2(n3φ),

and x[(wz)y] = u{[(n3u)(n2u)](n1u)} = u{[n3(n2φ)](n1u)}

= u{[n1(n2φ)n3]u} = [n1(n2φ)n3]φ.

Here, we have [(xy)z]w = (n1φ)n2(n3φ) = [(xw)z]y and x[(yz)w] =
[n1(n2φ)n3]φ = x[(wz)y] regardless of θ and φ, and so F (x, y, z, w) holds. [If
φ = R(u2), then n1(n2φ) = (n1n2)φ, all four terms are equal and D(x, y, z, w)
and E(x, y, z, w) hold as well.] �

We use Theorem 3.5 to show that many of the loops described in Section 2 are
in fact SRAR. The terminology implies that such loops are Bol but not associative
and hence not Moufang. (See Remark 3.3.)

Lemma 3.6. Let L, N , u, θ, and φ be as described in Section 2. Then L is a
Bol loop if either

(i) θ = I, and

(3.3) (n21n2)φ = n21(n2φ)

and

(3.4) (n1φ)
2n2 = n21(n2φ

2)

for all n1, n2 ∈ N , or

(ii) φ = R(u2), and

(3.5) (n21n2)θ = (n1θ)
2(n2θ) (thus θ is a semiautomorphism of N),

and

(3.6) [n21(n2θ)u
2]θ = n21n2u

2

for all n1, n2 ∈ N .

In fact, if θ = I, then L is a Bol loop if and only if equations (3.3) and (3.4)
hold; and if φ = R(u2), then L is Bol if and only if equations (3.5) and (3.6) hold.

Proof: As in the proof of Theorem 3.5, if x = n ∈ N , then [(xy)z]y = [(ny)z]y =
[n(yz)]y = n[(yz)y] = x[(yz)y], so there is no loss of generality if we assume that
x /∈ N . Also as before, if x = nu, then [(xy)z]y = {[(nu)y]z}y = {[n(uy)]z}y =
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{n[(uy)z]}y = n{[(uy)z]y} and, similarly, x[(yz)y] = n{u[(yz)y]}, so, when check-
ing the Bol identity [(xy)z]y = x[(yz)y], there is no loss of generality if we assume
that x = u.

This leaves four cases:

Case 1: y = n1, z = n2;
Case 2: y = n1, z = n2u;
Case 3: y = n1u, z = n2;
Case 4: y = n1u, z = n2u.

Suppose that θ = I.

In Case 1, [(xy)z]y = [(un1)n2]n1 = [(n1u)n2]n1 = [(n1n2)u]n1

= (n21n2)u

and x[(yz)y] = u[(n1n2)n1] = u(n21n2) = (n
2
1n2)u,

so the Bol identity holds in this case.

In Case 2, [(xy)z]y = [(un1)(n2u)]n1 = [(n1u)(n2u)]n1

= [n1(n2φ)]n1 = n21(n2φ)

and x[(yz)y] = u{[n1(n2u)]n1} = u {[(n1n2)u]n1}

= u[(n21n2)u] = (n
2
1n2)φ,

so the Bol identity holds in this case if and only if n21(n2φ) = (n
2
1n2)φ, that is, if

and only if equation (3.3) holds for all n1, n2 ∈ N .

In Case 3, [(xy)z]y = {[u(n1u)]n2}(n1u) = [(n1φ)n2](n1u)

= [n1(n1φ)n2]u

and x[(yz)y] = u{[(n1u)n2](n1u)} = u{[(n1n2)u](n1u)}

= u[(n1n2)n1φ] = [n1(n1φ)n2]u,

so the Bol identity holds in this case.

In Case 4, [(xy)z]y = {[u(n1u)](n2u)}(n1u) = {[(n1φ)](n2u)}(n1u)

= {[(n1φ)n2]u}(n1u) = (n1φ)n2(n1φ)

= (n1φ)
2n2

and x[(yz)y] = u{[(n1u)(n2u)](n1u)} = u{[n1(n2φ)](n1u)}

= u{[n21(n2φ)]u} = [n
2
1(n2φ)]φ,
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so the Bol identity holds in this case if and only if (n1φ)
2n2 = [n

2
1(n2φ)]φ. But

in Case 2, we saw that (m2n)φ = m2(nφ) is necessary for L to be Bol, so, with
this assumption, the condition in Case 4 becomes (n1φ)

2n2 = n21(n2φ
2); that is,

equation (3.4). This proves the lemma in the case that θ = I.

Now we consider the other possibility, φ = R(u2). Again, we have the same
cases as above to consider.

In Case 1, x = u, y = n1 and z = n2, so

[(xy)z]y = [(un1)n2]n1

= [(n1θu)n2]n1 = {[(n1θ)(n2θ)]u}n1 = [(n1θ)
2(n2θ)]u

and

x[(yz)y] = u[(n1n2)n1] = u(n21n2) = (n
2
1n2)θu.

