Ternary quasigroups and the modular group

JONATHAN D.H. SMITH

Abstract. For a positive integer n, the usual definitions of n-quasigroups are rather complicated: either by combinatorial conditions that effectively amount to Latin ncubes, or by 2n identities on n + 1 different n-ary operations. In this paper, a more symmetrical approach to the specification of n-quasigroups is considered. In particular, ternary quasigroups arise from actions of the modular group.

Keywords: quasigroup, ternary quasigroup, *n*-quasigroup, heterogeneous algebra, hyperidentity, modular group, conjugate, parastrophe, time reversal

Classification: Primary 20N05; Secondary 08A68

1. Quasigroups

For a positive integer n, a (*combinatorial*) n-quasigroup is a set Q equipped with an n-ary multiplication operation

$$\mu: Q^n \to Q; \ (x_n, \dots, x_1) \mapsto x_n \dots x_1 \mu$$

such that, for an (n+1)-tuple

 $(1.1) \qquad (x_n,\ldots,x_1,x_0)$

of elements of Q required to satisfy the condition

$$(1.2) x_n \dots x_1 \mu = x_0,$$

specification of any n coordinates of (1.1) determines the remaining one uniquely. Note that a combinatorial 1-quasigroup is just a set Q with a permutation (selfbijection) $\mu: Q \to Q$, or in other words a dynamical system with state space Qand invertible transition operator μ .

For each index $1 \le i \le n$, and for each choice $x_n, \ldots, x_{i+1}, x_{i-1}, \ldots, x_1$ of fixed elements of an *n*-quasigroup Q, a *translation*

(1.3)
$$T_i(x_n,\ldots,x_{i+1},x_{i-1},\ldots,x_1): Q \to Q; \ x_i \mapsto x_n \ldots x_1 \mu$$

is defined. The combinatorial definition of an n-quasigroup means precisely that each translation is a permutation of the underlying set Q.

The combinatorial definition of *n*-quasigroups may be reformulated in algebraic terms of operations and identities. An (equational) *n*-quasigroup $(Q, \mu, \mu^1, \ldots, \mu^n)$ is a set Q equipped with *n*-ary operations $\mu, \mu^1, \ldots, \mu^n$ satisfying the identities

(1.4)
$$x_n \dots x_{i+1} (x_n \dots x_1 \mu) x_{i-1} \dots x_1 \mu^i = x_i$$

and

(1.5)
$$x_n \dots x_{i+1} (x_n \dots x_1 \mu^i) x_{i-1} \dots x_1 \mu = x_i$$

for each $1 \leq i \leq n$. The operations μ^1, \ldots, μ^n are described as *divisions*. Note that the identity (1.4) gives the injectivity of the translation (1.3), while (1.5) gives its surjectivity. Thus each equational *n*-quasigroup $(Q, \mu, \mu^1, \ldots, \mu^n)$ yields a combinatorial *n*-quasigroup (Q, μ) . Conversely, a combinatorial *n*-quasigroup (Q, μ) yields an equational *n*-quasigroup $(Q, \mu, \mu^1, \ldots, \mu^n)$, defining

$$x_n \dots x_{i+1} x_0 x_{i-1} \dots x_1 \mu^i = x_i$$

if and only if (1.2) holds.

2. Groups

For a positive integer n, consider the group M_n presented as

$$\langle \sigma, \tau \mid \sigma^n = \tau^2 = 1 \rangle.$$

In other words, M_n is the free product of two cyclic groups, one $\langle \sigma \rangle$ of order n, and one $\langle \tau \rangle$ of order 2.

Example 2.1. For n = 1, M_1 is just the cyclic group $\langle \tau \rangle$ of order 2.

Example 2.2. For n = 2, M_2 is the *infinite dihedral group* ([2, p. 133]). Recall that the *dihedral group* D_d of degree d and order 2d (the group of symmetries of the regular d-gon) may be presented as

(2.1)
$$\langle \sigma, \tau \mid \sigma^2 = \tau^2 = (\sigma\tau)^d = 1 \rangle$$

([2, (1.53)]).

