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Linear inessential operators and generalized inverses

Bruce A. Barnes

Abstract. The space of inessential bounded linear operators from one Banach space X

into another Y is introduced. This space, I(X, Y ), is a subspace of B(X, Y ) which gene-
ralizes Kleinecke’s ideal of inessential operators. For certain subspaces W of I(X, Y ), it
is shown that when T ∈ B(X, Y ) has a generalized inverse modulo W , then there exists
a projection P ∈ B(X) such that T (I − P ) has a generalized inverse and TP ∈ W .

Keywords: inessential operator, Fredholm operator, generalized inverse

Classification: Primary 47A05, 47A55

1. Introduction

In 1963, in his classic paper [K], D. Kleinecke introduced the ideal of inessential
bounded linear operators on a Banach space X , denoted I(X). Let B(X) be
the algebra of all bounded linear operators on X , and let K(X) be the ideal
of all compact operators on X . Let π : B(X) → B(X)/K(X) be the usual
embedding map: π(T ) = T + K(X), T ∈ B(X). Kleinecke defined I(X) =
{T ∈ B(X) : π(T ) ∈ rad(B(X)/K(X))} where rad(B(X)/K(X)) is the Jacobson
radical of the Calkin algebra. It is proved in [K] that if T ∈ I(X) and S ∈
Φ(X) (the Fredholm operators), then S + T ∈ Φ(X) and ind(S + T ) = ind(S)
[K, Theorem 6]. Set Per(Φ(X)) = {T ∈ B(X) : for all S ∈ Φ(X), S + T ∈
Φ(X)}. Per(Φ(X)) is called the perturbation ideal of Φ(X); see Sections 5.5
and 5.6 of [CPY] for an introduction to perturbation ideals and their properties.
Kleinecke’s original results show that I(X) ⊆ Per(Φ(X)). In fact, Per(Φ(X)) =
I(X) [CPY, Theorem (5.5.9), p. 98].
In the first section of this paper we introduce I(X, Y ), the space of all inessen-

tial bounded linear operators defined on a Banach space X with values in a
Banach space Y . We prove that when Φ(X, Y ) is nonempty, then I(X, Y ) =
Per(Φ(X, Y )).
Throughout, X, Y , and Z are Banach spaces, and B(X, Y ) denotes the space

of all bounded linear operators defined on X with values in Y . For T ∈ B(X, Y ),
the null space of T is denoted by N(T ), and the range of T by R(T ). If for an
operator T ∈ B(X, Y ) there exists G ∈ B(Y, X) such that TGT − T = 0, then
G is called a g-inverse (generalized inverse) for T . An important fact when T
has a g-inverse G as above, is that R(T ) is closed and G acts as a bounded right



76 B.A.Barnes

inverse for T on R(T ), that is, T (Gy) = y for all y ∈ R(T ); see [LT, p. 251]. Also
in [LT], Theorem 12.9 gives the basic characterization concerning the existence of
g-inverses (called pseudoinverses in [LT]).
The definition of a g-inverse is algebraic, so it extends naturally to elements

of an algebra: When A is an algebra and t ∈ A, then g ∈ A is a g-inverse of t if
tgt−t = 0. The monograph [C] by S. Caradus is an excellent source for information
concerning all aspects of the theory and practice of g-inverses of linear operators
and the general algebraic properties of g-inverses. The existence of g-inverses in
certain algebras of bounded linear operators, is studied in the author’s paper [B].
All bounded linear operators which are Fredholm have g-inverses. This fact carries
over to Fredholm theory in algebras of operators; see K. Jörgens’ book [J].
In his paper [R], V. Rakočević proves that when T ∈ B(X) and T has a g-inverse

modulo K(X), that is, there exists G ∈ B(X) such that TGT − T ∈ K(X), then
there exists J ∈ K(X) such that T+J has a g-inverse in B(X). In the last section
of this paper we extend this result to certain subspaces of I(X, Y ).

2. Inessential operators

Definition 1. A linear operator T ∈ B(X, Y ) is inessential if for every S ∈
B(Y, X), ST ∈ I(X) and TS ∈ I(Y ). We denote the set of all inessential operators
in B(X, Y ) by I(X, Y ).

