Abstract characterization of Orlicz-Kantorovich lattices associated with an L_0 -valued measure

BOTIR ZAKIROV

Abstract. An abstract characterization of Orlicz-Kantorovich lattices constructed by a measure with values in the ring of measurable functions is presented.

Keywords: Orlicz-Kantorovich lattice, vector-valued measure, Orlicz function *Classification:* 46B42, 46E30, 46G10

1. Introduction

The development of the theory of integration for measures with values in the algebra L_0 of all real measurable functions has inspired the study of Banach L_0 -modules of measurable functions. The theory of L_p -spaces associated with a vector-valued measure is given in monographs [7], [10]. Precise description of Orlicz-Kantorovich spaces $L_M(\nabla, m)$ associated with a complete Boolean algebra ∇ , an N-function M and an L_0 -valued measure m defined on ∇ is given in [13], [14], [15]. Spaces $L_M(\nabla, m)$ are important examples of Banach-Kantorovich spaces (see, for example, [7], [8], [4] for definition and basic properties).

The abstract characterization of Banach lattices isomorphic to L_p -spaces is well known (see, for example, [9]). The same is done for Orlicz spaces in [2]. One can expect similar results for Banach L_0 -modules $L_p(\nabla, m)$ and $L_M(\nabla, m)$. This problem was considered in [7] for $L_p(\nabla, m)$. Here we solve this problem for $L_M(\nabla, m)$.

We use terminology and notations from the theory of Boolean algebras from [11], the theory of vector latices from [12], [5], the theory of vector integration from [10], [8], the theory of lattice-normed spaces from [7], [8], and also terminology for Orlicz-Kantorovich lattices from [13], [14].

2. Preliminaries

Let *E* be a vector lattice, E_+ be the set of all non-negative elements from *E*. Any element $x \in E$ can be uniquely decomposed as $x = x_+ - x_-$, where $x_+, x_- \in E_+$ and $x_+ \wedge x_- = 0$. The element $|x| = x_+ + x_-$ is called the absolute value of *x*, and elements x_+ and x_- are called the positive and negative parts of *x*, respectively. Elements $x, y \in E$ are disjoint iff $|x| \wedge |y| = 0$. Let $u \in E_+$. If no non-zero element is disjoint with u, then u is called a weak order unit. Fix some weak order unit (if it exists) **I**. An element $e \in E_+$ is called a *unitary element* if $e \wedge (\mathbf{I} - e) = 0$. The set $\nabla(E)$ of all unitary elements from E is a Boolean algebra with respect to the order induced from E. A complement in $\nabla(E)$ is given as $\mathbf{I} - e$.

A vector lattice is called *complete* (σ -complete) if sup A and inf A exist for every (countable) bounded subset A.

Let *E* be a σ -complete vector lattice with weak unit **I**. For every $x \in E$, the element $e_x := \sup\{\mathbf{I} \land (n|x|) : n \in \mathbb{N}\}$ is unitary. It is called the *support* of *x*. Define $e_t^x := e_{(t\mathbf{I}-x)_+}$. The set $\{e_t^x\}_{t\in\mathbb{R}}$ is called a family of *spectral unitary* elements of *x*. If $x_n \in E$, $x = \inf x_n$, then $e_t^x = \sup_{n\geq 1} e_t^{x_n}$ for all $t \in \mathbb{R}$ (see [12, Lemma IV.10.2]).

Suppose that a σ -complete vector lattice E is of countable type, i.e. every set of non-zero mutually disjoint elements from E is at most countable. Then E is order complete. Moreover, for every bounded set $A \subset E$, there exists a subset $\{x_n\}_{n=1}^{\infty} \subset A$, such that $\sup A = \sup_{n \ge 1} x_n$.

A Boolean algebra ∇ is called *complete* (σ -*complete*) if sup A exists for every (countable) subset $A \subset \nabla$. Let E be a complete (σ -complete) vector lattice with a weak unit. Then, the Boolean algebra $\nabla(E)$ (see above) is complete (σ -complete). Evidently, the operation sup is the same in E and $\nabla(E)$. The decomposition of a unit in Boolean algebra is an arbitrary set $(e_{\alpha})_{\alpha \in A}$ satisfying $\sup_{\alpha \in A} e_{\alpha} = \mathbf{I}$, $e_{\alpha} \neq 0$, $e_{\alpha} \wedge e_{\beta} = 0$, $\alpha \neq \beta$, $\alpha, \beta \in A$.

Let (Ω, Σ, μ) be a σ -finite measurable space. Let $L_0 = L_0(\Omega)$ be the algebra of all real measurable functions on (Ω, Σ, μ) (functions equal a.e. are identified). L_0 is a complete vector lattice with respect to the natural order $(x \ge y \text{ if } x(\omega) \ge y(\omega)$ for almost all ω). The weak order unit is $\mathbf{1}(\omega) \equiv 1$. The set $\nabla(\Omega)$ of all idempotents in L_0 is a complete Boolean algebra.

The support e_x of an element $x \in L_0$ is also denoted by s(x). It is clear that $s(x) = \chi_{\{|x|>0\}}$. Also, xs(x) = x. If xy = 0 then s(x)y = 0. In particular, $|x| \wedge |y| = 0$ if and only if s(x)s(y) = 0.

Let $e = \chi_A \in \nabla(\Omega)$. Set $e\Omega = (A, \Sigma_A, \mu)$, where $\Sigma_A = \{B \cap A : B \in \Sigma\}$. The rings $L_0(e\Omega)$ and $eL_0(\Omega)$ can be canonically identified. The Boolean algebras $\nabla(e\Omega)$ and $e\nabla(\Omega) = \{g \in \nabla(\Omega) : g \leq e\}$ can also be identified canonically. Define the map $\mu : \nabla(\Omega) \to [0, \infty]$ as $\mu(e) = \mu(A)$ if $e = \chi_A \in \nabla(\Omega)$. Obviously, μ is a strongly positive (i.e. $\mu(e) > 0$ for $e \neq 0$) countably additive σ -finite measure on $\nabla(\Omega)$.

A sequence $\{x_n\} \subset L_0$ converges locally with respect to a measure μ to the element $x \in L_0$ (notation: $x_n \xrightarrow{l.\mu} x$) if for any $A \in \Sigma$ with $\mu(A) < \infty$ the sequence $x_n \chi_A$ converges with respect to the measure to $x \chi_A$. If $\mu(\Omega) < \infty$, then local convergence with respect to the measure coincides with convergence with respect to the measure. There exists a countable set of non-zero disjoint idempotents

 $\{e_n\} \subset \nabla(\Omega)$ such that $\sup_{n\geq 1} e_n = \mathbf{1}$ and $\mu(e_n) < \infty$. The algebra $L_0(\Omega)$ is canonically identified with the direct product $\prod_{n=1}^{\infty} L_0(e_n\Omega)$. Local convergence with respect to the measure is now identified with convergence of each coordinate with respect to the measure. $L_0(\Omega)$ with this topology is a complete metrizable topological vector lattice.

Now we define a Banach-Kantorovich space for an L_0 -valued norm.

Let *E* be a vector space over the field \mathbb{R} . A mapping $\|\cdot\|: E \to L_0$ is said to be *a vector* (L_0 -valued) norm if it satisfies the following axioms:

- 1. $||x|| \ge 0$, and $||x|| = 0 \Leftrightarrow x = 0 \ (x \in E);$
- 2. $\|\lambda x\| = |\lambda| \|x\|$ ($\lambda \in \mathbb{R}, x \in E$);
- 3. $||x + y|| \le ||x|| + ||y|| \ (x, y \in E).$

A norm $\|\cdot\|$ is called *decomposable* or *Kantorovich* if the following property holds:

Property 1. If $e_1, e_2 \ge 0$ and $||x|| = e_1 + e_2$, then there exist $x_1, x_2 \in E$ such that $x = x_1 + x_2$ and $||x_k|| = e_k$ (k = 1, 2).

If property 1 is valid only for disjoint elements $e_1, e_2 \in L_0$, the norm is called *disjointly decomposable* or, briefly, *d-decomposable*.

A pair $(E, \|\cdot\|)$ is called a *lattice-normed space* (shortly, LNS). If the norm $\|\cdot\|$ is decomposable (*d*-decomposable), then so is the space $(E, \|\cdot\|)$.