Example 2.3. For n = 3, M_3 is the modular group $SL_2(\mathbb{Z})/\{\pm I_2\}$ ([8, p. 128]). For each element

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

of $SL_2(\mathbb{Z})$, a matrix of determinant 1 with integral entries, write the corresponding coset $\{\pm A\}$ in M_3 as

$$\left\{ \begin{array}{cc} a & b \\ c & d \end{array} \right\} \,.$$

Setting

$$\sigma = \left\{ \begin{matrix} 0 & -1 \\ 1 & 1 \end{matrix} \right\} \quad \text{and} \quad \tau = \left\{ \begin{matrix} 0 & -1 \\ 1 & 0 \end{matrix} \right\} \,,$$

one has $\sigma^3 = \tau^2 = 1$, and $SL_2(\mathbb{Z})/\{\pm I_2\}$ is generated freely by σ and τ , subject to these order relations ([2, (7.25)], [8, p. 131]).

Lemma 2.4. Consider the symmetric group $S_{n+1} = \{0, 1, \ldots, n\}!$.

- (a) For $n \ge 1$, the group S_{n+1} is a quotient of M_n . (b) $S_3 = \langle \sigma, \tau \mid \sigma^2 = \tau^2 = (\sigma \tau)^3 = 1 \rangle$. (c) $S_4 = \langle \sigma, \tau \mid \sigma^3 = \tau^2 = (\sigma \tau)^4 = 1 \rangle$.

PROOF: (a): Apply the First Isomorphism Theorem to the surjective homomorphism

(2.2)
$$r: M_n \to S_{n+1}; \ \sigma \mapsto (1 \ 2 \ \dots \ n), \ \tau \mapsto (0 \ 1).$$

(b): This is the case d = 3 of (2.1). (c): See [2, (1.59)].

3. Spaces

For a positive integer n, an n-ary space (G, σ, τ) is a set G equipped with maps

(3.1)
$$\sigma: G \to G; \ g \mapsto \sigma g$$

and

satisfying $\sigma^n = \tau^2 = 1$. The map σ is known as the *shift*, while the map τ is known as the *inversion*. Note that *n*-ary spaces are left M_n -sets.

Example 3.1. For each positive integer n, each set G furnishes a trivial n-ary space, on which both σ and τ are the identity map id_G.

Example 3.2. For n=1, each group G provides a unary space, with $\tau g = g^{-1}$ for q in G.

Example 3.3. For n=2, the binary spaces are the reflexion-inversion spaces of [9], the shift being described as *reflexion* in this case.

- (a) For a field F, take $G = F \setminus \{0, 1\}$. Then G is a binary space, with $\sigma g = 1 - g$ and $\tau g = g^{-1}$ for points g of G ([9, Example 3.3]).
- (b) The symmetric group S_3 is a binary space. Taking $\sigma = (1 \ 2)$ and $\tau = (0 \ 1)$, the maps (3.1) and (3.2) are interpreted as left multiplications within S_3 - compare Lemma 2.4(b).

Example 3.4. The symmetric group S_4 is a ternary space. Taking $\sigma = (1 \ 2 \ 3)$ and $\tau = (0 \ 1)$, the maps (3.1) and (3.2) are interpreted as left multiplications within S_4 — compare Lemma 2.4(c).

Example 3.5. Let R be a unital ring, and let U be a group of units in R. For a positive integer n, consider $G = U^n$. Define

$$\sigma(u_n,\ldots,u_2,u_1)=(u_{n-1},\ldots,u_1,u_n)$$

and

$$\tau(u_n, \dots, u_2, u_1) = \left(-u_n u_1^{-1}, \dots, -u_2 u_1^{-1}, u_1^{-1}\right)$$

for a point (u_n, \ldots, u_1) of G. Then G becomes an n-ary space.

