On π -metrizable spaces, their continuous images and products

DERRICK STOVER

Abstract. A space X is said to be π -metrizable if it has a σ -discrete π -base. The behavior of π -metrizable spaces under certain types of mappings is studied. In particular we characterize strongly *d*-separable spaces as those which are the image of a π -metrizable space under a perfect mapping. Each Tychonoff space can be represented as the image of a π -metrizable space under an open continuous mapping. A question posed by Arhangel'skii regarding if a π -metrizable topological group must be metrizable receives a negative answer.

Keywords: π -metrizable, weakly π -metrizable, π -base, σ -discrete π -base, σ -disjoint π -base, d-separable

Classification: 54B10, 54C10, 54D70

1. Introduction

By \mathbb{N} we mean the set of all natural numbers. Recall that for a space X, a collection of nonempty open sets Θ , is called a π -base if for every nonempty open set O, there exists $U \in \Theta$ such that $U \subset O$. Recall that for a Tychonoff space X, $\pi w(X)$ is defined to be the least cardinal τ such that X has a π -base Γ with $|\Gamma| = \tau$. Recall that a collection of sets Γ π -refines a collection of sets Θ if for each $O \in \Theta$ there exists $U \in \Gamma$ such that $U \subset O$ and $\emptyset \notin \Gamma$. It is clear that π -metrizability is preserved by open subspaces, closures of open subspaces, and dense subspaces. A space X is said to be weakly π -metrizable if it has a σ -disjoint π -base. Weak π -metrizability is preserved by open subspaces, closures of open subspaces, and dense subspaces in both directions. Some examples of π metrizable spaces are: $\beta \mathbb{N}$, the Sorgenfrey Line and K^{\aleph_1} where K is uncountable discrete (as we shall later see). The space $[0,1]^2_{\tau}$ where τ is the topology induced by lexicographic ordering is one of many weakly π -metrizable, not π -metrizable spaces. Recall that a space X is called d-separable if there exists $\{K_n : n \in \mathbb{N}\}$ such that each K_n is a discrete (in itself) subset of X and $\bigcup \{K_n : n \in \mathbb{N}\}$ is dense in X. For more on d-separable spaces see [2]. A space X is called strongly d-separable if there exists $\{K_n : n \in \mathbb{N}\}$ such that each K_n is a closed discrete subset of X and $\bigcup \{K_n : n \in \mathbb{N}\}$ is dense in X.

A σ -discrete π -base was first observed as a necessary condition for being the absolute of a metrizable space (see [7]). First countable spaces with σ -disjoint

 π -bases (weakly π -metrizable) were studied by H.E. White in [8]. In this paper he has also shown that a first countable space has a dense metrizable subspace if and only if it is π -metrizable. Also Fearnley has constructed a Moore space with a σ -discrete π -base which does not densely embed into any Moore space having the Baire property [5]. This paper will be an attempt to examine the behavior of π -metrizable spaces under products and mappings.

All spaces are assumed to be Tychonoff.

2. Continuous mappings

Lemma 2.1. Every locally finite collection of open sets in a space X has a discrete π -refinement (of open sets) of the same cardinality if the collection is infinite.

PROOF: Let Ψ be a locally finite collection of nonempty open sets in X. For each $O \in \Psi$ choose $x_O \in O$. Put $F = \{x_O : O \in \Psi\}$. Well order F: that is for some cardinal κ write $F = \{x_\alpha : \alpha < \kappa\}$ where the indexing is faithful. Clearly F is closed and discrete, thus there exists an open set U_α such that $\operatorname{cl}(U_\alpha) \cap F = \{x_\alpha\}$ and $W_\alpha \subset \bigcap \{V \in \Psi : x_O \in V\}$ for each $\alpha < \kappa$. Put $\Gamma = \{U_\alpha : \alpha < \kappa\}$. Then clearly Γ is a π -refinement of Ψ . Now Γ is also locally finite so the set $V_\alpha = U_\alpha \setminus \bigcup \{\operatorname{cl}(U_\beta) : \beta < \alpha\}$ is an open set containing x_α . Thus $\{V_\alpha : \alpha < \kappa\}$ is disjoint and locally finite. Finally use regularity to choose an open set H_α such that $x_\alpha \in H_\alpha$ and $\operatorname{cl}(H_\alpha) \subset V_\alpha$. Then $\{H_\alpha : \alpha < \kappa\}$ is a discrete π -refinement of Ψ and it has of course the same cardinality. \Box

It is well known from metrizability criterion that the existence of a σ -locally finite base is equivalent to existence of a σ -discrete base. Analogous to this is the following result.

Theorem 2.2. A space X is π -metrizable if and only if it has a σ -locally finite π -base.