A sequence $\{x_n\} \subset E$ (bo)-converges to $x \in E$ if the sequence $\{\|x_n - x\|\}$ (o)-converges to 0 in L_0 . A sequence $\{x_n\}$ is said to be a (bo)-Cauchy sequence if $\sup_{n,k\geq m} \|x_n - x_k\| \xrightarrow{(o)} 0$ as $m \to \infty$. An LNS is called (bo)-complete if any (bo)-Cauchy sequence (bo)-converges. A Banach-Kantorovich space (shortly, BKS) is a d-decomposable (bo)-complete LNS. It is well known that every BKS is a decomposable LNS.

Suppose that $(E, \|\cdot\|)$ is an LNS and a vector lattice simultaneously. The norm $\|\cdot\|$ is called *monotone* if $|x| \leq |y|$ implies that $\|x\| \leq \|y\|$. BKS with a monotone norm is called *a Banach-Kantorovich lattice*.

Let E be an L_0 -module. It is called a normal L_0 -module if

- 1. for any non-zero $e \in \nabla(\Omega)$, there exists $x \in E$ such that $ex \neq 0$;
- 2. for any decomposition of unit $\{e_n\}_{n=1}^{\infty} \subset \nabla(\Omega)$ and any $\{x_n\}_{n=1}^{\infty} \subset E$, there exists $x \in E$ such that $e_n x = e_n x_n$ for all n;
- 3. if $x \in E$ and $\{e_n\} \in \nabla(\Omega)$ is a disjoint sequence, then $e_n x = 0$ for all n implies that $(\sup_{n>1} e_n)x = 0$.

An ordered normal L_0 -module E is called an L_0 -vector lattice if for any $x, y, z \in E$, $\lambda \in L_0$, $\lambda \ge 0$, the inequality $x \le y$ implies $x + z \le y + z$ and $\lambda x \le \lambda y$. The simplest example of an L_0 -vector lattice is L_0 itself considered as a module over L_0 .

Lemma 2.1. Let *E* be an L_0 -vector lattice, $x, y \in E$, $x \ge 0$, $y \ge 0$, $e, g \in \nabla(\Omega)$, eg = 0. Then the elements ex and gy are disjoint.

PROOF: Let $z = ex \land gy$. Since $ex \ge 0$, $gy \ge 0$, we have $z \ge 0$ and it follows that $0 \le ez \le egy = 0$, i.e. ez = 0. Further, $0 \le (\mathbf{1} - e)z \le (\mathbf{1} - e)ex = 0$, and therefore $(\mathbf{1} - e)z = 0$, i.e. z = ez = 0.

Remark 2.2. If $x, z \in E$, $e \in \nabla(\Omega)$ and $0 \le z \le ex$, then z = ez.

Lemma 2.3. Let E be an L_0 -vector lattice with a weak order unit I. Then

- (i) $\lambda \mathbf{I} \neq 0$ for any non-zero $\lambda \in L_0$;
- (ii) $(\lambda \mathbf{I}) \vee \mathbf{0} = \lambda_{+} \mathbf{I}$ for any $\lambda \in L_0$.

PROOF: (1) Let $\lambda \in L_0$, $\lambda \geq 0$, $\lambda \neq 0$. Then $\lambda \geq \varepsilon \varepsilon$ for some $\varepsilon \in \nabla(\Omega)$, $\varepsilon \neq 0$, $\varepsilon > 0$. Hence, $\lambda \mathbf{I} \geq \varepsilon \varepsilon \mathbf{I}$. Let us show that $\varepsilon \mathbf{I} \neq 0$. Select $x \in E$ such that $\varepsilon \varepsilon \neq 0$. Let $x = x_+ - x_-$. Either $\varepsilon \varepsilon \varepsilon + z_+ \neq 0$ or $\varepsilon \varepsilon \varepsilon - z_- \neq 0$. Let $\varepsilon \varepsilon \varepsilon + z_+ \neq 0$. Set $z = (\varepsilon \varepsilon \varepsilon + z_+) \wedge \mathbf{I} \neq 0$. If $\varepsilon \mathbf{I} = 0$, then by Remark 2.2, $0 \leq \varepsilon \varepsilon = z_- \leq \varepsilon \mathbf{I} = 0$, i.e. z = 0. Therefore, $\varepsilon \mathbf{I} \neq 0$ and $\lambda \mathbf{I} \neq 0$. Let now λ be an arbitrary element from L_0 , and $\lambda = \lambda_+ - \lambda_-$, moreover $\lambda_- \neq 0$. Suppose $\lambda_+ \mathbf{I} - \lambda_- \mathbf{I} = 0$. Then $\lambda_- \mathbf{I} = s(\lambda_-)\lambda_- \mathbf{I} = s(\lambda_-)\lambda_+ \mathbf{I} = 0$, which is not the case.

(2) It is clear that $\lambda_{+}\mathbf{I} \geq 0$ and $\lambda_{+}\mathbf{I} - \lambda\mathbf{I} = \lambda_{-}\mathbf{I} \geq 0$, i.e. $\lambda_{+}\mathbf{I} \geq \lambda\mathbf{I} \vee 0$. On the other hand, if $a = \lambda\mathbf{I} \vee 0$, then

$$a \ge s(\lambda_+)a \ge s(\lambda_+)\lambda \mathbf{I} = \lambda_+ \mathbf{I}.$$

Hence, $\lambda_{+}\mathbf{I} = (\lambda \mathbf{I}) \vee 0$.

Submodules and morphisms are defined in a usual way.

Proposition 2.4. Let *E* be an L_0 -vector lattice and **I** be a weak order unit in *E*. Then $N = \{\lambda \mathbf{I} : \lambda \in L_0\}$ is a normal L_0 -submodule in *E* and a vector sublattice in *E*, canonically isomorphic to L_0 . Moreover, $N(\Omega) = \{e\mathbf{I} : e \in \nabla(\Omega)\}$ is a σ -Boolean subalgebra in $\nabla(E)$.

PROOF: Only the second assertion needs to be proved. It follows from Lemma 2.1 that $N(\Omega)$ is a Boolean subalgebra of ∇ .

Let $\{e_n\} \subset \nabla(\Omega)$ and $e = \sup e_n$. If $g \in \nabla$ and $g \ge e_n \mathbf{I}$, then $\mathbf{I} - g \le (\mathbf{1} - e_n)\mathbf{I}$, and therefore $e_n(\mathbf{I} - g) \le e_n(\mathbf{1} - e_n)\mathbf{I} = 0$. Hence, $e_n(\mathbf{I} - g) = 0$. Then $e(\mathbf{I} - g) = 0$ because E is normal. Hence, $e\mathbf{I} = \sup_{n\ge 1} e_n \mathbf{I}$. This means that $N(\Omega)$ is a σ subalgebra in $\nabla(E)$.

Proposition 2.5. Let *E* be a σ -complete L_0 -vector lattice, **I** a weak order unit in *E* and let $\{\alpha_n\} \subset L_0$ be bounded from above (below). Then $\sup_{n\geq 1}(\alpha_n \mathbf{I}) = (\sup_{n\geq 1}\alpha_n)\mathbf{I}(\inf_{n\geq 1}(\alpha_n \mathbf{I}) = (\inf_{n\geq 1}\alpha_n)\mathbf{I}$, respectively).

PROOF: First, let us show that the equality

$$e_{\alpha \mathbf{I}} := \sup_{n \ge 1} (\mathbf{I} \wedge n | \alpha | \mathbf{I}) = s(\alpha) \mathbf{I}$$

holds for any $\alpha \in L_0$. One can assume that $\alpha \ge 0$. Let $g_n = \{\alpha \ge \frac{1}{n}\}$ be a spectral idempotent for α in L_0 . It is obvious that $g_n \uparrow s(\alpha)$ and by Proposition 2.4, $g_n \mathbf{I} \uparrow s(\alpha) \mathbf{I}$.