Thus, the Bol identity holds in this case if and only if (n21n2)θ = (n1θ)
2(n2θ) for all

n1, n2 ∈ N ; that is, if and only if equation (3.5) holds. Since N is abelian, this is
equivalent to saying that θ is a semiendomorphism and hence a semiautomorphism
of N .

In Case 2, x = u, y = n1 and z = n2u, so

[(xy)z]y = [(un1)(n2u)]n1 = [(n1θu)(n2u)]n1 = [(n1θ)(n2φ)]n1

= n1(n1θ)(n2φ) = n1(n1θ)n2u
2

and

x[(yz)y] = u{[n1(n2u)]n1} = u{[(n1n2)u]n1} = u{[(n1n2)n1θ]u}

= [n1(n1θ)n2]φ = n1(n1θ)n2u
2.

In this case, the Bol identity holds regardless of θ.

In Case 3, x = u, y = n1u and z = n2, so

[(xy)z]y = {[u(n1u)]n2}(n1u) = [(n1φ)n2](n1u) = [n1(n1φ)n2]u

= (n21n2u
2)u

and

x[(yz)y] = u{[(n1u)n2](n1u)} = u[{[n1(n2θ)]u}(n1u)] = u[n1(n1φ)(n2θ)]

= [n1(n1φ)(n2θ)]θu = [n
2
1(n2θ)u

2]θu,
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and the Bol identity holds if and only if [n21(n2θ)u
2]θ = n21n2u

2; that is, if and
only if equation (3.6) holds for all n1, n2 ∈ N .

Finally, in Case 4, x = u, y = n1u and z = n2u, so

[(xy)z]y = {[u(n1u)](n2u)}(n1u) = [(n1φ)(n2u)](n1u)

= {[(n1φ)n2]u}(n1u)] = (n1φ)
2n2 = n21n2u

4

and

x[(yz)y] = u{[(n1u)(n2u)](n1u)} = u{[n1(n2φ)](n1u)}

= u[n21(n2φ)u] = [n
2
1(n2φ)]φ = n21n2u

4.

Here, the right Bol identity holds regardless of θ. This completes the proof. �

Remarks 3.7. Let L be a loop described by Lemma 3.6. Suppose condition (i) of
that lemma is the case.

(1) Setting n2 = 1 in equation (3.3), we get (n
2
1φ) = n21(1φ) = n21u

2, for all

n1 ∈ N , so the restriction of φ to the set S = {x2 | x ∈ N} is always
R(u2).

(2) Setting n1 = n2 = n in (3.4) gives n(nφ)2 = n2(nφ2), or, since N is
a group, (nφ)2 = n(nφ2). Multiplying both sides of (3.4) by n2 now
gives (n1φ)

2n22 = n21n2(n2φ
2) = n21(n2φ)

2. Thus, [n−1(nφ)]2 = c is an

invariant. In particular, since 1φ = u2, c = [1−1(1φ)]2 = u4. That is,
[n−1(nφ)]2 = u4 for all n ∈ N .

Now suppose condition (ii) of Lemma 3.6 is the case.

(3) Setting n2 = 1 in equation (3.5), we get n
2
1θ = (n1θ)

2. (This is a property
of any semiendomorphism.)

(4) Setting n1 = n2 = 1 in equation (3.6), we get u2θ = u2. On the other
hand, if we just set n2 = 1, we get (n

2
1u
2)θ = n21u

2. But then, using

equation (3.5), we get n21u
2 = (n21u

2)θ = (n1θ)
2(u2θ) = (n1θ)

2u2, so that

(n1θ)
2 = n21 for any n1 ∈ N .

Together with property (3) above, we see that θ fixes the elements of
S = {x2 | x ∈ N}. Also, if we apply equation (3.5) to equation (3.6), we
get n21n2u

2 = [n21(n2θ)u
2]θ = (n1θ)

2[(n2θ)u
2]θ = n21[(n2θ)u

2]θ, so

[(n2θ)u
2]θ = n2u

2 for any n2 ∈ N .

(5) If u2 = n2 for some n ∈ N , then n2u
2 = [(n2θ)u

2]θ = [n2(n2θ)]θ =
(nθ)2n2θ

2 (by (3.5)) = n2n2θ
2 = u2n2θ

2, so n2θ
2 = n2. Thus θ2 = I, the

identity map.
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4. Examples

In this section, we give examples of SRAR loops with a variety of properties.
Of significance is that a number of the loops we exhibit have more than a single
nonidentity commutator/associator. Our general approach is to start with an
abelian group N and to construct a loop L = N ∪ Nu via maps θ and φ as in
Section 2, then to use Lemmas 3.6 and 3.2 to be assured the loop is Bol but not
Moufang, and finally conclude that our loop is SRAR by virtue of Theorem 3.5.
In our first three examples, we assume that θ = I, so that un = nu for

all n ∈ N . In the next four, we assume that φ = R(u2). Consequently, by
Theorem 3.5, each example produces an SRAR loop provided it is Bol, but not
associative, properties we check in each case.