Since I(X) is an ideal in B(X), for every T ∈ I(X) and every S ∈ B(X), ST
and TS are both in I(X). But also, if ST ∈ I(X) for all S ∈ B(X), then taking S
to be the identity operator, we have T ∈ I(X). This verifies that I(X, X) = I(X).

Proposition 2. The following are equivalent for an operator T ∈ B(X, Y ):

(i) T ∈ I(X, Y );
(ii) for every S ∈ B(Y, X), ST ∈ I(X);
(iii) for every S ∈ B(Y, X), TS ∈ I(Y ).

Proof: We verify that (ii)=⇒(iii); a similar argument shows (iii)=⇒(ii). Assume
that (ii) holds. Then for every S ∈ B(Y, X), σ(ST ) is either a finite set or a
sequence converging to zero. As is well known, σ(ST )\{0} = σ(TS)\{0}. It
follows that every operator in the right ideal T (B(Y, X)) of B(Y ) has spectrum
that is either a finite set or a sequence converging to zero. Then by [BMSW,
Theorem R.2.6, p. 58], T (B(Y, X)) ⊆ I(Y ). This proves (iii). �

Proposition 3. (i) I(X, Y ) is a closed subspace of B(X, Y ).
(ii) If T ∈ I(X, Y ), R ∈ B(Y, Z), then RT ∈ I(X, Z).
(iii) If T ∈ I(X, Y ), R ∈ B(Z, X), then TR ∈ I(Z, X).

Proof: Statement (i) is easily verified (using the fact that I(X) is closed). We
prove (ii); the proof of (iii) is similar.
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Assume that T ∈ I(X, Y ) and R ∈ B(Y, Z). Let S be arbitrary in B(Z, X).
Since SR ∈ B(Y, X), S(RT ) = (SR)T ∈ I(X) by Definition 1. Then Proposi-
tion 2 implies that RT ∈ I(X, Z). �

We use def(T ) to denote the defect of T ∈ B(X, Y ). As is well known, when
def(T ) = dim(Y/R(T )) is finite, then R(T ) is closed [AA, Corollary 2.17].

Proposition 4. If T ∈ I(X, Y ) and S ∈ Φ(X, Y ), then T + S ∈ Φ(X, Y ).

Proof: There exists an operator R ∈ B(Y, X) such that RS = I − E and
SR = I − F where both E and F have f.d. range [AA, Theorem 4.46, p. 161].
Then by that same theorem, R ∈ Φ(Y, X). Note thatRS ∈ Φ(X) and SR ∈ Φ(Y ).
Since RT ∈ I(X) and TR ∈ I(Y ), we have that R(T + S) = RT + RS ∈ Φ(X)
and (T + S)R = TR + SR ∈ Φ(Y ). Then R((T + S)R) ⊆ R(T + S) and
def((T+S)R) < ∞, it follows that def(T+S)< ∞. Also,N(T+S) ⊆ N(R(T+S))
which is f.d. This proves that T + S ∈ Φ(X, Y ). �

Notes. (1) If V ∈ B(X) and W ∈ Φ(X, Y ) with WV ∈ Φ(X, Y ), then V ∈
Φ(X).
(For we can choose an operator R ∈ Φ(Y, X) such that RW = I − E where E

has f.d. range [AA, Theorem 4.46, p. 161]. Then V − EV = RWV ∈ Φ(X). It
follows that V ∈ Φ(X).)
(2) Assume that Φ(X, Y ) is nonempty. If T ∈ Per(Φ(X, Y )), R ∈ B(X), and

S ∈ B(Y ), then STR ∈ Per(Φ(X, Y )). (This follows from the proof of [CPY,
Lemma (5.5.5), p. 96].)

Theorem 5. Assume that Φ(X, Y ) is nonempty. Then

I(X, Y ) = Per(Φ(X, Y ))

= {T ∈ B(X, Y ) : T + S ∈ Φ(X, Y ) for all S ∈ Φ(X, Y )}.