Let $f_n = s(\alpha) - g_n$ and $\beta_n = n\alpha f_n$, n = 1, 2, ... It is clear that $0 \leq \beta_n \leq f_n \leq \mathbf{1}$ and $\beta_n g_i = 0$ for all i = 1, 2, ..., n. Hence, $0 \leq \beta_n \mathbf{I} \leq f_n \mathbf{I} \leq f_i \mathbf{I} \leq \mathbf{I}$ as $n \geq i$. Let $a_n = \sup_{k \geq n} \beta_k \mathbf{I}$ and $a = \inf_{n \geq 1} a_n$. Since $a_n \leq f_n \mathbf{I}$, we have $a \leq f_n \mathbf{I}$ for all n = 1, 2, We thus have $0 \leq g_n a \leq g_n f_n \mathbf{I} = 0$, i.e. $g_n a = 0$, n = 1, 2, Hence, $s(\alpha)a = (\sup_{n \geq 1} g_n)a = 0$. On the other hand, $a \leq f_n \mathbf{I} \leq s(\alpha)\mathbf{I}$. By Remark 2.2 we obtain $a = s(\alpha)a$, and so a = 0. Thus, $\beta_n \mathbf{I} \stackrel{(o)}{\longrightarrow} 0$. Since $\mathbf{1} \wedge n\alpha = g_n + \beta_n$, it follows that $\mathbf{I} \wedge (n\alpha)\mathbf{I} = (\mathbf{1} \wedge n\alpha)\mathbf{I} = g_n\mathbf{I} + \beta_n\mathbf{I}$. Hence, $e_{\alpha \mathbf{I}} = (o) - \lim(\mathbf{I} \wedge (n\alpha)\mathbf{I}) = (o) - \lim g_n\mathbf{I} + (o) - \lim \beta_n\mathbf{I} = s(\alpha)\mathbf{I}$. Now let us show that $\inf_{n \geq 1} (\alpha_n \mathbf{I}) = (\inf_{n \geq 1} \alpha_n)\mathbf{I}$ for any bounded from below sequence (α_n) in L_0 . Let $\alpha = \inf_{n \geq 1} \alpha_n$, $x = \inf_{n \geq 1} \alpha_n \mathbf{I}$.

Consider in E the families $\{e_t^x\}_{t\in\mathbb{R}}$ and $\{e_t^{\alpha_n \mathbf{I}}\}_{t\in\mathbb{R}}$ of spectral unitary elements for x and $\alpha_n \mathbf{I}$, respectively. By Lemma 2.3(ii) we have

$$e_t^{\alpha_n \mathbf{I}} = e_{(t\mathbf{I} - \alpha_n \mathbf{I})_+} = e_{((t\mathbf{1} - \alpha_n)\mathbf{I})_+} = e_{(t\mathbf{1} - \alpha_n)_+ \mathbf{I}} = s((t\mathbf{1} - \alpha_n)_+)\mathbf{I}.$$

This together with Proposition 2.4 and [11, Lemma IV.10.2] imply that

$$e_t^x = \sup_{n \ge 1} e_t^{\alpha_n \mathbf{I}} = \sup_{n \ge 1} \left(s((t\mathbf{1} - \alpha_n)_+) \mathbf{I} \right)$$
$$= \left(\sup_{n \ge 1} s((t\mathbf{1} - \alpha_n)_+) \right) \mathbf{I} = s((t\mathbf{1} - \alpha)_+) \mathbf{I} = g_t^{\alpha},$$

where $\{g_t^{\alpha}\}_{t \in \mathbb{R}}$ is the family of spectral idempotents for α in L_0 . Similarly, for the family of spectral idempotents $\{e_t^{\alpha \mathbf{I}}\}_{t \in \mathbb{R}}$ we have

$$e_t^{\alpha \mathbf{I}} = e_{(t\mathbf{I} - \alpha \mathbf{I})_+} = s((t\mathbf{1} - \alpha)_+)\mathbf{I} = g_t^{\alpha}\mathbf{I}.$$

Hence, $e_t^x = e_t^{\alpha \mathbf{I}}$ for all $t \in \mathbb{R}$.

It follows from the spectral theorem for σ -complete vector lattices [11, Theorem IV.10.1] that $x = \alpha \mathbf{I}$, i.e. $\inf_{n \ge 1} (\alpha_n \mathbf{I}) = (\inf_{n \ge 1} \alpha_n) \mathbf{I}$. If $\{\alpha_n\}$ is a bounded from above sequence from L_0 , then passing to the sequence $\{-\alpha_n\}$, we obtain $\sup_{n>1} (\alpha_n \mathbf{I}) = (\sup_{n>1} \alpha_n) \mathbf{I}$.

Remark 2.6. Let E be a σ -complete L_0 -vector lattice with a weak order unit. Then L_0 can be identified with the normal L_0 -submodule N in E. In addition, operations sup and inf are identical in L_0 and N. The Boolean algebra $\nabla(\Omega)$ is a σ -subalgebra in $\nabla(E)$.

3. Banach L_0 -vector lattices

Let *E* be a normal L_0 -module. An L_0 -valued norm $\|\cdot\|: E \to L_0$ is said to be *compatible with the structure of the* L_0 -module *E* (shortly, L_0 -norm) if $\|\lambda x\| = |\lambda| \|x\|$ for any $x \in E$ and $\lambda \in L_0$. Then, the pair $(E, \|\cdot\|)$ is called a normed L_0 -module.

Let E be a normed L_0 -module. Let t be the topology of local convergence with respect to the measure in L_0 . A sequence $\{x_n\} \subset E$ t-converges to $x \in E$ if $||x_n - x|| \xrightarrow{t} 0$. Cauchy sequences are defined as usual. A normed L_0 -module Eis called *Banach* (t-Banach) if any (bo)-Cauchy (t-Cauchy, respectively) sequence in E (bo)-converges (t-converges, respectively). E is a Banach L_0 -module if and only if it is a t-Banach L_0 -module.

Let E be a BKS over L_0 . It is possible to define a structure of L_0 -module on E. This structure makes E a Banach L_0 -module. Vice versa, any Banach L_0 -module E is a BKS over L_0 .

If E is a normed L_0 -module and simultaneously an L_0 -vector lattice with a monotone norm, then E is called a normed L_0 -vector lattice. Any norm complete L_0 -vector lattice is called a Banach L_0 -vector lattice. The class of Banach L_0 -vector lattices coincides with the class of Banach-Kantorovich lattices over L_0 .

Let us give examples of Banach L_0 -vector lattices.

Suppose ∇ is a complete Boolean algebra. Denote by $X(\nabla)$ the Stone compactification of ∇ . Let $L_0(\nabla)$ be the set of all continuous functions $x : X(\nabla) \rightarrow$ $[-\infty, +\infty]$ such that $x^{-1}(\{\pm\infty\})$ is a nowhere dense subset of $X(\nabla)$ (see [10, V, §2]). Evidently, $L_0(\nabla)$ is a ring and an order complete vector lattice. The function **1**, equal to 1 identically on $X(\nabla)$, is a weak order unit in $L_0(\nabla)$. The order ideal generated by the element **1** coincides with the space $C(X(\nabla))$ of all continuous real functions on $X(\nabla)$.

A mapping $m: \nabla \to L_0$ is called an L_0 -valued measure on ∇ if

- 1. $m(e) \ge 0$ for any $e \in \nabla$,
- 2. $m(e \lor g) = m(e) + m(g)$ if $e, g \in \nabla$ and $e \land g = 0$,
- 3. if $e_n \downarrow 0$, $e_n \in \nabla$, then $m(e_n) \downarrow 0$.

A measure *m* is called *strongly positive* if m(e) = 0, $e \in \nabla$ implies e = 0. Using Lebesgue construction, one can obtain an integral $I_m : x \to \int x \, dm$ for every strongly positive L_0 -valued measure *m* (see [10], [8]). There exists the greatest order ideal $L := L_1(\nabla, m)$ in $L_0(\nabla)$ containing ∇ with the following properties:

1.
$$I_m e = m(e)$$
 for any $e \in \nabla$,

- 2. $I_m(ax+by) = aI_mx + bI_my, x, y \in L, a, b \in \mathbb{R},$
- 3. if $x_n, x \in L$ and $x_n \uparrow x$ then $I_m x_n \xrightarrow{(o)} I_m x$.

The mapping I_m satisfying the above properties is uniquely defined. The norm on $L_1(\nabla, m)$ is defined as $||x||_1 = \int |x| \, dm$. Now, $(L_1(\nabla, m), || \cdot ||_1)$ is a (bo)-complete

LNS over L_0 (see [10]).

We suppose that $\nabla(\Omega)$ is a regular Boolean subalgebra in ∇ , i.e. $\sup A \in \nabla(\Omega)$ for every $A \subset \nabla(\Omega)$. We can always obtain this by considering the complete tensor product $\nabla \otimes \nabla(\Omega)$ of the Boolean algebras ∇ and $\nabla(\Omega)$ (see [2, VII, §7.2]). One can canonically identify $L_0(\Omega)$ with a subalgebra in $L_0(\nabla)$. It is also a regular vector sublattice in $L_0(\nabla)$. Moreover, sup and inf operations in $L_0(\Omega)$ and $L_0(\nabla)$ coincide. Hence, $L_0(\nabla)$ becomes an L_0 -vector lattice (multiplication of elements from $L_0(\nabla)$ by elements from L_0 coincides with the natural multiplication in $L_0(\nabla)$).