Example 4.1. Let N be an elementary abelian 2-group of order at least 8, let
θ = I and let φ be any nonidentity permutation on N satisfying φ2 = I which
is not a right multiplication map. Since the square of any element of N is 1,
equation (3.3) reduces to the tautology n2φ = n2φ and (3.4) reduces to n2 = n2.
By Lemma 3.6, L is a Bol loop. That L is not Moufang follows from part iii of
Lemma 3.2 and the subsequent remark, so L is SRAR by Theorem 3.5. In many
cases, we have |L′| > 2.
For example, suppose 〈a〉 = C2, 〈b〉 = C2 and 〈c〉 = C2 are three factors of N

and φ interchanges 1 and a, and b and c, and fixes abc. We have

n1(n1φ)
−1n2(n2φ)

−1 = n1(n1φ)n2(n2φ) =











1 if n1 = 1, n2 = a

a if n1 = 1, n2 = abc

abc if n1 = a, n2 = b.

Thus, by Lemma 3.1, |L′| > 2.
In this case, (nu)2 = (nu)(nu) = n(nφ), so that we can easily determine the

order of each element of the loops constructed (thereby making it easy to see that
certain loops are not isomorphic). Taking N = 〈a〉 × 〈b〉 × 〈c〉 = C2 × C2 × C2,
we have many possible permutations of order 2, each giving rise to a Bol loop of
order 16 that is SRAR. Here are three with |L′| > 2.

φ u2 No. of els of
1 a b c ab ac bc abc order 2 order 4
a 1 c b ab ac bc abc a 11 4
a 1 c b ac ab bc abc a 9 6
a 1 c b ac ab abc bc 1 7 8

Example 4.2. Let N be an abelian group of exponent 4 (but not of exponent 2).
Let θ = I and define φ:N → N by nφ = n−1. Noting that φ2 = I and n−2 = n2

for any n ∈ N , we have, for any n1, n2 ∈ N , (n21n2)φ = n−2
1 n−1

2 = n21(n2φ),
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so (3.3) holds, and (n1φ)
2n2 = n−2

1 n2 = n21(n2φ
2), so equation (3.4) holds too.

Thus, L is a Bol loop. Since u2 = 1φ = 1, φ 6= R(u2) and L is not Moufang by
Lemma 3.2 and Remark 3.3, thus L is SRAR by Theorem 3.5.
Since

n1(n1φ)
−1n2(n2φ)

−1 = n21n
2
2 = (n1n2)

2,

any square in N is in L′. Thus, for example, with N = 〈a〉 × 〈b〉 = C4 × C4, we
get a nonassociative SRAR Bol loop of order 32 with |L′| ≥ 4.
The family of loops described here actually coincides with a class of non-

Moufang Bol loops containing an abelian group as a subloop of index 2 dis-
cussed by P. Vojtěchovský in [Voj04] and denoted G(θxy , θxy, θxy, θx−1y) in that

paper. (We caution the reader, however, that our loops are the opposites of
Vojtěchovský’s, whose Bol loops are left Bol.)

Example 4.3. Let N be an abelian group with an element a of order 4. Let
e = a2 and S = {x2 | x ∈ N} be the set of squares in N . Note that e ∈ S. Let
θ = I and define φ by nφ = n if n ∈ S and nφ = en otherwise. Then u2 = 1φ = 1.
Now the product of two elements in S is in S while the product of an element
in S and an element not in S is not in S. Thus (n21n2)φ = n21n2 = n21(n2φ)

if n2 ∈ S, and (n21n2)φ = e(n21n2) = n21(en2) = n21(n2φ) if n2 /∈ S. Thus,

equation (3.3) holds. Also, for any n ∈ N , n2 = (en)2 = (nφ)2 and nφ2 = n, so
that equation (3.4) holds. Thus, L is a Bol loop and Lemma 3.1 gives L′ = {1, e}.
To see that L is SRAR, it suffices to show that L is not associative (Remark 3.3),

and this follows from Lemma 3.2 because φ is not a right multiplication map.

In each of the examples above, if we replace N by N × A, where A is any
abelian group, and extend θ and φ so that θ is still the identity map on N × A
and so that (na)φ = (nφ)a for a ∈ A, then we get a loop L which is just the
direct product of the loop described above with the abelian group A. It is not
hard to show directly that equations (3.3) and (3.4) still hold, so the extended
loop is still Bol. Since φ is not a right multiplication map on N , it is not a right
multiplication map on N ×A, so L is not associative by Lemma 3.2, hence SRAR
by Theorem 3.5.

