Comment.Math.Univ.Carolin. 49,4 (2008)579-593 579

On approximation of functions
by certain operators preserving 22

LucyNA REMPULSKA, KAROLINA TOMCZAK

Abstract. In this paper we extend the Duman-King idea of approximation of functions
by positive linear operators preserving e (xz) = z¥, k = 0,2. Using a modification of
certain operators L, preserving ep and e1, we introduce operators Ly, which preserve eg
and ez and next we define operators Ly, for r-times differentiable functions. We show
that L; and L:‘l;r have better approximation properties than Ly, and Ly;.

Keywords: positive linear operators, polynomial weighted space, degree of approxima-
tion

Classification: 41A25, 41A36

1. Introduction

1.1. Tt is well known ([3-5]) that many of classical approximation operators Ly,
satisfy the following conditions for the functions ej(z) = z*, k = 0,1, 2:

(]‘) L’n(GOVI) = 15 L’fl(€17'r) = CC,
and
o ax?®+bx
(2) Ln(e%x) ="+ —",
An

for x € X and n € N = {1,2,...}, where a,b are given non-negative numbers,
a?+b2 >0, and (An)T%, A1 > 1, is a fixed increasing and unbounded sequence of
numbers.

We say that the operators L,, preserve the functions eg and e if the conditions
(1) are satisfied.

The conditions (1) and (2) hold, in particular, for the Szdsz-Mirakyan, Baska-
kov, Post-Widder and Stancu operators ([1]-[5], [7], [11]-[14]).

In the papers [6]—[8], there were introduced certain modified Bernstein, Szdsz-
Mirakyan and Meyer-Konig and Zeller operators, which preserve the functions eg
and eo and have better approximation properties than classical operators.

In the paper [13] we have extended the Duman-King idea, [6]-[8], to the Post-
Widder and Stancu operators considered in polynomial weighted spaces.
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1.2. G. Kirov [9] and other authors (e.g. [10], [11]) have examined approximation
properties of linear operators

(3) Ly (f;z) := Ly (Fr(t,z);2), neN,

with

")) .
(4) Fr(t,x):_jz:%) T (x —t)7,

for r-times differentiable functions f, using operators L, with conditions (1).
These authors have shown that the order of approximation of an r-times differ-
entiable function f by Lp,-(f) is dependent on r and it improves if r grows.

1.3. Let Ng and R be sets of non-negative integers and real numbers, correspond-
ingly, and let I be the interval (0, 00) (or [0,0)).
Analogously to [2] let p € Ny,

(5) wo(x) =1, wy(z) =1 +2P)"L if p>1,

for z € I, and let B, = Bp(I) be the set of all functions f : I — R for which fw,
is bounded on I and the norm is defined by the formula

(6) 1fllp = [1fC)llp := sup wp(x)[ f ()]
zel

Next let C, = Cp(I), p € No, be the set of all f € B, for which fw, is uniformly
continuous on I and the norm is given by (6). C), is called the polynomial weighted
space.

Moreover, let C" = C"(I), with a fixed r € N, be the set of all r-times differ-
entiable functions f € C) with derivatives f(k) € Cr_pfork=0,1,... ,r and the
norm in C” is given by (6).

It is obvious that if p,¢ € Ng and p < ¢, then By, C By, Cp C Cy and
Ifllqg < IIfllp for f € Bp. Obviously, for every p € Ng we have w, € Cp and
w%, € CP (here C% = ().

1.4. The purpose of this paper is to extend the Duman-King and Kirov methods
to the classes of operators Ly and Ly, satisfying the conditions (1)—(4), defined
in polynomial weighted spaces Cp and C".

In Section 2 we shall introduce the operators Ly, Ly, Ln;r and Ly, for func-
tions f € Cp and f € C", correspondingly, and we shall give some of their basic
properties.

In Section 3 we shall give the main approximation theorems.

In this paper we shall denote by My («,3), k € N, suitable positive constants
depending only on the indicated parameters o and (.
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2. Definitions and auxiliary results

2.1. Let (Ly),2; (or n > ng) be a sequence of positive linear operators with the
following properties:

(i) Lyn : Cp — By for every p € Ng and n € N,

(ii) Ly, satisfies the conditions (1) and (2) for x € I and n € N, with fixed a,

b and (An),
(iii) there exists M7 = Mj(a,b,p) = const. > 0 such that for the functions
(7) Trip(z) := Ly (©5(2); ), zxel, neN, 2<peN,
with
(8) oz (t) =t —x, tel,
there holds
(9) | Thi2pllop < MiA, P for neN.