From now on, we require the measure $m : \nabla \to L_0$ to be compatible with the module structure, i.e. m(ge) = gm(e) for all $e \in \nabla$, $g \in \nabla$. In this case, $L_1(\nabla, m)$ becomes a BKS over L_0 . In addition, the following property holds:

Let $x \in L_1(\nabla, m)$ and $\alpha \in L_0$. Then, $\alpha x \in L_1(\nabla, m)$ and $\int \alpha x \, dm = \alpha \int x \, dm$. In particular, $L_0 \subset L_1(\nabla, m)$ and $\int \alpha \, dm = \alpha m(\mathbf{1})$ for all $\alpha \in L_0$ (see [6, 6.1.10]). Let p > 1. Set

$$L_p(\nabla, m) := \{ x \in L_0(\nabla) : |x|^p \in L_1(\nabla, m) \}.$$

Then $L_p(\nabla, m)$ is a normal L_0 -module and a Banach L_0 -vector lattice with respect to the norm $||x||_p := (\int |x|^p dm)^{1/p}$ (see [1, 4.2.2], or [2, VIII, §8.2]).

Now we give examples of L_0 -valued measures compatible with the module structure.

Example 1. Let (Ω, Σ, μ) be a σ -finite complete measure space. Let $\mathcal{A} \subset \Sigma$ be a σ -subalgebra. Denote by $m(e) = E(e|\mathcal{A})$ the conditional expectation. It is clear that m is a strongly positive $L_0(\Omega, \mathcal{A}, \mu)$ -valued measure on $\nabla(\Omega, \Sigma, \mu)$ compatible with the module structure.

Example 2. Let (Ω, Σ, μ) be the same space as in Example 1, X be another complete Boolean algebra with a strongly positive scalar measure ν . Step mappings $u : (\Omega, \Sigma, \mu) \to X$ are defined in the usual way. Let $\Gamma(X)$ be the set of all step mappings $u : (\Omega, \Sigma, \mu) \to X$. A mapping $u : (\Omega, \Sigma, \mu) \to X$ is said to be measurable if there exists a sequence $\{u_n\} \subset \Gamma(X)$ such that $\nu(u(\omega) \triangle u_n(\omega)) \to 0$ as $n \to \infty$ for a.e. $\omega \in \Omega$, Here, $e \triangle g = (e \land Cg) \lor (Ce \land g), e, g \in X$. Let $\mathcal{L}_0(\Omega, X)$ be the set of all measurable maps from (Ω, Σ, μ) into X. For arbitrary $u, v \in \mathcal{L}_0(\Omega, X)$ we set $u \leq v$ if $u(\omega) \leq v(\omega)$ for all $\omega \in \Omega$. Then, $\mathcal{L}_0(\Omega, X)$ becomes a Boolean algebra. Its unit is $\mathbf{1}(\omega) \equiv \mathbf{1}_X$. Its zero is $\mathbf{0}(\omega) = \mathbf{0}_X$. The complement is defined as $(Cu)(\omega) = C(u(\omega))$. Moreover $(u \lor v)(\omega) = u(\omega) \lor v(\omega)$, $(u \land v)(\omega) = u(\omega) \land v(\omega), \omega \in \Omega$.

Consider the ideal $J = \{u \in \mathcal{L}_0(\Omega, X) : u(\omega) = 0 \text{ a.e.}\}$. Define $L_0(\Omega, X)$ as a Boolean factor-algebra $\mathcal{L}_0(\Omega, X)/J$. $L_0(\Omega, X)$ is a complete Boolean algebra (see [1]). $\nabla(\Omega) = \{u \in L_0(\Omega, X) : u = \chi_A, A \in \Sigma\}$ is a regular Boolean subalgebra in $L_0(\Omega, X)$. If $u \in \Gamma(X)$, then the scalar function $\nu \circ u \in L_0(\Omega)$. Hence, for any $v \in L_0(\Omega, X)$, the function $\nu(v(\omega)) = \lim_{n \to \infty} \nu(v_n(\omega)) \in L_0(\Omega)$. Here $v_n \in \Gamma(X)$, $\nu(v(\omega) \triangle v_n(\omega)) \rightarrow 0$. So, we defined a mapping $\nu : L_0(\Omega, X) \rightarrow L_0(\Omega)$. It is an L_0 -valued strongly positive measure on $L_0(\Omega, X)$ compatible with the module structure (see [1]).

Let $(E, \|\cdot\|$ be a normed L_0 -vector lattice. A norm in E is called *order continuous* if for any $\{x_n\} \subset E_+, x_n \downarrow 0$ implies $\|x_n\| \stackrel{t}{\longrightarrow} 0$.

The following order and topological properties of normed L_0 -vector lattices can be proved in the same way as in the case of normed lattices.

Theorem 3.1. Let $(E, \|\cdot\|)$ be a normed L_0 -vector lattice. Then

1. if $\{x_n\} \subset E$ is an increasing t-converging sequence, then

$$\lim_{n \to \infty} x_n = \sup_n x_n.$$

- 2. (Amemiya theorem). The following conditions are equivalent:
 - (a) E is a Banach L_0 -vector lattice;
 - (b) if $\{x_n\}$ is a (bo)-Cauchy increasing sequence from E_+ , then $\{x_n\}$ (bo)-converges in E;
 - (c) if $\{x_n\}$ is a (bo)-Cauchy increasing sequence from E_+ , then there exists $x = (\sup_{n>1} x_n) \in E$.
- 3. Let $(E, \|\cdot\|)$ be a σ -complete normed L_0 -vector lattice with an order continuous norm. Then E is of countable type. Therefore E is an order complete vector lattice.
- 4. Let E be a Banach L_0 -vector space. The following conditions are equivalent:
 - (a) E is an order complete lattice and $\|\cdot\|$ is order continuous.
 - (b) Any bounded sequence of positive mutually disjoint elements t-converges to zero.

4. Orlicz-Kantorovich lattices associated with Orlicz L_0 -modulators

Let us start with some definitions.

Definition. $\psi : [0, \infty) \to \mathbb{R}$ is called an *Orlicz function* if it is a convex nonnegative function such that $\psi(0) = 0$ and $\psi(t) > 0$ for t > 0. An additional requirement is the so called (δ_2, Δ_2) -condition, i.e. $\psi(2t) \leq c\psi(t)$ for all $t \geq 0$ and a constant c > 0.

Let $x \in L_0(\nabla)$. By definition, $G = \{t \in X(\nabla) : |x(t)| < \infty\} \subset X(\nabla)$ is an open and dense subset. Hence, we can define $y \in L_0(\nabla)$ as $y = \psi \circ |x| := \psi(|x|)$. Define

$$L_{\psi} := L_{\psi}(\nabla, m) := \{ x \in L_0(\nabla) : \psi(|x|) \in L_1(\nabla, m) \}$$

It is clear that L_{ψ} is a normal L_0 -submodule and a vector sublattice in $L_0(\nabla)$.

Let $\mathcal{P}(L_0) = \{\lambda \ge 0 \in L_0 : s(\lambda) = 1\}$. Obviously, for any $\lambda \in \mathcal{P}(L_0)$ there exists $\lambda^{-1} \in \mathcal{P}(L_0)$.

Lemma 4.1. Let $x \in L_{\psi}$. There exists $\lambda \in \mathcal{P}(L_0)$ such that

$$\int \psi(\lambda^{-1}|x|) \, dm \le \mathbf{1}$$

PROOF: Let $\lambda_0 = \int \psi(|x|) \, dm + 1$. It is clear that $\lambda_0 \in \mathcal{P}(L_0)$ and $0 \leq \lambda_0^{-1} \leq 1$. Since $\psi(st) \leq s\psi(t)$ for all $s \in [0, 1]$, we are done.

Hence, we can define an L_0 -valued function

$$\|x\|_{(\psi)} = \inf \left\{ \lambda \in \mathcal{P}(L_0) : \int \psi(\lambda^{-1}|x|) \, dm \le \mathbf{1} \right\}.$$

Theorem 4.2. $(L_{\psi}, \|\cdot\|_{(\psi)})$ is a Banach L_0 -vector lattice.