Proof: By Proposition 4, I(X, Y ) ⊆ Per(Φ(X, Y )). Now we prove the reverse
inclusion. Assume that T ∈ Per(Φ(X, Y )). Let S ∈ B(Y, X) and R ∈ Φ(X). We
show that R + ST ∈ Φ(X). Assume that W ∈ Φ(X, Y ). By Note (2) above,
WST ∈ Per(Φ(X, Y )). Since WR ∈ Φ(X, Y ), W (R + ST ) = WR + WST ∈
Φ(X, Y ). Then by the Note (1) above, R + ST ∈ Φ(X). This proves that
ST ∈ Per(Φ(X)) = I(X). It follows from Proposition 2 that T ∈ I(X, Y ). �

Let F (X) denote the space of all operators in B(X) with f.d. (finite dimen-
sional) range.

Proposition 6. Assume that T ∈ I(X, Y ) and S ∈ Φ(X, Y ). Then ind(T +S) =
ind(S).

Proof: There exists an operator R ∈ Φ(Y, X) with SR = I−E where E ∈ F (Y ).
Note that SR ∈ Φ(Y ) and ind(SR) = 0. Now by definition TR ∈ I(Y ), so
ind(TR + SR) = ind(SR) = 0. Also, ind(TR + SR) = ind(T + S) + ind(R) =
ind(T + S)− ind(S). �
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3. G-inverses modulo an ideal

In order to prove our result on g-inverses modulo certain subspaces of I(X, Y ),
we need some preliminary results; some of these are of interest in there own right.
The first two results are presented in the setting of a unital Banach algebra A.
For u ∈ A, σ(u;A) denotes the usual spectrum of u relative to A. For operators
T ∈ B(X), we use the notation σ(T ) for the usual operator spectrum of T relative
to B(X).
For u ∈ A, {u}′′ is the second commutant of u in A, {u}′′ = {a ∈ A : whenever

b ∈ A and bu = ub, then ab = ba}.
We use the holomorphic functional calculus in this setting. In this regard, a

cycle γ is a formal sum of closed piecewise continuously differentiable paths in C;
γ∗ denotes the image of γ in C. For z ∈ C\γ∗, Indγ(z) is the index of z with
respect to γ.
Results similar to Theorem 7 are known. This particular version contains useful

details.

Theorem 7. Assume that u ∈ A with u2 − u = r. Also assume that ∆ is a
compact and relatively open subset of σ(u;A) with 0 /∈ ∆ and 1 ∈ ∆. Then there
exists e = e2 ∈ {u}′′ and h ∈ {u}′′ such that rh = hr and e = u+ hr.

Proof: First we show that when (λ − u)−1 exists, λ 6= 0, λ 6= 1, then

(1) (λ − u)−1 =

(

1

λ − 1

)

u+
1

λ
(1− u) +

(

1

λ(λ − 1)

)

(λ − u)−1r.
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(λ − u)

[(

1

λ − 1

)

u+
1

λ
(1− u)

]

=

(

λ

λ − 1

)

u −

(

1

λ − 1

)

u2 + (1− u)−
1

λ
(u − u2)
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(

λ

λ − 1

)

u −

(

1

λ − 1

)

(u+ r) + (1− u) +
1

λ
r

=

(

λ

λ − 1

)

u −

(

1

λ − 1

)

u+ (1− u) +

(

1

λ
−

(

1
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))

r

= u+ (1− u)−

(

1

λ(λ − 1)

)

r = 1−

(

1

λ(λ − 1)

)

r.

Multiplying this equality through by (λ − u)−1 verifies (1).

Now let V be an open set in C with V ∩ σ(u;A) = ∆ and 0 /∈ V . Let γ be a
cycle with γ∗ ⊆ V \∆ such that Indγ(z) = 1 for all z ∈ ∆ and Indγ(z) = 0 for all
z /∈ V ; note that in particular, Indγ(0) = 0.
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Let e be the spectral idempotent, e = 1
2πi

∫

γ(λ − u)−1 dλ. Using (1) we have,

e =

(

1

2πi

∫

γ

1

λ − 1
dλ

)

u+

(

1

2πi

∫

γ

1

λ
dλ

)

(1− u)

+

(

1

2πi

∫

γ

(

1

λ(λ − 1)