Using the above operators L, we define for f € Cp, p € Ng, the following
operators:

(10) L} (f;x) == Ln(f;un(xz)) for ze€l, neN,

where

_ 2 4+ )22
(a1) () = b+\/b2(:i/\§,5)+M '

Next, for the functions f € C", r € N, z € I and n € N, we introduce the
operators Ly;; by formulas (3) and (4) and the operators Ly.,.:

(12) Ly (f;2) := Ly, (Fr(t, x); ) zel, neN,

where F} is defined by (4).

From the properties of the above operators Ly, and formulas (10) and (11), it
follows that L}, n € N, is a positive linear operator acting from the space Cj to
By, for every p € Ng and by (1), (2) and (8) we have

(13) Lifeoia) = 1. Lilenis) = une), Lilegia) = a2
ax2 xr

(14) Lo (B0sw) = S5

and

(15) L (P3(0)ia) = 20 (@ = un (@)

for z € I and n € N. Moreover, from (3), (4) and (10)—(12) we deduce that Ly,
and L., for n,r € N, are well defined on the space C" and

(16) L:L;T(f; T) = Ly (f7 Un(x)) , €I, neN,
for every f € C".
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2.2. Here we shall give some lemmas on basic properties of the introduced oper-
ators.
By (i)—(iii) and (10) and (11) we easily obtain the following two lemmas.

Lemma 1. Let uy, be defined by (11) for x € I and n € N, with fixed numbers
a,b>0, a® +b% > 0 and (\,)}° given by (2). Then we have

b
(17 0<up(x) <z, 0<z—up(x)< ax/\—|— ,
n
ax? + bx 2ax + b ax? + bx
18 — — /2 — >
(18) A r@ =) 2 e T o |
for x € I and n € N, and
. ar +b
(19) nango An (@ —up(x)) = 5 at every x € I.

Lemma 2. For every f,g € Cp, p € N, there holds

La (10000 < (L (2052) ) (£n (20052))*. welnen

The identical inequality holds for the operators Ly;.
By (5) and (17) we easily derive the following inequalities

(200 wp(e) < wap(e), 1/wp(x) < 2/wap(@), 0 < wp(z)/wp(un(x)) <1,

for x € I and p € Np.

Lemma 3. Let p € Ny and let a, b and A\, be fixed numbers connected with
operators Ly, given by the formula (2). Then there exists My = Ma(a,b,p) =
const. > 0 such that

(21) IL7(1/wp)llp < [|Ln(1/wp)|lp < My for n € N.
Moreover, for every f € Cp and n € N we have

(22) L2 (Dllp < 1 Ln(Nllp < M| flp-

The formulas (10) and (11) and the inequality (22) show that L}, n € N, is a
positive linear operator acting from the space C), into By, for every p € Ny.

ProOF: If p = 0, then by (5), (6), (1) and (13) it follows that ||L(1/wo)|lo =
| Lrn(1/wo)|lo =1 for n € N.
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If p € N, then by the linearity of L,, and (5), (1) and (8) we have
Ln (1/wp(t); ) =1+ Ly(ep; ) <14 2P (2P + Ly, (le2(t)|P 5 2)),

which by (5)—(9), (20) and Lemma 2 implies that

wp(x) L (1/wp; z) < 2P + 2P (wgp(x)Ln (gﬁip(t);x))%

<o (1 + \/Ml/AZ> <2 (1+V00),

for x € T and n € N. Hence the inequality (21) is proved for Ly,.
By (10), (20) and (6) we can write

wp(@) Ly, (1/wp; @) < wp (un () Ln (1/wp; un(x)) < || Ln(1/wp)llp

for x € T and n € N, which by (6) yields (21) for L.
The inequality (22) for f € Cp, n € Ny, follows by (10), (20), (6), (21) and the
following estimate

wp(@) [ Ly (f5 )| < wp(un () [ L (5 un (@) < [1Ln(f)llp

<A llplEn(L/wp)llp < Ma fllp, =€, neN. -

Lemma 4. Letr € N and let Ly, and Ly, be operators defined by (3), (4) and
(10)—(12) with fixed parameters a, b and Ay, connected with L,,. Then there exists
M3 = Ms(a,b,r) = const. > 0 such that for every f € C" and n € N there holds

(23) 1 (Dl < 1L (D)l < 1 Fllr + Ml o

The formulas (3), (4) and (12) and the inequalities (23) show that Ly;y and Ly,..,
n € N, are linear operators acting from the space C" to B;.

