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F-quasigroups and generalized modules

Tomáš Kepka∗, Michael K. Kinyon, J.D. Phillips

Abstract. In Kepka T., Kinyon M.K., Phillips J.D., The structure of F-quasigroups,

J. Algebra 317 (2007), 435–461, we showed that every F-quasigroup is linear over a spe-
cial kind of Moufang loop called an NK-loop. Here we extend this relationship by showing
an equivalence between the class of (pointed) F-quasigroups and the class correspond-
ing to a certain notion of generalized module (with noncommutative, nonassociative
addition) for an associative ring.
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1. Introduction

A quasigroup (Q, ·) is a set Q with a binary operation · : Q×Q→ Q, denoted
by juxtaposition, such that for each a, b ∈ Q, the equations ax = b and ya = b
have unique solutions x, y ∈ Q. In a quasigroup (Q, ·), there exist transformations
α, β : Q → Q such that xα(x) = x = β(x)x for all x ∈ Q. Now (Q, ·) is called an
F-quasigroup if it satisfies the equations

x · yz = y · α(x)z and zy · x = zβ(x) · yx

for all x, y, z ∈ Q.
If (Q, ·) is a quasigroup, we setM(Q) = {a ∈ Q : xa ·yx = xy ·ax, ∀x, y ∈ Q}.

If (Q, ·) is an F-quasigroup, then M(Q) is a normal subquasigroup of Q and
Q/M(Q) is a group [3, Lemma 7.5].
We denote by Fp the category of pointed F-quasigroups. That is, Fp consists

of ordered pairs (Q, a), where Q is an F-quasigroup and a ∈ Q. We put Fm =
{(Q, a) ∈ Fp : a ∈M(Q)}.
A quasigroup with a neutral element is called a loop. Throughout this paper, we

adopt an additive notation convention (Q,+) (with neutral 0) for loops, although
we do not assume that + is commutative. The nucleus of a loop (Q,+) is the set

N(Q,+) = {a ∈ Q :











(a+ x) + y = a+ (x+ y)

(x+ a) + y = x+ (a+ y)

(x+ y) + a = x+ (y + a)











, ∀x, y ∈ Q}.
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The Moufang center is the set

K(Q,+) = {a ∈ Q : (a+ a) + (x + y) = (a+ x) + (a+ y), ∀x, y ∈ Q}.

The intersection of the nucleus and Moufang center of a loop is the center
Z(Q,+) = N(Q,+)∩K(Q,+). Each of the nucleus, the Moufang center, and the
center is a subloop, and the center is, in fact, a normal subloop [1], [5].

A (Q,+) will be called an NK-loop if for each x ∈ Q, there exist u ∈ N(Q,+)
and v ∈ K(Q,+) such that x = u + v (= v + u). In other words, Q can be
decomposed as a central product Q = N(Q,+) K(Q,+). It was shown in [3]
that every NK-loop is a Moufang A-loop. A Moufang loop is a loop satisfying
the identity ((x+ y) + x) + z = x+ (y + (x+ z)) or any of its known equivalents
[1], [5]. Every Moufang loop is diassociative, that is, the subloop generated by
any given pair of elements is a group [4]. For a loop (Q,+), the inner mapping
group is the stabilizer of 0 in the group of permutations of Q generated by all left
and right translations Lxy = x + y = Ryx. An A-loop is a loop such that every
inner mapping is an automorphism [2].

In any Moufang A-loop (Q,+), such as an NK-loop, the nucleus N(Q,+) is
normal (in fact, this is true in any Moufang loop), and Q/N(Q,+) is a com-
mutative Moufang loop of exponent 3. In particular, for each x ∈ Q, 3x ∈
N(Q,+), where 3x = x + x + x. The Moufang center K(Q,+) is also nor-
mal in Q (but this is not necessarily the case in arbitrary Moufang loops), and
Q/K(Q,+) is a group [3, Lemma 4.3]. In an NK-loop (Q,+), we also have
Z(Q,+) = Z(N(Q,+)) = K(N(Q,+)) = Z(K(Q,+)) = N(K(Q,+)). In addi-
tion, K(Q,+) = {a ∈ Q : a+ x = x+ a ∀x ∈ Q}.