We need some lemmas to prove Theorem 4.2.

Lemma 4.3. Let $x_n, x \in L_0(\nabla), 0 \le x_n \uparrow x$. Then $\psi(x_n) \uparrow \psi(x)$.

The proof of this lemma is similar to that of Lemma 2.4 from [14].

Lemma 4.4. $||x||_{(\psi)}$ is a monotone L_0 -norm on L_{ψ} , i.e. $(L_{\psi}, || \cdot ||_{(\psi)})$ is a normed L_0 -vector lattice.

PROOF: Obviously, $\|\cdot\|$ is monotone, convex and positive. Assume now that $\|x\| = 0$ for some $x \in \mathbf{L}_{\psi}$. Consider $\lambda \in \mathcal{P}(L_0)$ such that $\int \psi(\lambda^{-1}|x|) dm \leq \mathbf{1}$. Then, $\lambda \wedge \mathbf{1} \in \mathcal{P}(L_0)$ and $0 \leq \lambda \wedge \mathbf{1} \leq \mathbf{1}$. Obviously, $(\lambda \wedge \mathbf{1})^{-1}|x| = \lambda^{-1}|x|\{\lambda < \mathbf{1}\} + |x|\{\lambda \geq \mathbf{1}\}$. Hence, $\psi((\lambda \wedge \mathbf{1})^{-1}|x|) = \psi(\lambda^{-1}|x|)\{\lambda < \mathbf{1}\} + \psi(|x|)\{\lambda \geq \mathbf{1}\}$. Therefore,

$$\int \psi((\lambda \wedge \mathbf{1})^{-1}|x|) \, dm = \{\lambda < \mathbf{1}\} \int \psi(\lambda^{-1}|x|) \, dm + \{\lambda \ge \mathbf{1}\} \int \psi(|x|) \, dm$$
$$\leq \{\lambda < \mathbf{1}\} + \int \psi(|x|) \, dm \le \mathbf{1} + \int \psi(|x|) \, dm.$$

However, $\psi((\lambda \wedge \mathbf{1})^{-1}|x|) \ge (\lambda \wedge \mathbf{1})^{-1}\psi(x)$. Therefore,

$$\int \psi(|x|) \, dm \le (\lambda \wedge \mathbf{1}) \left(\mathbf{1} + \int \psi(|x|) \, dm \right).$$

Now, one can take infimum over all such λ and obtain $\int \psi(|x|) dm = 0$. Hence, x = 0.

Lemma 4.5. Let $x \in L_{\psi}$, $e = 1 - s(||x||_{(\psi)})$. Then

$$\int \psi\left(\left(\|x\|_{(\psi)}+e\right)^{-1}|x|\right)\,dm\leq \mathbf{1}.$$

PROOF: Obviously, $s(x) = s(||x||_{(\psi)})$. Hence $(\mathbf{1}-e)|x| = |x|$. Since L_0 has countable type, then there exists a sequence $\{\lambda_n\} \subset \mathcal{P}(L_0)$, such that $\int \psi(\lambda_n^{-1}|x|) \leq \mathbf{1}$ and $\lambda_n \downarrow = ||x||_{(\psi)}$. Set $\alpha_n = \lambda_n(\mathbf{1}-e) + e$, $n = 1, 2, \ldots$. Then $\alpha_n \downarrow (||x||_{(\psi)} + e)$ and $\alpha_n^{-1} = (\lambda_n^{-1}(\mathbf{1}-e) + e) \uparrow (||x||_{(\psi)} + e)^{-1}$. Hence, $\psi(\alpha_n^{-1}|x|) \uparrow \psi((||x||_{(\psi)} + e)^{-1}|x|)$ (see Lemma 4.3). By the monotone convergence theorem (see [6, 6.1.5]), we have

$$\int \psi \left(\left(\|x\|_{(\psi)} + e \right)^{-1} |x| \right) dm = \sup_{n \ge 1} \int \psi \left(\alpha_n^{-1} |x| \right) dm$$
$$= \sup_{n \ge 1} \int \psi \left(\left(\lambda_n^{-1} (\mathbf{1} - e) + e \right) |x| \right) dm$$
$$= \sup_{n \ge 1} \int \psi(\lambda_n^{-1} |x|) dm \le \mathbf{1}.$$

PROOF OF THEOREM 4.2: Consider a (bo)-Cauchy increasing sequence $\{x_n\} \in (L_{\psi})_+$. Obviously, the sequence $||x_n||_{(\psi)}$ is a (o)-Cauchy sequence in L_0 . That is, $||x_n||_{(\psi)} \uparrow \alpha$. Set $e_n = \mathbf{1} - s(x_n)$ and $\alpha_n = ||x_n||_{(\psi)} + e_n$. Then $0 \le \alpha_n \le \alpha + \mathbf{1}$. By Lemma 4.5, $\int \psi(\alpha_n^{-1}x_n) \le \mathbf{1}$. Therefore, $\int \psi((\alpha+\mathbf{1})^{-1}x_n) \le \mathbf{1}$. The sequence $\psi((\alpha+\mathbf{1})^{-1}x_n) \in L_1$ is monotone and L_1 -bounded. Hence, $\psi((\alpha+1)^{-1}x_n) \uparrow y \in L_1$. Therefore, $x_n \uparrow (\alpha + \mathbf{1})\psi^{-1}(y) \in L_{\psi}$.

A Banach L_0 -vector lattice $(L_{\psi}, \|\cdot\|_{(\psi)})$ is called the Orlicz-Kantorovich space. See examples after Theorem 5.1.

Denote $\Phi(x) = \int \psi(|x|) dm$. It is easy to see that the mapping $\Phi : L_{\psi} \to L_0$ satisfies the following properties:

- 1. $\Phi(x) \ge 0$ and $\Phi(x) = 0 \Leftrightarrow x = 0;$
- 2. $\Phi(x) \leq \Phi(y)$ if $|x| \leq |y|$;
- 3. $\Phi(\alpha x + (\mathbf{1} \alpha)y) \le \alpha \Phi(x) + (\mathbf{1} \alpha)\Phi(y), \ \alpha \in L_0, \ 0 \le \alpha \le \mathbf{1};$
- 4. $\Phi(2x) \le c\Phi(x)$ for some constant c > 0;
- 5. $\Phi(x+y) = \Phi(x) + \Phi(y)$ if $x \land y = 0$;
- 6. $\Phi(ex) = e\Phi(x)$ for all $e \in \nabla(\Omega)$;
- 7. $\Phi(t\mathbf{1}) = \varphi(t)\Phi(\mathbf{1})$ for all $t \ge 0$, where $\varphi : [0,\infty) \to [0,\infty)$ is a scalar function.

Now we define an Orlicz L_0 -lattice. Let E be an L_0 -vector lattice with a weak order unit **I**. A map $\Phi : E \to L_0$ is called an Orlicz L_0 -modulator if Φ satisfies properties 1–7. Obviously, $\Phi(x) = \Phi(|x|)$ and $\Phi(\alpha x) \leq \alpha \Phi(x)$ for $\alpha \in L_0$, $0 \leq \alpha \leq 1$. The element $\Phi(\mathbf{I})$ is invertible in L_0 . Indeed, let $e = s(\Phi(\mathbf{I}))$. Then $\Phi((\mathbf{1} - e)\mathbf{I}) = (\mathbf{1} - e)\Phi(\mathbf{I}) = 0$. Hence, $(\mathbf{1} - e)\mathbf{I} = 0$ and $e = \mathbf{1}$. Properties 1–7 imply that φ is an Orlicz function satisfying the (δ_2, Δ_2) -condition.

Set $B(x) = \{\lambda \in \mathcal{P}(L_0) : \Phi(\lambda^{-1}x) \leq \mathbf{1}\}$. If $\lambda = \Phi(x) + \mathbf{1}$, then $\Phi(\lambda^{-1}x) \leq \lambda^{-1}\Phi(x) \leq \mathbf{1}$. Hence B(x) is a non-empty set. For any $x \in E$, set $||x||_{\Phi} = \inf\{\lambda : \lambda \in B(x)\}$.

Proposition 4.6. $(E, \|\cdot\|_{\Phi})$ is a normed L_0 -vector lattice.