ProOF: Choose f € C" with a fixed » € N and ¢ € I. Then, by the modified

Taylor formula we have

/) ,
Jj'(t) (x —t) + I (t,x), =z€el,

L
(24) fo =31
j=0

T — 1) 1
(25) I(t,z) == ((7”—?)!/0 (1—wu) =t |f0) (t+u(:c—t))—f(r)(t)} du.

583



584 L. Rempulska, K. Tomczak

From (24), (25) and (4) it results that

(26) Fo(t,z) = f(z) — I.(t,x) for t,xel,

which next by (3) and (1) implies that

(27) Ly (f(t);2) = f(x) — Ln (Ir(t, 2); 2)

and consequently

(28) Wi () | Lngr (F(8);2)| < || fllr + wr (@) L, (|7 (¢, )] 5 2)

for z € I and n € N. But if f € C", then f(") € Cj and by (25) and (8) we have
|1t 2)] < 2/ F o lpa (O

and next by Lemma 2, (20) and (7)—(9) we get

wr @) (1 (8.2) 1) < 21O (w2 (@) (2 (0:2))

(29) 1
< %llf(r)llo(f\/fl/)\ﬁ)§ < (2\/M/r1) 17 lo,

for z € I and n € N. Now, using (29) to (28), we obtain the inequality (23) for
Lo
The formula (16) and the inequality (20) imply that for f € C" we can write

wr () | Ly (F;2)| < wr(un(2)) | Lgr (f; un(2)))|
<N Ln;#(f)||r for z €I, neN,

which by (6) completes the proof of (23). O

3. Theorems

3.1. In this section we shall estimate the orders of approximation of a function
f € Cp by Ln(f) and L} (f), and also f € C" by Lp;r(f) and Lj,.,.(f). We shall
use the modulus of continuity of a function f € Cyp, i.e.

(30) w(fit)p = sup [Apf()llp for ¢=>0,
0<h<t

where Ay, f(z) = f(z + h) — f(x).
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Theorem 1. Assume that p € Ny is a fixed number and Ly, and L}, are operators
defined in Section 2. Then there exists My = My(a,b,p) = const. > 0 such that
for every f € C), having the first derivative f' belonging to C), there holds

(31) wp(@) | Ln(f;2) = f(2)] < Ma|l f'llpy/ (@22 + bz)/An
and
(32) wp() | Ly, (f32) — f(2)] < Mal| f'llpv/22 (2 — un(2)),

for x € I and n € N.

PROOF: Choose p € N and f € C), for which f’ € Cp. Then for a fixed z € I we
can write

t
£~ @) = [ ydu tet

Using now Ly, and (1), (8), Lemma 2 and (20), we get

/ ) du ;x)
<1 /t%H

<1 llp (Ln (2 (®)] /wp(t); ) + Ln (Ip2(t)] 5 2))

<17y (L (#20)52))* (2L (1/uzy0132)

Ln(f(): 2) — £(2)| < Ln (

+1),
for n € N. From this and by (14), (20) and (21) we immediately obtain the desired

inequality (31).
The proof of (32) is similar. O

Theorem 2. Let p, L, and L}, satisfy the assumptions of Theorem 1. Then
there exists M5 = Ms(a, b, p) = const. > 0 such that

(33) wp(@) | Ln(f32) — [(2)] < My (f; Ja? + bx)/An)

and

(34) wp(@) |L5(f32) = f(@)] < Msw (5 1/20( — un(w)) )

p

;
p

for x € I and n € N.
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PrOOF: Similarly to [2] and [13] we use the Steklov function fj, of f € Cp, i.e.

h
fh(:c):z%/ flx+t)dt, ze€lI, h>0.
0

It is easily verified that f;, and the derivative f; belong to Cj, as well, and by (30)

we have:

(35) 1= Fllp < w(Fs )y,

and

(36) 1l < hlw(fi )y for h>o0.

Applying (13), (22), Theorem 1, (30), (35) and (36), we get

wy () | Ly, (f5 ) — f(2)]

< wp(@) (1L (F(t) = fa(thi2)] + |Ln (Fr(0):2) — fal@)] + | fale) - F(@))
< Ma||f = fallp + Mal| fllpv/22(x — un(2)) + || fr — fllp

< w(fihp (M + 1+ Mih™/22( — un(2) )

for # € I, n € Nand h > 0. Now setting h = /2z(z — un(x)), we obtain the
desired estimate (34).
The proof of (33) is identical. O

From Theorem 2 and Lemma 1 we can derive the following two corollaries.