4. Hyperquasigroups

For a positive integer n, an *n*-hyperquasigroup (or *n*-ary hyperquasigroup) is a pair (Q, G) consisting of a set Q and an *n*-ary space G, with an *n*-ary action

(4.1) $Q^n \times G \to Q; \ (x_n, \dots, x_1, g) \mapsto x_n \dots x_1 g$

of G on Q, such that the (n-)hypercommutative law

(4.2)
$$x_n \dots x_2 x_1 g = x_{n-1} \dots x_1 x_n \sigma g$$

and the (n-) hypercancellation law

(4.3)
$$x_n \dots x_2(x_n \dots x_1 \underline{g}) \, \underline{\tau g} = x_1$$

are satisfied for all x_1, \ldots, x_n in Q and g in G.

Remark 4.1. A hyperquasigroup (Q, G) may be construed as a two-sorted or heterogeneous algebra ([4], [6]), with the *n*-ary space operations σ and τ on the sort G, and (4.1) as a third operation.

Example 4.2. For each positive integer n, and for each n-ary space G, the empty set forms an n-hyperquasigroup (\emptyset, G) . The actions (4.1) reduce to id_{\emptyset} .

Example 4.3. For each positive integer n, consider the trivial n-ary space \emptyset as in Example 3.1. Let Q be a set. Then (Q, \emptyset) forms an n-hyperquasigroup, with (4.1) as the insertion $\emptyset \hookrightarrow Q$. The hypercommutativity (4.2) and hypercancellation (4.3) are vacuously satisfied.

Example 4.4. For n = 1, let G be a group, construed as a unary space according to Example 3.2. Consider a right G-set Q. For g in G and x in Q, define the unary action $x\underline{g} = xg$. The hypercommutativity is trivial, while the hypercancellation is just $(xg)g^{-1} = x$. Thus (Q, G) is a unary hyperquasigroup.

Example 4.5. For each positive integer n, consider the trivial n-ary space $\{1\}$.

- (a) For n = 1, each set Q forms a unary hyperquasigroup $(Q, \{1\})$ as a $\{1\}$ -set for the trivial group $\{1\}$, according to Example 4.4.
- (b) For n = 2, a binary hyperquasigroup $(Q, \{1\})$ is just a totally symmetric quasigroup, with multiplication $x_1x_2\underline{1}$.
- (c) For any positive n, let Q be an abelian group of exponent 2. Then $(Q, \{1\})$ forms an n-hyperquasigroup with

$$x_1 x_2 \dots x_n \underline{1} = x_1 x_2 \dots x_n$$

for x_1, \ldots, x_n in Q.

Example 4.6. For n = 2, binary hyperquasigroups reduce to hyperquasigroups in the sense of [9].

(a) For a field F, consider the binary space $G = F \smallsetminus \{0, 1\}$ of Example 3.3(a). For a vector space Q over F, define the binary action

$$Q^2 \times G \to Q; \ (x_2, x_1, g) \mapsto x_2(1-g) + x_1g.$$

Then (Q, G) forms a binary hyperquasigroup ([9, Proposition 5.1]).

(b) Let $(Q, \cdot, /, \backslash)$ be a (binary) quasigroup, and let $G = S_3$, construed as a binary space according to Example 3.3(b). Then (Q, G) is a binary hyperquasigroup under the operations

$$\begin{array}{ll} xy\,\underline{1} = x\cdot y, & xy\,\underline{\sigma\tau\sigma} = x/y, & xy\,\underline{\tau} = x\backslash y, \\ xy\,\underline{\sigma} = y\cdot x, & xy\,\underline{\tau\sigma} = y/x, & xy\,\underline{\sigma\tau} = y\backslash x \end{array}$$

([9, Proposition 5.2]).

Example 4.7. For a positive integer n and a unital ring R, consider the n-ary space G of Example 3.5. Let Q be a unital right R-module. Define the n-ary action

$$x_n \dots x_1 \underline{(u_n, \dots, u_1)} = x_n u_n + \dots + x_1 u_1$$

for x_i in Q and (u_n, \ldots, u_1) in G. Then (Q, G) is an *n*-ary hyperquasigroup.

The meaning of hypercommutativity in an n-hyperquasigroup is immediate. The significance of hypercancellation is interpreted as follows (compare [5], [9] for the binary case).