Example 4.4. Let N be an abelian group of exponent 4 (but not of exponent 2),
let u2 be any element of order 2 in N , let φ = R(u2) and let nθ = n−1 for all
n ∈ N . Then

(n21n2)θ = n−2
1 n−1

2 = (n
−1
1 )
2n−1
2 = (n1θ)

2(n2θ),

so equation (3.5) holds. Also

[n21(n2θ)u
2]θ = [n21n

−1
2 u2]−1 = n−2

1 n2u
−2 = n21n2u

2,

so equation (3.6) holds as well and L is a Bol loop. Since θ2 = I, θ is a homo-
morphism, and R(u2) = φ 6= θR(u2), L is not Moufang by part iii of Lemma 3.2



Bol loops with a large left nucleus 189

and Remark 3.3, so L is SRAR by Theorem 3.5. Lemma 3.1 shows that the loops
here often have |L′| > 2 because n(nθ)−1 = n2, so S = {x2 | x ∈ N} ⊆ L′.
The family of loops described in this example is another of those discus-

sed by P. Vojtěchovský in [Voj04], specifically the class Vojtěchovský labels
G(θxy , θxy, θx−1y, θxy). (Again, our loops are the opposite of Vojtěchovský’s.)

Example 4.5. Let N , S and e be as in Example 4.3. Define θ by nθ = n if n ∈ S
and nθ = en otherwise. Choose u2 ∈ S and let φ = R(u2). Note that, regardless
of whether or not n is in S, n2θ = n2 = (nθ)2. Also, nθ ∈ S if and only if n ∈ S.
Since the product of two elements of S is in S while the product of an element in

S and an element not in S is not in S, (n21n2)θ = n21n2 = (n1θ)
2n2 = (n1θ)

2(n2θ),

if n2 ∈ S; and (n21n2)θ = en21n2 = e(n1θ)
2n2 = (n1θ)

2(n2θ), if n2 /∈ S. Thus,

in either case, (3.5) holds. Also, it is easy to see that θ2 = I. Therefore, since
u2 ∈ S, [n21(n2θ)u

2]θ = n21n2u
2 if n2 ∈ S; and [n21(n2θ)u

2]θ = en21(n2θ)u
2 =

n21e(n2θ)u
2 = n21(n2θ

2)u2 = n21n2u
2 if n2 /∈ S. Thus, again, in either case, (3.6)

holds and so L is a Bol loop.
To see that L is SRAR, we must see that it is not Moufang, which, by Re-

mark 3.3, is equivalent to seeing that it is not a group. For c /∈ S, (uc)u =
(cθu)u = ecu2, while u(cu) = cφ = cu2, so (u, c, u) = e 6= 1. In this case, we also
have L′ = {1, e} of order 2.

Example 4.6. Let N = 〈a〉 be a cyclic group of order 4m, let u2 = a2k for some
integer k, let φ = R(u2), and define θ by nθ = n2m+1. Then

(n21n2)θ = (n
2
1n2)

2m+1 = n4m+21 n2m+12 = (n2m+11 )2n2m+12 = (n1θ)
2(n2θ),

so equation (3.5) holds. Also,

[n21(n2θ)u
2]θ = [n21n

2m+1
2 a2k]θ = n4m+21 n

(2m+1)2

2 a(4m+2)k

= n21n
4m2+4m+1
2 a2k = n21n2u

2,

so equation (3.6) holds too. Thus, L is a Bol loop. Nonassociativity follows as
in Example 4.4. Thus L is SRAR. Here too |L′| = 2 because Lemma 3.1 shows
L′ = {1, a2m}.

Again, in Examples 4.4, 4.5 and 4.6, we can replace N by N × A, where A is
any abelian group, and extend θ and φ so that (na)θ = (nθ)a and (na)φ = (nφ)a
for a ∈ A. As before, we get a loop that is just the direct product of the loop
described in the appropriate example with the abelian group A and it can be
verified that the new loop remains SRAR.