The connection between F-quasigroups and NK-loops was established in [3].

Proposition. For a quasigroup (Q, ·), the following are equivalent.

1. (Q, ·) is an F-quasigroup.
2. There exist an NK-loop (Q,+), f, g ∈ Aut(Q,+), and e ∈ N(Q,+) such
that x·y = f(x)+e+g(y) for all x, y ∈ Q, fg = gf , and x+f(x), x+g(x) ∈
N(Q,+), −x+ f(x),−x+ g(x) ∈ K(Q,+) for all x ∈ Q.

We refer to the data (Q,+, f, g, e) of the proposition as being an arithmetic
form of the F-quasigroup (Q, ·). If (Q, a) is a pointed F-quasigroup in Fp, then
there is an arithmetic form such that a = 0 is the neutral element of (Q,+).

The purpose of this paper is to extend the connection between (pointed) F-
quasigroups and NK-loops further by showing an equivalence of classes between
Fp and a certain notion of generalized module for an associative ring. Thus the
study of (pointed) F-quasigroups effectively becomes a part of ring theory. The
generalization we require weakens the additive abelian group structure of a module
to an NK-loop structure.
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Definition. Let R be an associative ring, possibly without unity. A generalized
(left) R-module is an NK-loop (Q,+) supplied with an R-scalar multiplication
R × Q → Q such that the following conditions are satisfied: for all a, b ∈ R,
x, y ∈ Q, z ∈ N(Q,+), and w ∈ K(Q,+),

1. a(x+ y) = ax+ ay,
2. (a+ b)x = ax+ bx,
3. a(bx) = (ab)x,
4. ax ∈ K(Q,+),
5. az ∈ N(Q,+), and
6. there exists an integer m such that mw + aw ∈ Z(Q,+).

Here mw = w + · · ·+ w (m terms) is unambiguous by diassociativity.
IfQ is a generalizedR-module, then define the annihilator ofQ to be Ann(Q) =

{a ∈ R : aQ = 0}. Clearly, Ann(Q) is an ideal of the ring R.
In order to state our main result, we need to describe a particular ring. Let

S = Z[x,y,u,v] be the polynomial ring in four commuting indeterminates x,y,u,
and v over the ring Z of integers. Put R = Sx + Sy + Su + Sv, so that R is
the ideal generated by the indeterminates. Clearly, R is a free commutative and
associative ring (without unity) freely generated by the indeterminates.
LetM denote the category of generalized R-modules Q such that:

1. 2z + xz ∈ N(Q,+), 2z + yz ∈ N(Q,+) for all z ∈ Q,
2. x+ u+ xu ∈ Ann(Q), and
3. y + v + yv ∈ Ann(Q).

Further, letMp be the category of pointed objects fromM. That is,Mp consists
of ordered pairs (Q, e), where Q ∈ M and e ∈ Q. PutMn = {(Q, e) ∈ Fp : e ∈
N(Q,+)}, the category of nuclearly pointed objects from M, and put Mc =
{(Q, e) ∈ Fp : e ∈ Z(Q,+)}, the category of centrally pointed objects fromM.
Our main result is the following equivalence between pointed F-quasigroups

and generalized R-modules.

Main Theorem. The classes Fp and Mn are equivalent. The equivalence re-

stricts to an equivalence between Fm andMc.

2. Quasicentral endomorphisms

In this section, let (Q,+) denote a (possibly non-commutative) diassociative
loop. We endow the set End(Q,+) of all endomorphisms of (Q,+) with the stan-
dard operations of addition, negation, and composition, viz., for f, g ∈ End(Q,+),
f + g is defined by (f + g)(x) = f(x)+ g(x), −f is defined by (−f)(x) = −f(x) =
f(−x), and fg is defined by fg(x) = f(g(x)) for all x ∈ Q.
An endomorphism f of (Q,+) is called central if f(Q) ⊂ Z(Q,+). We denote

the set of all central endomorphisms of (Q,+) by ZEnd(Q,+). The verification
of the following result is easy and omitted.
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Lemma 2.1. Let f, g, h ∈ ZEnd(Q,+) be given. Then:

1. f + g ∈ ZEnd(Q,+),
2. f + (g + h) = (f + g) + h and f + g = g + f ,
3. the zero endomorphism of (Q,+) is central,
4. −f ∈ ZEnd(Q,+),
5. f + (−f) = 0 and f + 0 = f ,
6. fg ∈ ZEnd(Q,+).