Proposition 4.8. Let (Q,G) be an *n*-hyperquasigroup. For each point *g* in *G*, define

$$\widehat{g}: Q^n \to Q^n; \ (x_n, \dots, x_2, x_1) \mapsto (x_n, \dots, x_2, x_n \dots x_1g).$$

Then $\widehat{\tau g}$ is the two-sided inverse of \widehat{g} in the semigroup of selfmaps on the set Q^n .

PROOF: The equation $\widehat{g} \widehat{\tau g} = \operatorname{id}_{Q^n}$ is immediate from (4.3), while $\widehat{\tau g} \widehat{g} = \operatorname{id}_{Q^n}$ follows from (4.3) with g replaced by τg , recalling $\tau \tau g = g$.

Remark 4.9. For an *n*-ary operation

$$Q^n \to Q; \ (x_n, \dots, x_1) \mapsto x_n \dots x_1 \omega$$

on a set Q, the invertibility of the map

$$\widehat{\omega}: Q^n \to Q^n; \ (x_n, \dots, x_2, x_1) \mapsto (x_n, \dots, x_2, x_n \dots x_1 \omega)$$

does not mean that (Q, ω) is a (combinatorial) *n*-quasigroup. For example, the binary projection

$$\pi_1: Q^2 \to Q; \ (x_0, x_1) \mapsto x_1$$

has $\widehat{\pi_1} = \mathrm{id}_{Q^2}$.

5. From hyperquasigroups to quasigroups

By Proposition 4.5 and Remark 4.9, hypercancellativity alone is insufficient for a quasigroup. The following theorem shows that quasigroups are obtained from the combination of hypercommutativity and hypercancellativity. The binary case appeared as [9, Theorem 6.1]. The proof of the general case given here is conceptually simpler, although the details are more complex.

Theorem 5.1. For a positive integer n, let (Q, G) be an n-hyperquasigroup. Then for each element g of the n-ary space G, there is an equational n-quasigroup

$$\left(Q,\underline{g},\underline{\tau g},\ldots,\underline{\sigma^{i-1}\tau\sigma^{1-i}g},\ldots,\underline{\sigma^{n-1}\tau\sigma^{1-n}g}\right)$$

with multiplication \underline{g} and divisions $\underline{\sigma^{i-1}\tau\sigma^{1-i}g}$ for $1 \leq i \leq n$.

PROOF: The identities (1.4) and (1.5) must be established for $1 \le i \le n$, with $\mu = \underline{g}$ and $\mu^i = \underline{\sigma^{i-1}\tau\sigma^{1-i}g}$. Consider the hypercancellativity

(5.1)
$$x_n \dots x_2 \left(x_n \dots x_1 \underline{g} \right) \underline{\tau g} = x_1$$

as in (4.3). Applying hypercommutativity i - 1 times to the inner operation of (5.1) yields

$$x_n \dots x_2 \left(x_{n-(i-1)} \dots x_2 x_1 x_n \dots x_{n-(i-2)} \underline{\sigma^{i-1}g} \right) \underline{\tau g} = x_1.$$

Applying hypercommutativity i - 1 times to the outer operation then gives

$$x_{n-(i-1)} \dots x_2 \left(x_{n-(i-1)} \dots x_2 x_1 x_n \dots x_{n-(i-2)} \underline{\sigma^{i-1}g} \right) x_n \dots \dots x_{n-(i-2)} \underline{\sigma^{i-1}\tau g} = x_1.$$

Replacing x_k by

$$\begin{cases} x_{k+(i-1)} & \text{for } 1 \le k \le n - (i-1), \\ x_{k+(i-1)-n} & \text{for } n - (i-2) \le k \le n \end{cases}$$

yields

(5.2)
$$x_n \dots x_{i+1} \left(x_n \dots x_1 \underline{\sigma^{i-1}g} \right) x_{i-1} \dots x_1 \underline{\sigma^{i-1}\tau g} = x_i.$$

Replace g in (5.2) by $\sigma^{1-i}g$ to obtain

$$x_n \dots x_{i+1} (x_n \dots x_1 \underline{g}) x_{i-1} \dots x_1 \underline{\sigma}^{i-1} \tau \sigma^{1-i} \underline{g} = x_i,$$

which is (1.4). Finally, replace g in (5.2) by $\tau \sigma^{1-i}g$ to obtain

$$x_n \dots x_{i+1} \left(x_n \dots x_1 \underline{\sigma}^{i-1} \tau \sigma^{1-i} g \right) x_{i-1} \dots x_1 \underline{g} = x_i,$$

which is (1.5).