PROOF: Obviously, $\|\cdot\|_{\Phi}$ is monotone, convex and positive. If $\|x\|_{\Phi} = 0$, then repeating the proof of Lemma 4.4 and using properties of the Orlicz L_0 -modulator Φ , we obtain x = 0. Let $x, y \in E$, $\lambda_1 \in B(x)$, $\lambda_2 \in B(y)$. Then

$$\begin{aligned} \Phi((\lambda_1 + \lambda_2)^{-1}(x + y)) &= \Phi(\lambda_1(\lambda_1 + \lambda_2)^{-1}\lambda_1^{-1}x + \lambda_2(\lambda_1 + \lambda_2)^{-1}\lambda_2^{-1}y) \\ &\leq \lambda_1(\lambda_1 + \lambda_2)^{-1}\Phi(\lambda_1^{-1}x) + \lambda_2(\lambda_1 + \lambda_2)^{-1}\Phi(\lambda_1^{-1}y) \leq \mathbf{1}, \end{aligned}$$

i.e. $\lambda_1 + \lambda_2 \in B(x+y)$. This means that $B(x) + B(y) \subseteq B(x+y)$, and so

$$||x+y||_{\Phi} \le ||x||_{\Phi} + ||y||_{\Phi}.$$

Let us now show that $||ex||_{\Phi} = e||x||_{\Phi}$ for any idempotent $e \in L_0$ and $x \in E$. Take $\lambda, \beta \in \mathcal{P}(L_0)$ such that $\Phi(\lambda^{-1}x) \leq \mathbf{1}, \Phi(\beta^{-1}xe) \leq \mathbf{1}$. Then $\gamma = \beta e + \lambda(\mathbf{1} - e) \in \mathcal{P}(L_0)$, in addition $\gamma^{-1} = \beta^{-1}e + \lambda^{-1}(\mathbf{1} - e)$ and

$$\Phi(\gamma^{-1}x) = \Phi(\gamma^{-1}xe) + \Phi(\gamma^{-1}x(\mathbf{1}-e))$$

= $\Phi(\beta^{-1}xe) + \Phi(\lambda^{-1}x(\mathbf{1}-e))$
= $e\Phi(\beta^{-1}xe) + (\mathbf{1}-e)\Phi(\lambda^{-1}x)$
 $\leq e + (\mathbf{1}-e) = \mathbf{1}.$

Hence, $||x||_{\Phi} \leq \gamma$ and therefore $e||x||_{\Phi} \leq ||ex||_{\Phi}$.

Since $|ex| \leq |x|$, we have $||ex||_{\Phi} \leq ||x||_{\Phi}$. That is why $e||x||_{\Phi} \leq e||ex||_{\Phi} \leq e||x||_{\Phi}$, i.e. $e||x||_{\Phi} = e||ex||_{\Phi}$.

Further, if $\lambda \in \mathcal{P}(L_0)$ and $\Phi(\lambda^{-1}ex) \leq \mathbf{1}$, then $\Phi(\beta^{-1}ex) = \Phi(\lambda^{-1}ex) \leq \mathbf{1}$ for $\beta = \lambda e + \varepsilon(\mathbf{1} - e)$. Hence $\|ex\|_{\Phi}(\mathbf{1} - e) = 0$ and $\|ex\|_{\Phi} = e\|ex\|_{\Phi} = e\|x\|_{\Phi}$. Let now α be an invertible element from L_0 . Then

$$\|\alpha x\|_{\Phi} = \inf\left\{\lambda \in \mathcal{P}(L_0) : \Phi(\lambda^{-1}\alpha x) \leq \mathbf{1}\right\}$$
$$= \inf\left\{|\alpha|\gamma : \Phi(\gamma^{-1}x) \leq \mathbf{1}, \gamma = \lambda|\alpha|^{-1} \in \mathcal{P}(L_0)\right\} = |\alpha| \|x\|_{\Phi}.$$

If α is an arbitrary non-zero element from L_0 , $e = \mathbf{1} - s(\alpha)$, then $\alpha + e$ is invertible in L_0 , and therefore

$$\|\alpha x\|_{\Phi} = \|(\alpha + e)(\mathbf{1} - e)x\|_{\Phi} = (|\alpha| + e)\|(\mathbf{1} - e)x\|_{\Phi}$$
$$= (|\alpha| + e)(\mathbf{1} - e)\|x\|_{\Phi} = |\alpha|\|x\|_{\Phi}.$$

Thus, $(E, \|\cdot\|_{\Phi})$ is a normed L_0 -vector lattice.

Definition. A norm-complete L_0 -vector lattice $(E, \|\cdot\|_{\Phi})$ is called an *Orlicz* L_0 -lattice.

The Orlicz-Kantorovich space $(L_{\psi}, \|\cdot\|_{(\psi)})$ is a good example of Orlicz L_0 -lattices.

Theorem 4.7. The Orlicz L_0 -lattice $(E, \|\cdot\|_{\Phi})$ is an order complete lattice, and the L_0 -norm $\|\cdot\|_{\Phi}$ is order continuous.

PROOF: Consider a disjoint bounded sequence $\{x_n\} \subset E_+$. Since $x_n \leq x \in E_+$, we have $\sum_{i=1}^n x_i \leq x$. Using property 5, we obtain $\sum_{i=1}^n \Phi(x_i) \leq \Phi(x)$. Hence, $\Phi(x_n) \xrightarrow{(o)} 0$. For any fixed $i = 1, 2, \ldots, \Phi(2^i x_n) \xrightarrow{(o)} 0$. The element $\lambda = \Phi(x) + \mathbf{1} \in B(x)$. Hence, $\|x\|_{\Phi} \leq \Phi(x) + \mathbf{1}$. Therefore, $\|x_n\|_{\Phi} \leq 2^{-i}\Phi(2^i x_n) + 2^{-i}\mathbf{1}$. Thus, $(o)-\overline{\lim}\|x_n\|_{\Phi} \leq 2^{-i}\mathbf{1}$ for any i. Hence, $(o)-\overline{\lim}\|x_n\|_{\Phi} = 0$. By Theorem 3.1.4, we are done.

Lemma 4.8. Let $||x||_{\Phi} \leq 1$ and $\{||x||_{\Phi} = 1\} = 0$. Then $\Phi(x) \leq ||x||_{\Phi}$.

PROOF: As in Proposition 2.7 from [13], one can choose $\lambda_n \in B(x)$ such that $\lambda_n \downarrow ||x||_{\Phi}$. Let $\lambda \in L_0$, $\lambda \ge 0$, $||x||_{\Phi} \le \lambda \le 1$ and $\{\lambda = ||x||_{\Phi}\} = 0$. Then, λ is invertible. Set $f_n = \{\lambda < \lambda_n\}$. Obviously, $f_n \downarrow 0$. We have

$$\Phi\left(\lambda^{-1}x\right) = \Phi\left(\left(\lambda_n^{-1}\lambda_n\lambda^{-1}\right)x\right)$$

= $f_n\Phi\left(\lambda_n^{-1}x\lambda_n\lambda^{-1}\right) + (\mathbf{1} - f_n)\Phi\left(\lambda_n^{-1}x\left(\lambda_n\lambda^{-1}\left(\mathbf{1} - f_n\right)\right)\right)$
 $\leq f_n\Phi\left(\lambda_n^{-1}x\lambda_n\lambda^{-1}\right) + (\mathbf{1} - f_n)\Phi(\lambda_n^{-1}x)$
 $\leq f_n\Phi(\lambda_n^{-1}x\lambda_n\lambda^{-1}) + (\mathbf{1} - f_n).$

Since $f_n \downarrow 0$, $f_n \Phi(\lambda_n^{-1} x \lambda_n \lambda^{-1}) \xrightarrow{(o)} 0$. After switching to (o)-limit, we obtain $\Phi(\lambda^{-1}x) \leq \mathbf{1}$. Since $\lambda \leq \mathbf{1}$, we have $\lambda^{-1}\Phi(x) \leq \Phi(\lambda^{-1}x) \leq \mathbf{1}$.

Let $\alpha_n = \|x\|_{\Phi} + n^{-1}(\mathbf{1} - \|x\|_{\Phi})$. Then $\|x\|_{\Phi} \le \alpha_n \le \mathbf{1}$ and $\{\|x\|_{\Phi} = \alpha_n\} = 0$. Hence $\Phi(x) \le \alpha_n, n = 1, 2, \dots$ and $\Phi(x) \le \|x\|_{\Phi}$.

Proposition 4.9. Let $(E, \|\cdot\|_{\Phi})$ be an Orlicz L_0 -lattice, $y_n \in E$. Then $\|y_n\|_{\Phi} \xrightarrow{(o)} 0$ if and only if $\Phi(y_n) \xrightarrow{(o)} 0$.