Corollary 1. For every f € Cp, p € Ny, there holds

nli_)mooLn(f;x):f(:v)z lim L} (f;z) at €l

n—~0o0

This convergence is uniform on every interval [x1,x3], z1 > 0.

Corollary 2. The inequalities (17), (18), (33) and (34) show that the operators
Ly, n € N, have better approximation properties than L, for functions f € Cjp,
p € Np.

Theorem 3. Let r € N and let Ly, and Ly, be operators defined in Section 2.
Then for every f € C" we have:

B wnlo) [Lue(fio) - 1(0)] < 5 (/305 (5005 flaw? 400 )

0
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and

(38)  wrle) [y (f50) — F@)] < 2 (/32w (70 VBT — D))

for x € I and n € N, where M1 = const. > 0 is given by (9).

PROOF: First we prove the inequality (37). Fix r € N, f € C" and © € I. Then
by (27) it follows that

|Lni(f32) = f(2)| < Ln (|I-(t,2)] ;2)  for n €N,

Using (8), (30) and properties of the modulus of continuity of f(") € Cp, we
deduce from (25):

r 1
(el < EO8 [t (10:uleatt)) du
r 1
< (FO5leatol) 225 [ -yt au

1 T — s
< <0 (£0%58) (eI +67 ™) |
for t € I and every fixed 6 > 0. Consequently,
1 T — T
[Lir(32) = £@)] < w0 (F758) (Ln (@] 12) +67 L (lea () 52) ).

which by Lemma 2, (1), (20), (7)—(9) and (14) implies that

(39) < (1457 (1 (B0)) )

for n € N. Setting 6 = /(az? + bz) /A, to (39), we obtain (37) for chosen z € I

and n € N.
Applying (12), (26), (25) and (13), and arguing as above, we can write the
following analogues of (27) and (39) for f € C" and Lj,.,.(f), i.e.

L;:,;T’(f; ,T) - f(CC) = _L;kl (Ir(tvx);x)

587
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and
wr () [ L (f50) = @] < o (7058)

x (war (o)L ((p?cr(t);x))% {1 +o7 (L (wi(t);x))é} :

for z € I, n € N and every fixed § > 0. But by (23) and (6)—(9) it follows that

(40)

(41) wap (@)L (2 (0)52) < | Tiarllzr < MiA,"

for # € I and n € N. Using (41) and (15) to (40) and next putting § =
2z (x — up(x)), we obtain the estimate (38). O

From Theorem 3 and (17) and (18) we can derive:
Corollary 3. Let r € N and f € C". Then

Jim A2 (L (f5) = () = 0= lim N2 (L, (f0) — £()

at every x € I. This convergence is uniform on every interval [x1,x3], 1 > 0.

Corollary 4. The inequalities (33) and (37) show that the order of approxima-
tion of an r-times differentiable function f € C” by Lyn.(f) is better than by
L,(f). This order of approximation of f € C" by Ly.-(f) improves if r € N
grows.

The identical properties have operators L} and L;kw, in spaces C", r € N.
Moreover, the inequalities (37), (38), (17) and (18) show that operators Ly,.,. have
better approximation properties than Ly, for functions f € C", r € N.

3.2. Here we present the Voronovskaya type theorems for the operators conside-
red.

Theorem 4. Suppose that p € Ng and a function f € C), has derivatives f', f" €
Cp. Then

CL.’,E2 xr
(12) Jim A (Ln(f52) — 7)) = 0 ()
and
2
(43)  lm o (Lilfi) — f(a)) =~ ) 4 P )

at every x € 1.
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PROOF: We show only (43) because the proof of (42) is analogous.
Choose a function f satisfying the above assumptions and x € I. Then by the
Taylor formula we can write

F#&) = f@) + f(2)(t — ) + %f”(x)(t —2)? +alto)(t-2)? tel,

where a(t) = a(t,z) is a function belonging to Cp and lim¢—., a(t) = a(z) = 0.
Using the operator L} and next (8), (13) and (15), we get

Ly (f(t);2) = f(2) + (un(2) — 2) f'(z) + z (z — un(2)) ()

(44) + L (alediz), nen.

Applying Lemma 2, we get

i (a2 0iz)| < (4 (o20052))* (£ (405)) tor e

and moreover, by the properties of «(-), Corollary 1 and (41) we have

Jim i (o*®ie) =
2Ly (eh(tse) <

From the above it follows that

M/w4() n € N.