Corollary 5.2. For a positive integer n, let (Q, G) be an n-hyperquasigroup. Then each point g of the n-ary space G yields a combinatorial n-quasigroup (Q, \underline{g}) .

6. The structure theorem

Let n be a positive integer. In the symmetric group $S_{n+1} = \{0, 1, ..., n\}!$, consider the involution

$$\alpha = (2 \ n)(3 \ n-1)\dots \left\{ \begin{array}{ll} \dots \left(\frac{n}{2} \ \frac{n+4}{2}\right), & n \ \text{even};\\ \dots \left(\frac{n+1}{2} \ \frac{n+3}{2}\right), & n \ \text{odd}. \end{array} \right.$$

Define a surjective homomorphism

$$(6.1) M_n \to S_{n+1}; \ \pi \mapsto \overline{\pi}$$

by concatenating the surjective homomorphism r of (2.2) with conjugation by the permutation α in S_{n+1} . In particular,

(6.2)
$$\overline{\sigma} = (1 \ 2 \ \dots \ n)^{\alpha} = (1 \ n \ \dots \ 2)$$

and

(6.3)
$$\overline{\tau} = (0 \ 1)^{\alpha} = (0 \ 1).$$

Lemma 6.1. Let (Q, G) be an *n*-hyperquasigroup. Then

(6.4)
$$x_n \dots x_2 x_1 \underline{g} = x_0 \quad \Leftrightarrow \quad x_n \overline{\pi} \dots x_2 \overline{\pi} x_1 \overline{\pi} \underline{\pi} \underline{g} = x_0 \overline{\pi}$$

for each element π of M_n , point g in G, and elements x_0, \ldots, x_n of Q.

PROOF: The equivalence (6.4) holds trivially for $\pi = 1$. Suppose that it holds for a certain element π of M_n . Then

$$x_{n\overline{\pi}} \dots x_{2\overline{\pi}} x_{1\overline{\pi}} \frac{\pi g}{\pi g} = x_{0\overline{\pi}}$$

$$\Leftrightarrow \quad x_{(n-1)\overline{\pi}} \dots x_{1\overline{\pi}} x_{n\overline{\pi}} \frac{\sigma \pi g}{\sigma \pi g} = x_{0\overline{\pi}}$$

$$\Leftrightarrow \quad x_{n\overline{\sigma}\overline{\pi}} \dots x_{2\overline{\sigma}\overline{\pi}} x_{1\overline{\sigma}\overline{\pi}} \frac{\sigma \pi g}{\sigma \pi g} = x_{0\overline{\sigma}\overline{\pi}}$$

by the hypercommutativity (4.2) and (6.2). Thus the equivalence (6.4) holds for $\sigma\pi$ in M_n . Again,

$$x_{n\overline{\pi}} \dots x_{2\overline{\pi}} x_{1\overline{\pi}} \frac{\pi g}{\pi g} = x_{0\overline{\pi}}$$

$$\Leftrightarrow \quad x_{n\overline{\pi}} \dots x_{2\overline{\pi}} x_{0\overline{\pi}} \frac{\tau \pi g}{\tau \pi g} = x_{1\overline{\pi}}$$

$$\Leftrightarrow \quad x_{n\overline{\tau}\overline{\pi}} \dots x_{2\overline{\tau}\overline{\pi}} x_{1\overline{\tau}\overline{\pi}} \frac{\pi g}{\pi g} = x_{0\overline{\tau}\overline{\pi}}$$

by the hypercancellativity (4.3) and (6.3) Thus the equivalence (6.4) holds for $\tau\pi$ in M_n . By induction, it follows that the equivalence (6.4) holds for each element of M_n .