Our final example is motivated by a question of a referee who wondered if the
construction of a Bol loop with prescribed left nucleus that we have described in
this paper always leads to a nilpotent loop. Such is not the case.
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Example 4.7. Let N be an elementary abelian 2-group of order at least 8 and
suppose that 〈a〉, 〈b〉 and 〈v〉 are three factors of N . Let L be the loop constructed
as in Section 2 (where u2 = v). Define α : N → N as the map that interchanges 1
and v, interchanges a and b, and fixes all other elements of N . Let φ = R(v) and
θ = αφ. Equation (3.5) is trivially satisfied because N has exponent 2, while (3.6)
reduces to [(nθ)v]θ = nv, which is θφθ = φ. This holds because both θφ = α and φ
have order 2. Thus L is a Bol loop by Lemma 3.6. Now aθ = aαφ = bφ = bv. Since
bv /∈ {1, a, b, v}, bv is fixed by α, so (aθ)θ = (bv)θ = (bv)αφ = bv2 = b. So θ2 6= I
and L is not a group by Lemma 3.2. Hence L is SRAR by Theorem 3.5. We claim
that the centre of L is trivial. For this, with reference to Lemma 3.4, it is sufficient
to show that if 1 6= n ∈ N , then there exists some x ∈ N with (nx)θ 6= n · xθ. If
n 6= v then x = n satisfies this condition. To see this, (nx)θ = n2θ = 1θ = 1 while
n · xθ = 1 if and only if nθ = n. But if n = nθ = nαv, then nα = nv. However,
for n /∈ {1, a, b, v}, nα = n 6= nv while aα = b 6= av and bα = a 6= bv, so the only
possible central elements are 1 and v. In the case that n = v, let x = a and observe
that (nx)θ = (av)αφ = (av)φ = a whereas n · xθ = v(aαφ) = v(bφ) = v(bv) = b.
As claimed Z(L) = {1}. Finally, we remark that the loop L constructed here
cannot have |L′| = 2 since a unique nonidentity commutator/associator is always
central.

While the thrust of this paper has been to show that an index 2 left nucleus is
often sufficient to guarantee an SRAR loop with more than a single nonidentity
commutator/associator, several of the above examples show that |L′| = 2 is also
possible. At present, to the best of our knowledge, all known SRAR loops either
have |L′| = 2 or satisfy the conditions of Theorem 3.5.

5. Motivation

The reader may wonder why throughout Section 3 we assumed thatN is abelian
and how the conditions θ = I and φ = R(u2) arose. The purpose of this section
is to provide answers.
Recall — see (3.1) — that a Bol loop L is SRAR if and only if it is not

associative and for every x, y, z, w ∈ L, at least one of the conditions D(x, y, z, w),
E(x, y, z, w), F (x, y, z, w) must hold. When L has a left nucleus N of index 2,
an investigation of these properties leads naturally to the consideration of the
eight cases enumerated in (3.2). Our proof of part (3) of Theorem 3.5 showed
that under certain conditions, a loop L is SRAR if and only if D, E and F hold
uniformly in the sense that, if a condition holds in a certain case for some n1, n2,
n3, then it holds in that case for all n1, n2, n3.
It is this assumption of uniformity that forces the hypotheses in Theorem 3.5,

as we now show.

Theorem 5.1. Suppose L is a nonassociative Bol loop with left nucleus N of
index 2. Suppose that for each n1, n2, n3 ∈ N and each of the eight cases listed
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in (3.2), one of the conditions D, E, F holds uniformly. Then N is abelian and
either θ = I or φ = R(u2).

Proof: Setting w = 1 and x = u in each of D(x, y, z, w), E(x, y, z, w),
F (x, y, z, w), we obtain three additional conditions.

• D′(u, y, z): (uy)z = u(yz) and (uz)y = u(zy),
• E′(u, y, z): (uy)z = u(zy) and (uz)y = u(yz),
• F ′(u, y, z): (uy)z = (uz)y and u(yz) = u(zy).

Consider the four cases

(5.1)

Case 1: y = n1 and z = n2;

Case 2: y = n1 and z = n2u;

Case 3: y = n1u and z = n2;

Case 4: y = n1u and z = n2u.

The assumption of uniformity on D, E, F , implies uniformity of D′, E′, F ′

with respect to the four cases listed. That is, if one of D′, E′, F ′ holds in a certain
case for some n1, n2, then it holds in that case for all n1, n2.
Throughout the rest of this proof, we make use, without further mention, of

the fact that θ and φ are bijections.

In Case 1, we have (xy)z = [(n1θ)(n2θ)]u, x(yz) = [(n1n2)θ]u, (xz)y =
[(n2θ)(n1θ)]u, and x(zy) = [(n2n1)θ]u. Thus, D′ holds uniformly if and only
if [(n1θ)(n2θ)]u = [(n1n2)θ]u and [(n2θ)(n1θ)]u = [(n2n1)θ]u for all n1 and n2,
that is, if and only if θ is a homomorphism.
Similarly, E′ holds uniformly if and only if [(n1θ)(n2θ)]u = [(n2n1)θ]u and

[(n2θ)(n1θ)]u = [(n1n2)θ]u for all n1 and n2, that is, if and only if θ is an
antihomomorphism.
Also, F ′ holds uniformly if and only if [(n1θ)(n2θ)]u = [(n2θ)(n1θ)]u and

[(n1n2)θ]u = [(n2n1)θ]u for all n1 and n2, i.e., if and only if N is abelian.