Corollary 2.2. ZEnd(Q,+) is an associative ring (possibly without unity) with
respect to the standard operations.

Let m be an integer. An endomorphism f of (Q,+) is called m-quasicentral
if mx + f(x) ∈ Z(Q,+) for all x ∈ Q (in which case mx + f(x) = f(x) +mx).
An endomorphism is called quasicentral if it is m-quasicentral for at least one
integer m. We denote by QEnd(Q,+) the set of all quasicentral endomorphisms
of (Q,+). The following is an obvious consequence of these definitions.

Lemma 2.3. 1. An endomorphism is 0-quasicentral if and only if it is central,
2. ZEnd(Q,+) ⊂ QEnd(Q,+), and
3. the identity automorphism, IdQ, of (Q,+) is (−1)-quasicentral.

Lemma 2.4. Let f, g ∈ End(Q,+).

1. If f is m-quasicentral and g is n-quasicentral, then fg is (−mn)-quasi-
central.

2. If f, g ∈ QEnd(Q,+), then fg ∈ QEnd(Q,+).

Proof: For (1): Fix x ∈ Q. Since f is m-quasicentral, g(mx)+fg(x) = mg(x)+
fg(x) ∈ Z(Q,+). Since g is n-quasicentral, −mnx−mg(x) = −(g(mx)+nmx) ∈
Z(Q,+). Consequently,

−mnx+ fg(x) = ([−mnx−mg(x)] +mg(x)) + fg(x)

= [−mnx−mg(x)] + [mg(x) + fg(x)] ∈ Z(Q,+).

Thus, fg is (−mn)-quasicentral, as claimed.

(2) follows immediately from (1). �

Lemma 2.5. Assume that (Q,+) is commutative, let f, g ∈ End(Q,+) be m-
quasicentral and n-quasicentral, respectively. Then

1. −f is (−m)-quasicentral,
2. f + g is an (m+ n)-quasicentral endomorphism.

In particular, for f, g ∈ QEnd(Q,+), −f, f + g ∈ QEnd(Q,+).
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Proof: (1) is clear. For (2), set z = (−mx − f(x)) + (−my − f(y)) + (−mx −
g(x)) + (−my − g(y)). Then z ∈ Z(Q,+). It follows that

z + (f + g)(x+ y) = z + ([f(x) + f(y)] + [g(x) + g(y)]) = −mx−my − nx− ny

= −mx− nx−my − ny = z + ([f(x) + g(x)] + [f(y) + g(y)])

= z + ((f + g)(x) + (f + g)(y)).

Thus f + g ∈ End(Q,+). Similarly, (m+ n)x+ (f + g)(x) = [mx+ f(x)] + [nx+
g(x)] ∈ Z(Q,+). That is, (2) holds. �

Lemma 2.6. Assume that (Q,+) is commutative and let f, g, h ∈ QEnd(Q,+).
Then

1. f + g = g + f ,
2. f + (g + h) = (f + g) + h,
3. f + (−f) = 0, and
4. f + 0 = f .

Proof: (1), (3), and (4) are obvious. For (2): There exist m,n, k ∈ Z such that
mx+f(x), nx+g(x), kx+h(x) ∈ Z(Q,+). Set y = (−f(x)−mx)+(−g(x)−nx)+
(−h(x)−kx). Then y ∈ Z(Q,+) and y+(f(x)+(g(x)+h(x))) = −(m+n+k)x =
y + ((f(x) + g(x)) + h(x)) for all x ∈ Q. �

Corollary 2.7. If (Q,+) is commutative, then QEnd(Q,+) is an associative ring
with unity.

We conclude this section with a straightforward observation.