PROOF: Let $\Phi(y_n) \xrightarrow{(o)} 0$. Then, $\|y_n\|_{\Phi} \xrightarrow{(o)} 0$ (see the proof of Theorem 4.7). Set $g_n = \{\|y_n\|_{\Phi} < 1\}$. Since $\|y_n\|_{\Phi} \xrightarrow{(o)} 0$, we have $g_n \xrightarrow{(o)} 1$. Obviously, $\|g_n y_n\|_{\Phi} = g_n\|y_n\|_{\Phi} \leq 1$ and $\{g_n\|y_n\|_{\Phi} = 1\} = 0$. By Lemma 4.8, $\Phi(g_n y_n) \leq \|g_n y_n\|_{\Phi} = g_n\|y_n\|_{\Phi} \xrightarrow{(o)} 0$. Since $(1 - g_n) \xrightarrow{(o)} 0$, we have $(1 - g_n)\Phi(y_n) \xrightarrow{(o)} 0$. Hence, $\Phi(y_n) = \Phi(g_n y_n) + \Phi((1 - g_n)y_n) \xrightarrow{(o)} 0$.

Proposition 4.10. Let $x_n \uparrow x$. Then $\Phi(x_n) \uparrow \Phi(x)$.

PROOF: Obviously, $\sup_{n\geq 1} \Phi(x_n) \leq \Phi(x)$. Further, for any number $a \in (0, 1]$, we have $x = (1-a)x_n + a(x_n + a^{-1}(x - x_n))$. Using properties of Φ , we obtain

$$\Phi(x) \le (1-a)\Phi(x_n) + a\Phi\left(x_n + a^{-1}(x-x_n)\right) \\ \le \Phi(x_n) + 2^{-1}ac\left(\Phi(x_n) + \Phi\left(a^{-1}(x-x_n)\right)\right).$$

By Theorem 4.7, $||a^{-1}(x-x_n)||_{\Phi} \xrightarrow{(o)} 0$. By Proposition 4.9, $\Phi(a^{-1}(x-x_n)) \downarrow 0$. Hence,

$$\Phi(x) \le (o) - \limsup_{n \to \infty} \left(\Phi(x_n) + 2^{-1} ac \left(\Phi(x_n) + \Phi\left(a^{-1}(x - x_n) \right) \right) \right)$$
$$= \left(1 + \frac{1}{2} ac \right) \sup_{n \ge 1} \Phi(x_n).$$

Since a is arbitrary, we obtain $\Phi(x) \leq \sup_{n \geq 1} \Phi(x_n)$.

5. Abstract characterization of Orlicz-Kantorovich L₀-spaces

Definition (compare with [2]). An Orlicz L_0 -lattice $(E, \|\cdot\|_{\Phi})$ is called *component-invariant* if

$$\Phi(te) = \Phi(e)\Phi^{-1}(\mathbf{I})\Phi(t\mathbf{I})$$

for all $t \geq 0, e \in \nabla$.

The Orlicz-Kantorovich space $(L_{\psi}(\nabla, m), \|\cdot\|_{(\psi)})$ is a component-invariant Orlicz L_0 -lattice. The reverse assertion is proved in Theorem 5.1. This can be considered as an abstract characterization of Orlicz-Kantorovich spaces in the class of Banach L_0 -vector lattices.

607

Theorem 5.1. Let $(E, \|\cdot\|_{\Phi})$ be a component-invariant Orlicz L_0 -lattice. There exists a strongly positive measure m on ∇ , with values in L_0 , such that $(E, \|\cdot\|_{\Phi})$ is isometrically isomorphic to the Orlicz-Kantorovich space $(L_{\psi}(\nabla, m), \|\cdot\|_{(\psi)})$. Here $\psi(t) \cdot \mathbf{1} = \Phi(t\mathbf{I})\Phi^{-1}(\mathbf{I})$.

PROOF: E can be identified (see [12]) with a normal vector sublattice in $L_0(\nabla) = C_{\infty}(X(\nabla))$ so that I coincides with the $f \equiv 1$. Moreover, $e \in \nabla$ if and only if e is a characteristic function of an open-closed set from $X(\nabla)$. For any $e \in \nabla$, set $m(e) = \Phi(e)$. Obviously, $m(e) \in L_0$, $m(e) \ge 0$. If $e \land g = 0$, $e, g \in \nabla$, then $m(e \lor g) = m(e) + m(g)$. Clearly, m(e) = 0 if and only if e = 0. Let $\{e_n\} \subset \nabla$ and $e_n \downarrow 0$. By Theorem 4.7, we have $||e_n||_{\Phi} \downarrow 0$. Proposition 4.9 implies $\Phi(e_n) \downarrow 0$. This means that m is a strongly positive measure on ∇ with values in L_0 . Obviously, m(eg) = em(g). Hence, m is compatible with the module structure.

Let x be a positive simple element from $L_0(\nabla)$, i.e. $x = \sum_{i=1}^n \lambda_i g_i$. Here, $\lambda_i \geq 0$ and $g_i \in \nabla$ are mutually disjoint. $\sup g_i = \mathbf{I}$. Obviously, $x \in E$ and $x \in L_{\psi}(\nabla, m)$.

Using the component invariance of $(E, \|\cdot\|_{\Phi})$, we obtain

$$\Phi(x) = \sum_{i=1}^{n} \Phi(\lambda_i g_i) = \sum_{i=1}^{n} \Phi(g_i) \Phi^{-1}(\mathbf{I}) \Phi(\lambda_i \mathbf{I}) = \sum_{i=1}^{n} \psi(\lambda_i) m(g_i)$$
$$= \int \sum_{i=1}^{n} \psi(\lambda_i) g_i \, dm = \int \psi\left(\sum_{i=1}^{n} \lambda_i g_i\right) \, dm = \int \psi(x) \, dm.$$

Thus, $||x||_{\Phi} = \inf\{\lambda \in \mathcal{P}(L_0) : \Phi(\lambda^{-1}x) \leq \mathbf{I}\} = \inf\{\lambda \in \mathcal{P}(L_0) : \int \psi(\lambda^{-1}x) dm \leq \mathbf{I}\} = ||x||_{(\psi)}$ for any positive simple element x from $L_0(\nabla)$.

However, simple elements are dense in E as well as in L_{ψ} .

We now use Theorem 5.1 to construct examples of Orlicz-Kantorovich spaces. Let $(\Omega, \Sigma, \mu), (X, \nu)$ be as in Example 2. Let $L_{\psi}(X, \nu)$ be an Orlicz space associated with (X, ν) and with the Orlicz function ψ satisfying the (δ_2, Δ_2) -condition. We denote by $\Gamma(L_{\psi}(X, \nu))$ the set of all step mappings $u : (\Omega, \Sigma, \mu) \to L_{\psi}(X, \nu)$ having the form $u = \sum_{i=1}^{n} x_i \chi_{A_i}$ where $x_i \in L_{\psi}(X, \nu), A_i \in \Sigma, A_i \cap A_j = \emptyset, i \neq j, i, j = 1, \ldots, n, n \in \mathbb{N}$.

A mapping $u : (\Omega, \Sigma, \mu) \to L_{\psi}(X, \nu)$, is called measurable if there exists a sequence $\{u_k\} \subset \Gamma(L_{\psi}(X, \nu))$ such that $\|u(\omega) - u_n(\omega)\|_{L_{\psi}(X,\nu)} \to 0$ as $n \to \infty$ for a.e. $\omega \in \Omega$. Let $\mathcal{L}_0(\Omega, L_{\psi}(X, \nu))$ be the set of all measurable mappings from (Ω, Σ, μ) into $L_{\psi}(X, \nu)$. Obviously, $\mathcal{L}_0(\Omega, L_{\psi}(X, \nu))$ is an $\mathcal{L}_0(\Omega)$ -module, in addition $\|u(\omega)\|_{L_{\psi}(X,\nu)}$ is a measurable function on (Ω, Σ, μ) for all $u \in \mathcal{L}_0(\Omega, L_{\psi}(X, \nu))$. Consider an $\mathcal{L}_0(\Omega)$ -submodule $J = \{u \in \mathcal{L}_0(\Omega, L_{\psi}(X, \nu)) : u(\omega) = 0$ a.e.} and denote by $L_0(\Omega, L_{\psi}(X, \nu))$ the factormodule $\mathcal{L}_0(\Omega, L_{\psi}(X, \nu))/J$. Then $(L_0(\Omega, L_{\psi}(X, \nu)), \|\cdot\|)$ is a Banach L_0 -vector lattice [3], where $\|\widetilde{u}\| = [\|u(\omega)\|_{L_{\psi}(X,\nu)}]^{\sim}$. The norm in $L_{\psi}(X,\nu)$ is order continuous, and therefore $g_n, g \in X, \nu(g_n \triangle g) \rightarrow 0$ implies that $||g_n - g||_{L_{\psi}(X,\nu)} \rightarrow 0$. Hence, the complete Boolean algebra $L_0(\Omega, X)$ from Example 2 is a subset of $L_0(\Omega, L_{\psi}(X,\nu))$. Moreover, the Boolean algebra of unitary elements from $L_0(\Omega, L_{\psi}(X,\nu))$ with respect to the weak unit $\mathbf{1}(\omega) = \mathbf{1}_X, \omega \in \Omega$ coincides with $L_0(\Omega, X)$. It is clear that $m(\tilde{e}) = [\nu(e(\omega))]^{\sim}$ is a strongly positive L_0 -valued measure on $L_0(\Omega, X)$ and m is compatible with the module structure (see Example 2).