In Case 2, (xy)z = (n1θ)(n2φ), x(yz) = (n1n2)φ, (xz)y = (n2φ)n1, and
x(zy) = [n2(n1θ)]φ. Thus D

′ holds uniformly if and only if (n1θ)(n2φ) = (n1n2)φ
and (n2φ)n1 = [n2(n1θ)]φ for all n1 and n2. Taking n2 = 1 and n1 = n in
the first of these equations, we get (nθ)u2 = nφ, so that φ = θR(u2). But
then, (n1θ)(n2φ) = (n1θ)(n2θ)u

2, and (n1n2)φ = (n1n2)θu
2, so θ is a homomor-

phism. Substituting φ = θR(u2) into the second equation, we get (n2θ)u
2n1 =

[n2(n1θ)]θu
2 = (n2θ)(n1θ

2)u2, so u2n1 = (n1θ
2)u2, that is, L(u2) = θ2R(u2),

where L(u2) denotes left multiplication by u2.
Conversely, if θ is a homomorphism, then φ = θR(u2) and L(u2) = θ2R(u2),

so (n1θ)(n2φ) = (n1θ)[(n2θ)u
2] = (n1n2)θu

2 = (n1n2)θR(u
2) = (n1n2)φ, and

(n2φ)n1 = (n2θ)u
2n1 = (n2θ)(n1L(u

2)) = (n2θ)(n1θ)θu
2 = [n2(n1θ)]θR(u

2) =
[n2(n1θ)]φ.



192 O.Chein, E.G.Goodaire

Thus, in Case 2, D′ holds uniformly if and only if θ is a homomorphism,
φ = θR(u2), and L(u2) = θ2R(u2).

Similarly, E′ holds uniformly in Case 2 if and only if (n1θ)(n2φ) = [n2(n1θ)]φ
and (n2φ)n1 = (n1n2)φ for all n1 and n2. Taking n2 = 1 and n1 = n in the
second equation, we get u2n = nφ, so that φ = L(u2). But then, the second
equation becomes u2n2n1 = u2n1n2, so that N must be abelian. This implies
that φ = L(u2) = R(u2).
Conversely, if N is abelian and φ = L(u2), then (n1θ)(n2φ) = (n1θ)u

2n2 =
u2n2(n1θ) = [n2(n1θ)]φ, and (n2φ)n1 = u2n2n1 = u2n1n2 = (n1n2)φ.
Thus, in Case 2, E′ holds uniformly if and only if N is abelian and φ = R(u2).

Finally, in Case 2, F ′ holds uniformly if and only if (n1θ)(n2φ) = (n2φ)n1 and
(n1n2)φ = [n2(n1θ)]φ for all n1 and n2. Taking n2 = u−2 and n1 = n, the first
equation becomes nθ = n, so that θ is the identity map. But then, the second
equation becomes (n1n2)φ = [n2n1]φ, so N is abelian.
Conversely, if N is abelian and θ is the identity map, then (n1θ)(n2φ) =

(n2φ)n1 and (n1n2)φ = (n2n1)φ = [n2(n1θ)]φ.
Thus, in Case 2, F ′ holds uniformly if and only if N is abelian and θ is the

identity map. Note that if either E′ or F ′ holds uniformly in this case, then N
must be abelian, and either θ = I or φ = R(u2).

Case 3 is essentially the same as Case 2. If we simply interchange y and z in
Case 3, we get Case 2. But interchanging y and z in the equations for D′, E′

and F ′ does not change these equations, so the same conditions apply to Case 3
that applied to Case 2. That is, in Case 3, D′ holds uniformly if and only if θ is
a homomorphism, φ = θR(u2) and L(u2) = θ2R(u2); E′ holds uniformly if and
only if N is abelian and φ = R(u2); and F ′ holds uniformly if and only if N is
abelian and θ is the identity map.
Once again, note that if either E′ or F ′ holds uniformly in this case, then N

must be abelian, and either θ = I or φ = R(u2).

Finally, in Case 4, (xy)z = [(n1φ)n2]u, x(yz) = [n1(n2φ)]θu, (xz)y =
[(n2φ)n1]u and x(zy) = [n2(n1φ)]θu.
Thus D′ holds uniformly if and only if (n1φ)n2 = [n1(n2φ)]θ and (n2φ)n1 =

[n2(n1φ)]θ for all n1 and n2. Taking n2 = 1 and n1 = n in the first equation,
we get nφ = (nu2)θ, so that φ = R(u2)θ. Taking n1 = u−2 and n2 = n in the
second equation, we get (nφ)u−2 = nθ, so that nφ = (nθ)u2, and so φ = θR(u2).
Combining these results, θ andR(u2) commute. Also, θφ = θR(u2)θ = R(u2)θθ =
φθ, so that φ and θ commute.
Next, taking n1 = 1 and n2 = n in the first equation, we get u2n = nφθ, so that

L(u2) = φθ = R(u2)θ2 = θ2R(u2). Applying these results to the second equation,
we see that (n2φ)n1 = (n2θ)u