Let (Q, G) be an *n*-hyperquasigroup. Set

$$\underline{G} = \{ \underline{g} : Q^n \to Q \mid g \in G \}.$$

By Lemma 6.1, the action

$$M_n \to \underline{G} !; \ \pi \mapsto (\underline{g} \mapsto \underline{\pi}\underline{g})$$

factorizes through the homomorphism (6.1) to S_{n+1} . Thus the set \underline{G} of *n*-ary operations on Q is an S_{n+1} -set. For a point g in the space G, Corollary 5.2 yields n-quasigroups $(Q, \underline{\pi g})$ given by the S_{n+1} -orbit of \underline{g} . The various n-quasigroups in a given orbit are described as mutual *conjugates* or *parastrophes*. For binary quasigroups, these concepts are well known ([1, Example II.6.1], [7]). For unary quasigroups, as invertible dynamical systems, conjugation corresponds to time reversal.

The structure of (Q, \underline{G}) may now be summarized as follows (compare [9, Theorem 6.7] for the binary case).

Theorem 6.2. Let n be a positive integer. Then each n-hyperquasigroup (Q, G) yields an algebra structure (Q, \underline{G}) consisting of the union of mutually disjoint sets of conjugate n-quasigroup operations.

Remark 6.3. Let $(Q, \varphi, \varphi^1, \ldots, \varphi^n)$ be an *n*-quasigroup. Consider M_n as an *n*-ary space (M_n, σ, τ) given by the free left M_n -set, so that the actions (3.1) and (3.2) are the left multiplications by σ and τ in the group M_n . Use the specification

$$x_n \dots x_2 x_1 \underline{1} = x_n \dots x_2 x_1 \varphi$$

together with (6.4) to define an *n*-ary action of M_n on Q. A comparison with Theorem 5.1 and its proof shows that

$$\varphi^i = \underline{\sigma^{i-1} \tau \sigma^{1-i}}$$

for $1 \leq i \leq n$. One then obtains (Q, M_n) as a hyperquasigroup. Within this hyperquasigroup, the *n*-quasigroup $(Q, \underline{1})$ yielded by Theorem 5.1 realizes the given *n*-quasigroup (Q, φ) . By Theorem 6.2, the *n*-quasigroups (Q, \underline{g}) for g in M_n are the conjugates of (Q, φ) .

Acknowledgment. Thanks are due to an anonymous referee for valuable comments on an earlier version of this paper.

References

- Chein O. et al., Quasigroups and Loops: Theory and Applications, Heldermann, Berlin, 1990.
- [2] Coxeter H.S.M., Moser W.O.J., Generators and Relations for Discrete Groups, Springer, Berlin, 1957.
- [3] Evans T., Homomorphisms of non-associative systems, J. London Math. Soc. 24 (1949), 254–260.
- [4] Higgins P.J., Algebras with a scheme of operators, Math. Nachr. 27 (1963), 115–132.
- [5] James I.M., Quasigroups and topology, Math. Z. 84 (1964), 329–342.
- [6] Lugowski H., Grundzüge der Universellen Algebra, Teubner, Leipzig, 1976.
- [7] Sade A., Quasigroupes obéissant à certaines lois, Rev. Fac. Sci. Univ. Istanbul, Ser. A 22 (1957), 151–184.
- [8] Serre, J.-P., Cours d'Arithmétique, Presses Universitaires de France, Paris, 1970.
- [9] Smith J.D.H., Axiomatization of quasigroups, Discuss. Math. Gen. Algebra Appl. 27 (2007), 21–33.

DEPARTMENT OF MATHEMATICS, IOWA STATE UNIVERSITY, AMES, IOWA 50011-2064, U.S.A.

E-mail: jdhsmith@math.iastate.edu

URL: http://orion.math.iastate.edu/jdhsmith/

(Received September 14, 2007, revised November 4, 2007)