Lemma 2.8. Assume that for k ∈ {1, 2, 3}, kx ∈ Z(Q,+) for all x ∈ Q. Then

1. every quasicentral endomorphism is m-central for some m ∈ {0, 1,−1},
2. if f ∈ QEnd(Q,+) ∩ Aut(Q,+), then f−1 ∈ QEnd(Q,+).

3. Special endomorphisms of NK-loops

In this section, let (Q,+) be an NK-loop. We denote by N , K, and Z the
underlying sets of N(Q,+), K(Q,+), and Z(Q,+), respectively. As noted in §1,
Z(Q,+) = Z(N,+) = Z(K,+) and Z = N ∩K.
An endomorphism f of (Q,+) will be called special if f(Q) ⊂ K, f |K is a

quasicentral endomorphism of (K,+), and f(N) ⊂ N . Then f |N is a central
endomorphism of (N,+) and f(N) ⊂ Z. We denote by SEnd(Q,+) the set of
special endomorphisms of (Q,+).

Lemma 3.1. Let f, g, h ∈ SEnd(Q,+). Then

1. fg ∈ SEnd(Q,+),
2. f + g ∈ SEnd(Q,+), and f + g = g + f ,
3. f + (g + h) = (f + g) + h,
4. −f ∈ SEnd(Q,+), f + (−f) = 0, and f + 0 = f .
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Proof: For (1), use Lemma 2.4.
For (2): Take x, y ∈ Q. Then x = a+b and y = c+d for some a, c ∈ N, b, d ∈ K

so that

u = (f + g)(x+ y) = f(x+ y) + g(x+ y) = [f(x) + f(y)] + [g(x) + g(y)]

= [(f(a) + f(b)) + (f(c) + f(d))] + [(g(a) + g(b)) + (g(c) + g(d))]

and

v = (f + g)(x) + (f + g)(y) = [f(x) + g(x)] + [f(y) + g(y)]

= [(f(a) + f(b)) + (g(a) + g(b))] + [(f(c) + f(d)) + (g(c) + g(d))].

The restrictions f |N and g|N are central endomorphisms of (N,+), and it follows
that f(N) ∪ g(N) ⊂ Z(N,+) = Z(Q,+). Thus, f(a), f(c), g(a), g(c) ∈ Z and
in order to check that u = v it is sufficient to show that (f(b) + f(d)) + (g(b) +
g(d)) = (f(b) + g(b)) + (f(d) + g(d)). However, the latter equality holds, since
the restrictions f |K and g|K are quasicentral endomorphisms of the commutative
loop (K,+) and Corollary 2.7 applies.
We have shown that f + g ∈ End(Q,+). The facts that f + g is special and

f + g = g + f are easily seen, using Lemma 2.6 applied to the loop (K,+).
For (3): Using the facts that (Q,+) is an NK-loop and f(N)∪g(N)∪h(N) ⊂ Z,

it is enough to show that f(u)+(g(u)+h(u)) = (f(u)+g(u))+h(u) for all u ∈ K.
Now we proceed similarly as in the proof of Lemma 2.6.
Finally, (4) is easy. �

Corollary 3.2. SEnd(Q,+) is an associative ring (possibly without unity).

An endomorphism f of (Q,+) will be said to satisfy condition (F ) if

−x+ f(x) ∈ K and x+ f(x) ∈ N

for all x ∈ Q. Then f(K) ⊂ K and f(N) ⊂ N .

Lemma 3.3. Let f ∈ End(Q,+) satisfy (F ). Define h : Q → Q by h(x) =
−x+ f(x) for all x ∈ Q. Then h ∈ SEnd(Q,+).

Proof: First we check that h ∈ End(Q,+). Fix x, y ∈ Q with x = a + b,
y = c + d, a, c ∈ N , b, d ∈ K. Set u = h(x + y), v = h(x) + h(y), and w =
(a− f(a)) + (c− f(c)) + (−b− f(b)) + (−d− f(d)). Then w ∈ Z,

u = (−y− x) + f(x+ y) = ((−d− c) + (−b− a)) + ((f(a) + f(b))) + (f(c) + f(d))

and

v = (−x+f(x))+(−y+f(y)) = (−b−a)+(f(a)+f(b))+((−d−c)+(f(c)+f(d))).
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On the other hand,

u+ w = [(−d− c) + (−b− a)] + [(a− b) + (c− d)]

= [(−d− c)− b] + [−a+ (a− b)] + (c− d)

= [(−d− c)− b] + [(c− d)− b]

= [(−d− c) + (c− d)]− 2b

= −2d− 2b

= −2(b+ d)

= [(−b− a) + (a− b)] + [(−d− c) + (c− d)]

= v + w.