PROOF: This follows from Lemma 2.1 and the fact that a π -refinement of a π -base is a π -base.

A collection of sets Γ in a space X each with nonempty interior is called a π_* -base if for each open set O there exists $B \in \Gamma$ with $B \subset O$. It is typically clear that the existence of a π_* -base with a finiteness type property implies the existence of a π -base with the same property.

Proposition 2.3. Open perfect mappings preserve π -metrizability.

PROOF: Let $f : X \longrightarrow Y$ be perfect onto and open and X be π -metrizable. Let $\bigcup \{\Psi_n : n \in \mathbb{N}\}$ be a π -base for X with each Ψ_n discrete. For each set $B \in \bigcup \{\Psi_n : n \in \mathbb{N}\}$ there exists a closed set $C_B \subset B$ with nonempty interior (using regularity). Then $\{C_B : B \in \bigcup \{\Psi_n : n \in \mathbb{N}\}\}$ is a π_* -base and it is of course σ -discrete. Since f is closed and open, $\{f(C_B) : B \in \bigcup \{\Psi_n : n \in \mathbb{N}\}\}$ is a π_* -base for Y consisting of closed sets. Let us show that this collection is σ locally finite. $\bigcup \{C_B : B \in \Psi_n\}$ is the union of a discrete collection of closed sets so it is closed. Let $y \in Y$. The set $f^{-1}(y)$ is compact so $(\bigcup \{C_B : B \in \Psi_n\}) \cap f^{-1}(y)$ is compact. But Ψ_n is an open cover of this set. So we have a finite subcover. But the cover is pairwise disjoint, so $f^{-1}(y)$ must intersect only finitely many elements of Ψ_n and thus of $\{C_B : B \in \Psi_n\}$. Let $H = \{C_B : B \in \Psi_n \text{ and } f^{-1}(y) \cap C_B = \emptyset\}$ and let $Z = \bigcup H$. Since H is a discrete collection of closed sets, Z is closed and $f^{-1}(y) \cap Z = \emptyset$. Thus $Y \setminus f(Z)$ is an open set containing y and intersecting only finitely many elements of $\{f(C_B) : B \in \Psi_n\}$ (only those not in H). Therefore $\{f(C_B) : B \in \Psi_n\}$ is locally finite and so Y has a σ -locally finite π_* -base and thus is π -metrizable. \Box

Corollary 2.4. If $X \times Y$ is π -metrizable and Y is compact then X is π -metrizable.

PROOF: The projection map $\pi : X \times Y \longrightarrow X$ is perfect and open so this follows by Proposition 2.3.

Proposition 2.5. Irreducible perfect mappings preserve π -metrizability in both directions.

PROOF: Let $f: X \longrightarrow Y$ be perfect, onto and irreducible and X be π -metrizable. Let $\bigcup \{\Psi_n : n \in \mathbb{N}\}$ be a π -base for X with each Ψ_n discrete. Take as a π -base in Y, the family $\bigcup \{\Gamma_n : n \in \mathbb{N}\}$ where $\Gamma_n = \{Y \setminus f(X \setminus B) : B \in \Psi_n\}$. First note that for each $B \in \Gamma_n$ since $B \neq \emptyset$ then by the irreducibility of f we have $Y \setminus f(X \setminus B) \neq \emptyset$ and that each $Y \setminus f(X \setminus B)$ is open. So now let O be open in Y, then there exists $B \in \bigcup \{\Gamma_n : n \in \mathbb{N}\}$ such that $B \subset f^{-1}(O)$, thus $Y \setminus f(X \setminus B) \subset Y \setminus f(X \setminus f^{-1}(O)) \subset O$ so it is a π -base.

Now to see that Γ_n is locally finite: Let $y \in Y$. For each $x \in f^{-1}(y)$, there exists an open set O_x such that $x \in O_x$ and O_x intersects at most one element of Ψ_n . By compactness of $f^{-1}(y)$ there exist O_{x_1}, \ldots, O_{x_k} such that $f^{-1}(y) \subset \bigcup \{O_{x_i} : i = 1, \ldots, k\}$. So then let $U = \bigcup \{O_{x_i} : i = 1, \ldots, k\}$. Then $f^{-1}(y) \subset U$ and Uintersects only finitely many elements of Ψ . Now if $Y \setminus f(X \setminus U) \cap Y \setminus f(X \setminus B) \neq \emptyset$ then $U \cap B \neq \emptyset$. It follows that $Y \setminus f(X \setminus U)$ intersects only finitely many elements of Γ_n . Furthermore since $f^{-1}(y) \subset U$, it follows that $y \in Y \setminus f(X \setminus U)$. So Γ_n is locally finite which implies that Y is π -metrizable.

That π -metrizability is preserved by irreducible perfect continuous inverse images follows by a standard argument.