)

(λ − u)−1 dλ

)

r

= Indγ(1)u+ Indγ(0)(1− u) + hr = u+ hr,

where h = 1
2πi

∫

γ(
1

λ(λ−1)
)(λ − u)−1 dλ. �

Let rad(A) denote the Jacobson radical of the algebra A. We use the standard
fact that for u ∈ A, σ(u;A) = σ(u+rad(A);A/ rad(A)). Part (i) of Corollary 8 is
a well known result from Banach algebra theory [P, Proposition 4.3.12]. Part (ii)
shows that if t + rad(A) has a g-inverse in the quotient algebra A/ rad(A), then
for some s ∈ rad(A), t+ s has a g-inverse in A.

Corollary 8. Let A be a unital Banach algebra.

(i) If u ∈ A, u /∈ rad(A), with u2 − u ∈ rad(A), then there exists e = e2 ∈
{u}′′ such that e − u ∈ rad(A).

(ii) If t, g ∈ A, t /∈ rad(A), with tgt− t ∈ rad(A), then there exists p = p2 ∈ A
such that t(1 − p) has a g-inverse in A and tp ∈ rad(A).

Proof of (i): Let u be as in statement (i). Note that 1−u is not invertible since
u(1− u) ∈ rad(A), but u /∈ rad(A). Now 1 ∈ σ(u;A) ⊆ {0, 1}. In Theorem 7 take
∆ = {1}. By Theorem 7, there exists e = e2 ∈ {u}′′ such that e − u ∈ rad(A).

�

Proof of (ii): Assume that t and g are as in (ii), so tgt− t = r ∈ rad(A). Then
tgtg−tg = rg ∈ rad(A). Note that 1−tg is not invertible since (tg−1)t ∈ rad(A),
but t /∈ rad(A). Thus, 1 ∈ σ(tg;A) ⊆ {0, 1}. In Theorem 7 take ∆ = {1}.
Applying Theorem 7, with u = tg, there exist h ∈ A and e = e2 ∈ A such that

e = tg + rgh = tg + (tgt − t)gh = t[g + (gt − 1)gh].

Set v = g+ (gt− 1)gh and w = (gt− 1)gh. Note that tw ∈ rad(A). Therefore,

(2) e = tv = t(g + w) with tw ∈ rad(A).

Now set s = r + twt ∈ rad(A). Then et = tgt + twt = t + r + twt = t + s.
By (2), e = tv, so e = etv = tv + sv = e+ sv. It follows that e(t+ s) = t+ s and
sv = 0. Thus,

(3) (t+ s)v(t+ s) = tv(t+ s) = e(t+ s) = t+ s.
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Now let 1− p = v(t+ s). Then 1− p is a projection, and t(1− p) = tv(t+ s) =
(t+ s)v(t+ s) = t+ s which has a g-inverse by (3), and tp = −s ∈ rad(A). �

As before, define π : B(X) → B(X)/K(X) by π(T ) = T + K(X). For T ∈
B(X), the Fredholm spectrum of T , σF (T ), is defined as

σF (T ) = σ(π(T );B(X)/K(X)).

We need a fairly deep property of the Fredholm spectrum:

Let Ω be the unbounded component of C\σF (T ). Then σ(T ) ∩ Ω is
at most countable.

One reference for this is [BMSW, Theorem R.2.7].
From the definition of I(X) and properties of the Jacobson radical, it follows

that for T ∈ B(X), σF (T ) = σ(T + I(X);B(X)/I(X)).

Corollary 9. Let M be a left or right ideal of B(X) with M ⊆ I(X). If U ∈
B(X), U /∈ I(X), with U2 − U = R ∈ M , then there exists E = E2 ∈ {U}′′ such
that E = U +HR and HR = RH . Thus, E − U ∈ M .