(45) Tim ALy ( (t)<p§(t);x) ~0.
Applying (19) and (45), we immediately derive (43) from (44). O

Theorem 5. Let r € N and let f € C" be a function whose derivatives f(r+1)
and f (r+2) be]ong to Cy. Then, for the operators L}.,., the following asymptotic
formula holds:

n;ro

(=D D@L (95 (1) 2)
(r+1)!
(17 + DFCHD (@)L (o4 %0)
(r+2)!
+ o (/\;(T—H)/z) as n — oo,

Ly (fi2) = fz) =

(46) .

at every x € 1.
The analogous asymptotic formula holds for the operators Ly,
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PRrROOF: Chooser € N, z € [ and f € C" satisfying the above assumptions. Then
the derivative f(), 0 < j < r+2,is an (r + 2 — j)-times differentiable function
on I. Hence for every f @, 0< j < r, we can write the Taylor formula at given x:

r4+2—j

FO @) = M

. -
5 (t—a) +aj(t,2)(t—2) 277, tel,

=0

where o (t) = a;(t, x) is a function belonging to Cp and lim¢—, (1) = aj(z) =
0. Using this formula to F; given by (4), we get

r Y r4+2—j (j+4) - o
Fr(t,:v) _ Z ( jll)] fyY . ( )(t_x)]—i-z
=0 =0
—l—(t )r+2 . (_.1')] ](t)
=0 7
fr_ i~ Sf(s)(x) _ )8
(47) _jzo( I)JSZ:; <J) A ¢
(r+1) () (t — 2)" 1 Sy
= ((r)fl)! ) (—1)J< jl
FU2 ()t — )2 S+ 2
i ((r)Jf2)! : 0(_1)J< j )
+(t—2)"2A.(t) for tel,
with
T (—1)]
(48) Ar(0) = Zo( a0
j=

The following identities for m € Ny

S(Mew={y

J=0

J=0 J=0
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imply that
r " /N £5) (g
2)(_1)] Z (j) f S'( )(t — )
j= §=j

which applied to (47) yields
(-1 f (r+1 (z)(t — )r+1
(r+1)!
(=17 (r + D2 (@) (t — )2
(r+2)!
for ¢ € I. From this and (12), (13) and (8) we deduce that

. Y (=17 (@) Ly, (5 (1); )

(=1)"(r + 1) 0D (@) Lk (e5F2(1); )
(r+2)!
v LY (A ()2t ),x) for n € N.

Er(t,z) = f(2) +

+

+

We observe that, by the properties of the functions «;, (48) and Corollary 1,

(50) lim LY (Aa(t);x) = A2(z) =

n—oo

Arguing as in the proof of Theorem 4 and applying (50) and (41), we obtain
L (4 es 2 00) = 0n (W TTP72) as n— oo,
which, applied to (49), yields the desired asymptotic formula (46). O

4. Examples

Finally we present four examples of well-known positive linear operators L,
which satisfy conditions (i)—(iii) given in Section 2.

1. The Szdsz-Mirakyan operators ([2]-[5])

na N (n)F (K
(51) Sn(f;x):=e Z o f<—>, x>0, neN,

n
k=0

satisfy the conditions (1) and (2) with a =0,b=1 and A, =n for n € N.
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2. The Baskakov operators ([2], [5])

s S ) () )

k=0
>0, neN,

satisfy also the conditions (1) and (2) with a =b=1and A\, =n for n € N.
3. The Post-Widder operators ([5], [13]) are defined for f € Cp, p € Ny, by the

following integral formula:
o
P(f;x) ::/ f@Wpn(z,t)dt, x>0, neN,
0

n/x)" n—1

(53)
exp(—nt/x).

These operators satisfy (1) and (2) with a =1, b =0 and A, =n for n € N.

4. The beta Stancu operators ([14], [13]) are defined for f € Cp, p € Ng, by the
formula:

(54) Zn(f,:v) = /OOO f@sn(z,t)dt, >0, n>p+2,

where
tmv—l

B(nx,n + 1)(1 4 t)netn—1
and B is the Euler beta function. Now the conditions (1) and (2) hold with
a=b=1land \p, =n—1for2<neN.

Using the formulas (3), (4), (10)—(12) and (51)—(54), we can define the modified
Szasz-Mirakyan, Baskakov, Post-Widder and Stancu operators: S}, V¥, P} and

sp(x,t) ==

E;kl in the space Cp, p € Ny, and the corresponding operators Ly and Ly,.,..

Hence, from Theorems 1-5 and Corollaries 1-4 we can deduce approximation
properties of operators Sy, V,,, P, and Zn and their modifications for functions
f € Cpand f e C", correspondingly.
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