2n1 = (n2θ)[n1L(u
2)] = (n2θ)[(n1θ)θ]u

2, while, on
the other hand, [n2(n1φ)]θ = [n2(n1θ)u

2]θ = [n2(n1θ)]u
2θ = [n2(n1θ)]θu

2, so
that (n2θ)([(n1θ)]θ) = [n2(n1θ)]θ, all showing that θ is a homomorphism.
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Conversely, suppose that θ is a homomorphism, that φ = θR(u2) = R(u2)θ,
and that L(u2) = θ2R(u2). We have (n1φ)n2 = (n1θ)u

2n2 = (n1θ)[(n2θ)θ]u
2 =

[n1(n2θ)]θu
2 = [n1(n2θ)]u

2θ = [n1(n2θ)u
2]θ = [n1(n2φ)]θ, and, similarly,

(n2φ)n1 = (n2θ)u
2n1 = (n2θ)[(n1θ)θ]u

2 = [n2(n1θ)]θu
2 = [n2(n1θ)]u

2θ =
[n2(n1θ)u

2]θ = [n2(n1φ)]θ.

Thus, in Case 4, D′ holds uniformly if and only if θ is a homomorphism,
φ = θR(u2) = R(u2)θ and L(u2) = θ2R(u2).

Similarly, in Case 4, E′ holds uniformly if and only if (n1φ)n2 = [n2(n1φ)]θ and
[n1(n2φ)]θ = (n2φ)n1 for all n1 and n2. Taking n2 = 1 in the first equation, we see
that n1φ = (n1φ)θ, so that θ is the identity map. But then (n1φ)n2 = n2(n1φ),
so that N is abelian.

Conversely, ifN is abelian and θ is the identity map, then (n1φ)n2 = n2(n1φ) =
[n2(n1φ)]θ, and [n1(n2φ)]θ = n1(n2φ) = (n2φ)n1. Thus, in Case 4, E′ holds
uniformly if and only if N is abelian and θ is the identity map.

Finally, F ′ holds uniformly in Case 4 if and only if (n1φ)n2 = (n2φ)n1 and
[n1(n2φ)]θ = [n2(n1φ)]θ for all n1 and n2. Canceling θ in the second equation and
then setting n1 = 1 and n2 = n, we get nφ = nu2, so that φ = R(u2). Next, taking
n1 = 1 and n2 = n in the first equation, u2n = nu2, so that φ = R(u2) = L(u2).
But then, (n1φ)n2 = n1u

2n2 = n1n2u
2 and (n2φ)n1 = n2u

2n1 = n2n1u
2, so N

is abelian.

Conversely, if N is abelian and φ = R(u2) = L(u2), then (n1φ)n2 = n1u
2n2 =

n1n2u
2 = n2n1u

2 = n2u
2n1 = (n2φ)n1, and n1(n2φ) = n1n2u

2 = n2n1u
2 =

n2(n1φ) so, applying θ to both sides, [n1(n2φ)]θ = [n2(n1φ)]θ.

Thus, F ′ holds uniformly in Case 4 if and only if N is abelian and φ = R(u2) =
L(u2). Again note that if either E′ or F ′ holds uniformly in this case, then N
must be abelian, and either θ = I or φ = R(u2).

Suppose that N is not abelian. Then D′ must hold uniformly in Cases 2, 3
and 4, and either D′ or E′ must hold uniformly in Case 1. If D′ holds uniformly
in Case 1, then, since it also holds in Cases 2, 3 and 4, it is easy to see that
(nu, y, z) = 1 for all y, z ∈ L and all n ∈ N . Since (n, y, z) = 1 for all n ∈ N
and all y, z ∈ L, we obtain (x, y, z) = 1 for all x, y, z ∈ L. Thus L is a group,
contrary to assumption. Thus, we cannot have D′ holding uniformly in Case 1,
so E′ must hold uniformly in Case 1. Thus θ is an antihomomorphism. But θ is
also a homomorphism (since D′ holds uniformly in Case 2). We conclude that N
must be abelian.

Now suppose that θ 6= I and φ 6= R(u2). Then neither E′ nor F ′ can hold
uniformly in Cases 2, 3 or 4. Thus, in these three cases, D′ must hold uniformly,
so θ is a homomorphism, φ = θR(u2), and L(u2) = θφ = θ2R(u2). Also L(u2) =
R(u2) since N is abelian, so θ2 = I. We consider associators of the form (u, x, y).
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First,

(un1)n2 = [(n1θ)u]n2 = (n1θ)(un2) = (n1θ)[(n2θ)u]

= [(n1θ)(n2θ)]u = [(n1n2)θ]u = u(n1n2),

so (u, n1, n2) = 1. Similarly,

(un1)(n2u) = [(n1θ)u](n2u) = (n1θ)[u(n2u)] = (n1θ)(n2φ)