Consequently, u = v, so that h ∈ End(Q,+), as claimed. Further, it follows
immediately from the definition of h that h(Q) ⊂ K and h(N) ⊂ N (then h(N) ⊂
Z). Finally, 2a + h(a) = a + f(a) ∈ Z for all a ∈ K, and therefore h|K is a 2-
quasicentral endomorphism of (K,+). Thus h ∈ SEnd(Q,+). �

Lemma 3.4. Let f, g ∈ End(Q,+) satisfy (F ). Define h, k : Q → Q by h(x) =
−x + f(x) and k(x) = −x + g(x) for all x ∈ Q. Then hk = kh if and only if
fg = gf .

Proof: By Lemma 3.3, h ∈ End(Q,+), and hence

hk(x) = h(−x+ g(x)) = −h(x) + hg(x) = (−f(x) + x) + (−g(x) + fg(x)).

On the other hand,

kh(x) = −h(x) + gh(x) = (−f(x) + x) + (−g(x) + gf(x))

by the definition of h and k. The result is now clear. �

Lemma 3.5. Let f, g ∈ Aut(Q,+) satisfy (F ). Define h, k, p, q : Q → Q by
h(x) = −x+f(x), k(x) = −x+g(x), p(x) = −x+f−1(x), and q(x) = −x+g−1(x)
for all x ∈ Q. Then

1. h, k, p, q ∈ SEnd(Q,+),
2. hp = ph and h+ p+ hp = 0,
3. kq = qk and k + q + kq = 0, and
4. if fg = gf , then the endomorphisms h, k, p, q commute pairwise.

Proof: (1) follows from Lemma 3.3.
For (2): We have ff−1 = f−1f and hence hp = ph by Lemma 3.4. Now, put

A = h+ p+hp. Then A is a (special) endomorphism of (Q,+) and A(x) = [−x+
f(x)]+[−x+f−1(x)]+[(−f−1(x)+x)+(−f(x)+x)]. Clearly, N ⊂ ker(A)(= {u ∈
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Q : A(u) = 0}). On the other hand, if x ∈ K, then −x+ f(x),−x + f−1(x) ∈ Z
and the equality A(x) = 0 is clear, too. Thus, N ∪K ⊂ ker(A). But (Q,+) is an
NK-loop and ker(A) is a subloop of (Q,+). It follows ker(A) = Q and A = 0.

(3) is proven similarly to (2).

For (4), combine (2), (3), and Lemma 3.4. �

4. The equivalence

We now turn to the proof of the Main Theorem. First, recall the definition
of generalized module over a ring R, and observe that the conditions (1), (4),
(5), and (6) of the definition imply that for each a ∈ R, the transformation
Q→ Q;x 7→ ax is a special endomorphism of (Q,+). Recall also the ringR, which
is the ideal of S = Z[x,y,u,v] freely generated by the commuting indeterminates
x,y,u, and v.