Proof: Assume that U2−U = R ∈ M . Since U + I(X) is a nonzero idempotent
in B(X)/I(X), 1 ∈ σF (U) ⊆ {0, 1}. It follows from the discussion above that
σ(U) is at most countable. Therefore, there does exist a compact and relatively
open subset ∆ of σ(U) with 0 /∈ ∆ and 1 ∈ ∆. Applying Theorem 7, there
exists a projection E ∈ {U}′′ such that E = U +HR where HR = RH . Clearly,
E − U ∈ M , as claimed. �

4. G-inverses and inessential perturbations

In this section we generalize Rakočević’s result on generalized inverses in the
Calkin algebra to generalized inverses modulo certain subspaces of I(X, Y ). In
what follows, we assume thatW is a linear subspace of I(X, Y ) with the bimodule
property:

(bi) If T ∈ W , R ∈ B(X), and S ∈ B(Y ), then STR ∈ W .

By Proposition 3, I(X, Y ) satisfies (bi). Also, let F (X, Y ) be the space of all
operators with E ∈ B(X, Y ) such that R(E) is f.d. Then it is easy to see that

F (X, Y ) (here the closure is in the operator norm) is a subspace of I(X, Y ) which
satisfies (bi).
Let K(X, Y ) denote the space of all compact operators from X into Y . Also,

let S(X, Y ) denote the space of all strictly singular operators from X into Y .
Section 4.5 of [AA] is a good source for information concerning strictly singular
operators.
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Proposition 10. BothK(X, Y ) and S(X, Y ) are subspaces of I(X, Y ), and both
satisfy (bi).

Proof: We give the proof for S(X, Y ) (the proof for K(X, Y ) is similar). First,
S(X, Y ) is a closed subspace of B(X, Y ) that satisfies (bi) [AA, Corollary 4.6.2].
Assume that T ∈ S(X, Y ) and S ∈ B(Y, X). Then ST ∈ S(X) and TS ∈ S(Y ) by
[AA, Corollary 4.62]. Now S(X) ⊆ I(X) by [CPY, Theorem (5.6.2)]. Therefore
by Definition 1, S(X, Y ) ⊆ I(X, Y ). �

Theorem 11. Assume T ∈ B(X, Y ). The following are equivalent:

(i) there exists P = P 2 ∈ B(X) such that TP ∈ W and T (I − P ) has a
g-inverse;

(ii) T = J + S where J ∈ W and S ∈ B(X, Y ) has a g-inverse;
(iii) there exists G ∈ B(Y, X) and TGT − T = R ∈ W .

Proof: (i)=⇒(ii) is immediate.
Assume that (ii) holds, so T = J +S where J ∈ W and for some G ∈ B(Y, X),

SGS = S. Then

TGT − T = (J + S)G(J + S)− (J + S) = JG(J + S) + SGJ + SGS − J − S

= JG(J + S) + SGJ − J ∈ W.

Thus, (iii) is true.
Assume the hypotheses in (iii) and that T /∈ W . These hypotheses imply that

TGTG − TG = RG ∈ I(Y ). Now apply Corollary 3 (with U = TG and RG in
place of R). Therefore there exists E = E2 ∈ B(Y ) and H ∈ B(Y ) such that
E = TG + RGH . Since R = TGT − T , we have E = TG+ (TGT − T )GH =
T [G+GTGH − GH ]. Setting U = GTGH − GH and V = G+ U , we have

(4) E = TV = T (G+ U) and TU ∈ W.

Then ET = TV T = TGT + TUT = T + R + TUT . Set J = R + TUT ∈ W .
Thus,

(5) ET = T + J with J ∈ W . Also, EJ = 0 and E(T + J) = T + J ,

since E = TV , E = ETV = TV + JV . Therefore,

(6) JV = 0.

Thus, (T + J)V (T + J) = TV (T + J) = E(T + J) = T + J by (5). Therefore,

(7) T + J has g-inverse V.

Set I − P ≡ V (T + J). Then I − P is a projection in B(X). Note that
T (I − P ) = TV (T + J) = (T + J)V (T + J) by (6). Therefore, T (I − P ) = T + J
by (7). Thus again by (7), T (I − P ) has a g-inverse. Also, TP = −J ∈ W . This
proves that (i) holds. �
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The following statement is another condition equivalent to those listed in The-
orem 11: There exists P = P 2 ∈ B(Y ) such that PT ∈ W and (I − P )T has
a g-inverse.
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