Theorem 5.2. The Banach L_0 -vector lattices $L_0(\Omega, L_{\psi}(X, \nu))$ and $L_{\psi}(L_0(\Omega, X), m)$ are order and isometrically isomorphic.

PROOF: Without loss of generality, one can assume that $\psi(1) = 1$. For any $u = \sum_{i=1}^{n} x_i \chi_{A_i} \in \Gamma(L_{\psi}(X, \nu))$, set

$$\Phi_0(u)(\omega) = \int \psi(|u(\omega)|) \, d\nu = \sum_{i=1}^n \left(\int \psi(|x_i|) \, d\nu \right) \chi_{A_i}(\omega), \omega \in \Omega.$$

Let $v \in L_0(\Omega, L_{\psi}(X, \nu))$ and $\{u_n\}$ be a sequence from $\Gamma(L_{\psi}(X, \nu))$ such that $\|v(\omega) - u_n(\omega)\|_{L_{\psi}(X,\nu)} \to 0$ as $n \to \infty$ for a.e. $\omega \in \Omega$. Fix $\omega \in \Omega$ for which $\|v(\omega) - u_n(\omega)\|_{L_{\psi}(X,\nu)} \to 0$. Let us show that $\lim_{n\to\infty} \Phi_0(u_n)(\omega) = \int \psi(|u(\omega)|) d\nu$. If not, then there exist $\varepsilon > 0$ and a sequence $\{u_{n_k}(\omega)\}$ such that

(1)
$$\left|\int \psi(|u(\omega)|) \, d\nu - \int \psi(|u_{n_k}(\omega)|) \, d\nu\right| > \varepsilon, \quad k = 1, 2, \dots$$

Choose a subsequence $a_s = u_{n_{k_s}}(\omega)$ which is (o)-converging to $u(\omega)$ in $L_{\psi}(X,\nu)$ [11, VII, §2]. Then the sequence $\{\psi(a_s)\}$ (o)-converges to $\psi(u(\omega))$ in $L_1(X,\nu)$, which contradicts (1).

Thus there exists a limit

$$\Phi_0(v)(\omega) := \int \psi(|v(\omega)|) \, d\nu = \lim_{n \to \infty} \int \psi(|u_n(\omega)|) \, d\nu = \lim_{n \to \infty} \Phi_0(u_n)(\omega),$$

for a.e. $\omega \in \Omega$, in particular, $\Phi_0(v) \in \mathcal{L}_0(\Omega)$. Let $\Phi(\tilde{u}) = [\Phi_0(u)]^{\sim}$. Clearly, Φ is a component-invariant L_0 -modulator on $L_0(\Omega, L_{\psi}(X, \nu))$, in addition $\Phi(t\mathbf{1}) = \psi(t)\Phi(\mathbf{1}), t \geq 0$.

If
$$\widetilde{u} \in L_0(\Omega, L_{\psi}(X, \nu)), \lambda \in \mathcal{P}(L_0)$$
, then

$$\Phi(\lambda^{-1}\widetilde{u}) \leq \mathbf{1} \Leftrightarrow \int \psi(\lambda^{-1}(\omega)|u(\omega)|) \, d\nu \leq 1 \text{ a.e.} \quad \Leftrightarrow \|u(\omega)\|_{L_{\psi}(X,\nu)} \leq \lambda(\omega) \text{ a.e.} \quad \Leftrightarrow \|\widetilde{u}\| \leq \lambda.$$

Hence,

$$\|\widetilde{u}\| = \inf\{\lambda \in \mathcal{P}(L_0) : \|\widetilde{u}\| \le \lambda\} = \inf\{\lambda \in \mathcal{P}(L_0) : \Phi(\lambda^{-1}\widetilde{u}) \le \mathbf{1}\} = \|\widetilde{u}\|_{\Phi}.$$

Thus, $(L_0(\Omega, L_{\psi}(X, \nu)), || ||)$ is a component-invariant Orlicz L_0 -lattice. In addition, $(L_0(\Omega, L_{\psi}(X, \nu)), || ||)$ and $L_{\psi}(L_0(\Omega, X), m)$ are isometrically isomorphic (Theorem 5.1).

Remark 5.3. If $\psi(t) = t^p$, $p \ge 1$, then $L_0(\Omega, L_p(X, \nu))$ is isometrically isomorphic to $L_p(L_0(\Omega, X), m)$.

Acknowledgment. The author would like to thank Prof. Vladimir Chilin for helpful discussions, and also the referee for useful remarks.

References

- Busakhla N.Yu., Measurable bundles of Dedekind logics, Uzbek. Mat. Zh. no. 3 (1999), 29–34 (Russian).
- [2] Claas W.J., Zaanen A.C., Orlicz lattices, Comment. Math. Special Issue 1 (1978), 77–93.
- [3] Ganiev I.G., Measurable bundles of lattices and their applications, Investigations in Functional Analysis and its Applications, Nauka, Moscow, 2006, pp. 9-49 (Russian).
- [4] Gutman A.E., Banach bundles in the theory of lattice-normed spaces, Order-compatible Linear Operators, Trudy Inst. Mat. 29 (1995), Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., Novosibirsk, 1995, pp. 63–211 (Russian).
- [5] Kantorovich L.V., Akilov G.P., Functional Analysis, Nauka, Moscow, 1977 (Russian).
- [6] Krein S.G., Petunin Yu.T., Semenov E.M., Interpolation of Linear Operators, Nauka, Moscow, 1978 (Russian); English translation: Translations of Mathematical Monographs, vol. 54, American Mathematical Society, Providence, 1982.
- [7] Kusraev A.G., Vector Duality and its Applications, Nauka, Novosibirsk, 1985 (Russian).
- [8] Kusraev A.G., Dominated Operators, Mathematics and its Applications, 519, Kluwer Academic Publishers, Dordrecht, 2000.
- [9] Lacey H.E., The Isometric Theory of Classical Banach Spaces, Springer, New York-Heidelberg, 1974.
- [10] Sarymsakov T.A., Topological Semifields and their Applications, Fan, Tashkent, 1989 (Russian).
- [11] Vladimirov D.A., Boolean Algebras, Nauka, Moscow, 1969 (Russian).
- [12] Vulikh B.Z., Introduction to the Theory of Partially Ordered Spaces, Fizmatgiz, Moscow, 1961 (Russian); English translation: Wolters-Noordhoff, Groningen, 1967.
- [13] Zakirov B.S., The Luxemburg norm in the Orlicz-Kantorovich space, Uzbek. Mat. Zh. no. 2 (2007), 32–44 (Russian).
- [14] Zakirov B.S., Orlicz-Kantorovich lattices associated with an L₀-valued measure, Uzbek. Mat. Zh. no. 4 (2007), 18–34 (Russian).
- [15] Zakirov B.S., Analytical representation of L₀-valued homomorphisms in Orlicz-Kantorovich modules, Mat. Trudy **10** (2007), no. 2, 112–141 (Russian).

INSTITUTE OF MATHEMATICS AND INFORMATION TECHNOLOGIES, UZBEKISTAN ACADEMY OF SCIENCES, 29, F. KHODJAEV STR., TASHKENT 100125, UZBEKISTAN

E-mail: botirzakirov@list.ru

(Received November 20, 2007, revised June 6, 2008)