First, take (Q, a) ∈ Fp. As described in §1, let (Q,+, f, g, e) be the arithmetic
form of the F-quasigroup (Q, ·) such that a = 0 in (Q,+). Then f, g ∈ Aut(Q,+)
satisfy condition (F ). Further, define ϕ, µ, ψ, ν : Q → Q by ϕ(x) = −x + f(x),
µ(x) = −x+f−1(x), ψ(x) = −x+g(x), and ν(x) = −x+g−1(x) for all x ∈ Q. By
Lemma 3.5, the special endomorphisms ϕ, ψ, µ, and ν of the loop (Q,+) commute
pairwise, and ϕ+ µ+ϕµ = 0 = ψ+ ν +ψν. Consequently, these endomorphisms
generate a commutative subring of the ring SEnd(Q,+) (see Corollary 3.2) and
there exists a (uniquely determined) homomorphism λ : R → SEnd(Q,+) such
that λ(x) = ϕ, λ(y) = ψ, λ(u) = µ, and λ(v) = ν. The homomorphism λ induces
an R-scalar multiplication on the loop (Q,+), and the resulting generalized R-
module will be denoted by Q. By Lemma 3.5, λ(x+u+xu) = 0 = λ(y+v+yv),
and so x + u + xu,y + v + yv ∈ Ann(Q). Also, since f, g satisfy (F ), we have
2z+λ(x)z = 2z+ϕ(z) = z+f(z) ∈ N(Q,+) and similarly 2z+λ(y)z ∈ N(Q,+)
for all z ∈ Q. It follows that Q ∈ M. Now define ρ : Fp → Mn by ρ(Q, a) =

(Q, e), and observe that (Q, e) ∈ Mc if and only if e ∈ Z(Q,+).

Next, take (Q, e) ∈ Mn and define f, g : Q → Q by f(z) = z + xz and
g(z) = z+yz for all z ∈ Q. We have f(x+y) = (x+y)+(xx+xy) and f(x)+f(y) =
(x+xx)+ (y+xy). Further, x = u1+ v1, y = u2+ v2 for some u1, u2 ∈ N(Q,+),
v1, v2 ∈ K(Q,+), and hence, f(x+y) = (u1+u2+v1+v2)+(xu1+xu2+xv1+xv2),
and f(x)+ f(y) = (u1+xu1+ v1+xv1)+ (u2+xu2+ v1+xv2). But xu1,xu2 ∈
Z(Q,+), and so in order to show f(x+y) = f(x)+f(y), it is enough to check that
(v1+v2)+(xv1+xv2) = (v1+xv1)+(v2+xv2). However, −2v1−xv1 ∈ Z(Q,+)
and −2v2 − xv2 ∈ Z(Q,+), and so the latter equality is clear.

We have proven that f ∈ End(Q,+), and the proof that g ∈ End(Q,+) is
similar. Now by definition of generalized module, −x + f(x) = xx ∈ K(Q,+)
and −x + g(x) = yx ∈ K(Q,+) for all x ∈ Q. By definition of M, x + f(x) =
2x+ xx ∈ N(Q,+) and x+ g(x) = 2x+ yx ∈ N(Q,+) for all x ∈ Q. This means
that both f and g satisfy (F ) and it follows from Lemma 3.4 that fg = gf .
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Define h : Q→ Q by h(x) = x+ux for x ∈ Q. We have ux+xx+xux = 0, and
so xx+xux = −ux. Now, fh(x) = h(x)+xh(x) = (x+ux)+ (xx+xux) = (x+
ux)−ux = x and fh = IdQ. Similarly, hf = IdQ and we see that f ∈ Aut(Q,+).
Similarly, g ∈ Aut(Q,+).
We have that f, g ∈ Aut(Q,+), and e ∈ Q satisfy the conditions of the Propo-

sition of §1, and so defining a multiplication on Q by xy = f(x) + e+ g(y) for all
x, y ∈ Q gives an F-quasigroup. Define σ :Mn → Fp by σ(Q, e) = (Q, 0).
It is easy to check that the operators ρ and σ represent an equivalence between

Fp and Mn. Further, 0 ∈ M(Q) if and only if e ∈ Z(Q,+), so that ρ and σ
restrict to an equivalence between Fm andMc. This completes the proof of the
Main Theorem.
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Sokolovská 83, 186 75 Prague 8, Czech Republic

E-mail : kepka@karlin.mff.cuni.cz

Department of Mathematical Sciences, Indiana University South Bend,

South Bend, IN 46634, USA

E-mail : mkinyon@iusb.edu
URL : http://mypage.iusb.edu/∼mkinyon

Department of Mathematics & Computer Science, Wabash College,

Crawfordsville, IN 47933, USA

E-mail : phillipj@wabash.edu
URL : http://www.wabash.edu/depart/math/faculty.html#Phillips

(Received November 6, 2007)