= (n1θ)(n2θ)u
2 = (n1n2)θu

2 = (n1n2)φ = u[(n1n2)u]

= u[n1(n2u)],

so (u, n1, n2u) = 1. Continuing,

[u(n1u)]n2 = (n1φ)n2 = (n1θ)u
2n2 = (n1θ)n2u

2 = [n1(n2θ)]θu
2

= [n1(n2θ)]φ = u{n1[(n2θ)u]} = u[n1(un2)] = u[(n1u)n2],

so (u, n1u, n2) = 1. Finally, since θ2 = I and u(nθ) = nθ2u = nu,

[u(n1u)](n2u) = (n1φ)(n2u) = [(n1φ)n2]u = [(n1θ)u
2n2]u

= [(n1θ)n2u
2]u = u{[(n1θ)n2u

2]θ} = u[n1(n2θ)u
2]

= u[n1(n2φ)] = u{n1[u(n2u)]} = u[(n1u)(n2u)],

giving (u, n1u, n2u) = 1. All this shows that u is in the left nucleus of L, contrary
to assumption. We conclude that either θ = I or φ = R(u2) and the proof is
complete. �

Theorem 5.1 still leaves open the question as to whether one of the conditions
D, E, F must hold uniformly in each of the cases (3.2) in any SRAR loop (with
index 2 left nucleus). The answer is no.

For example, the Bol loop L defined by the multiplication table in Figure 1
(this is the loop Moorhouse labels 16.1.2.29 [Moo]) is an SRAR loop because
|L′| = 2. However, in at least one of the four cases (5.1), none of D′, E′, F ′ holds
uniformly.3 Among the 2033 non-Moufang Bol loops of order 16, there are only a
few in which this occurs. In these loops, the only reason we know that L is SRAR
is that |L′| = 2.

3This loop has a left nucleus of order 8, so uniformity in Case 2 would imply 64 triples
satisfyingD′ or 64 triples satisfying E′ or 64 triples satisfying F ′, whereas the respective numbers
are 40, 16 and 40.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 10 1 11 12 13 15 16 14 3 4 5 9 6 8 7
3 1 10 12 11 14 16 15 13 2 5 4 6 9 7 8
4 12 11 10 1 15 14 13 16 5 3 2 8 7 6 9
5 11 12 1 10 16 13 14 15 4 2 3 7 8 9 6
6 14 13 16 15 10 11 12 1 9 8 7 2 3 5 4
7 16 15 13 14 12 10 1 11 8 6 9 4 5 2 3
8 15 16 14 13 11 1 10 12 7 9 6 5 4 3 2
9 13 14 15 16 1 12 11 10 6 7 8 3 2 4 5
10 3 2 5 4 9 8 7 6 1 12 11 14 13 16 15
11 4 5 3 2 7 9 6 8 12 10 1 15 16 14 13
12 5 4 2 3 8 6 9 7 11 1 10 16 15 13 14
13 6 9 8 7 3 4 5 2 14 16 15 10 1 11 12
14 9 6 7 8 2 5 4 3 13 15 16 1 10 12 11
15 7 8 6 9 5 3 2 4 16 13 14 12 11 10 1
16 8 7 9 6 4 2 3 5 15 14 13 11 12 1 10

Figure 1
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References

[CG86] Chein O., Goodaire E.G., Loops whose loop rings are alternative, Comm. Algebra 14
(1986), no. 2, 293–310.

[CG90] Chein O., Goodaire E.G., Code loops are RA2 loops, J. Algebra 130 (1990), no. 2,
385–387.

[GJM96] Goodaire E.G., Jespers E., Polcino Milies C., Alternative Loop Rings, North-Holland
Math. Studies, vol. 184, Elsevier, Amsterdam, 1996.

[Goo83] Goodaire E.G., Alternative loop rings, Publ. Math. Debrecen 30 (1983), 31–38.

[GR82] Goodaire E.G., Robinson D.A., Loops which are cyclic extensions of their nuclei,
Compositio Math. 45 (1982), 341–356.

[GR95] Goodaire E.G., Robinson D.A., A class of loops with right alternative loop rings,
Comm. Algebra 22 (1995), no. 14, 5623–5634.

[Kun98] Kunen K., Alternative loop rings, Comm. Algebra 26 (1998), 557–564.

[Moo] Moorhouse G.E., http://everest.uwyo.edu/∼moorhous/pub/bol.html.

[Pai55] Paige L.J., A theorem on commutative power associative loop algebras, Proc. Amer.
Math. Soc. 6 (1955), 279–280.

[Pfl90] Pflugfelder H.O., Quasigroups and Loops: Introduction, Heldermann Verlag, Berlin,
1990.



196 O.Chein, E.G.Goodaire
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