Theorem 2.6. A space Y is the image of a π -metrizable space X under a perfect mapping if and only if Y is strongly d-separable.

PROOF: Every π -metrizable space is strongly *d*-separable and strong *d*-separability is preserved by closed mappings.

Now assume Y is strongly d-separable. Let $\{D_n : n \in \mathbb{N}\}$ be a collection of closed discrete subspaces of Y with $\bigcup \{D_n : n \in \mathbb{N}\}$ dense in Y. Let $E_n = \bigcup \{D_i :$

i = 1, ..., n. Then E_n is closed and discrete for each n and $\bigcup \{E_n : n \in \mathbb{N}\}$ is dense in Y. Now consider the following subspace of $\mathbb{N}_* \times Y$, where $\mathbb{N}_* = \mathbb{N} \cup \{p\}$ is the Alexandroff compactification of \mathbb{N} : The space $X = (\bigcup \{\{n\} \times E_n : n \in \mathbb{N}\}) \cup (\{p\} \times Y)$.

We shall show that X is π -metrizable. Let $\Gamma_n = \{\{(n,d)\} : d \in E_n\}$. Then Γ_n is discrete, for if $(a,b) \in X$ with $a \neq n$ then $(X \setminus \{n\}) \times E_n$ is an open set containing (a,b) and intersecting no element of Γ_n . Now if a = n then $\{(a,b)\}$ is open. Furthermore $\bigcup \{\Gamma_n : n \in \mathbb{N}\}$ is a π -base. Let O be a nonempty open set in X. It will be sufficient to show O intersects $\bigcup \{\{n\} \times E_n : n \in \mathbb{N}\}$. If $O \cap (\{p\} \times Y) = \emptyset$ then this is trivial. So otherwise let us assume we have $O = U \times N_m$ for an open set $U \subset Y$ and $N_m = \mathbb{N}_* \setminus \{1, 2, \ldots, m-1\}$. Now since $\bigcup \{E_n : n \in \mathbb{N}\}$ is dense in Y there exists $d \in E_n$ for some n such that $d \in U$. Now if $n \geq m$ then we have $\{(n,d)\} \subset O$ where $\{(n,d)\} \in \Gamma_n$. If instead n < m then $E_n \subset E_m$ and thus $d \in E_m$ and so $\{(m,d)\} \subset O$ where $\{(m,d)\} \in \Gamma_m$. Hence $\bigcup \{\Gamma_n : n \in \mathbb{N}\}$ is a π -base for X and so X is π -metrizable.

Now take $f: X \longrightarrow Y$ to be the projection map. The projection of $\mathbb{N}_* \times Y$ onto Y is a closed mapping as \mathbb{N}_* is compact and X is a closed subspace of $\mathbb{N}_* \times Y$ thus f is a closed mapping. That $f^{-1}(y)$ is compact for all $y \in Y$ follows as $f^{-1}(y)$ is homeomorphic to a subspace of \mathbb{N}_* containing the limit point p. Thus f is a perfect mapping. \Box

In fact we need only that the mapping be closed in order that the image be strongly *d*-separable and thus we get another characterization.

Corollary 2.7. A space Y is the image of a π -metrizable space X under a closed mapping if and only if Y is strongly d-separable.

Proposition 2.8. If X is π -metrizable and $f : X \longrightarrow Y$ is an onto open continuous mapping such that each fiber is compact, then Y has a σ -point-finite π -base.

PROOF: Let $\bigcup \{\Psi_n : n \in \mathbb{N}\}$ be a π -base for X with Ψ_n discrete. Let $\Gamma_n = \{f(B) : B \in \Psi_n\}$, for $y \in Y$, the $f^{-1}(y)$ is compact and thus intersects only finitely many members of Ψ_n . Thus $y \in f(B)$ for only finitely many $B \in \Psi_n$ and so Γ_n is point-finite. That $\bigcup \{\Gamma_n : n \in \mathbb{N}\}$ is a π -base follows trivially as f is an open continuous mapping. \Box

Theorem 2.9. If Y has an open dense π -metrizable subspace then there exists a π -metrizable space X and $f : X \longrightarrow Y$ such that f is onto, open, continuous and each fiber is compact.

PROOF: Let O be the subspace. Let $\bigcup \{\Psi_n : n \in \mathbb{N}\}$ be a π -base for O with Ψ_n discrete in O. Now consider subspace of $\mathbb{N}_* \times Y$, where $\mathbb{N}_* = \mathbb{N} \cup \{p\}$ is the Alexandroff compactification of \mathbb{N} : The space $X = (\mathbb{N} \times O) \cup (\{p\} \times Y)$. Now let $\Gamma_{n,m} = \{\{n\} \times B : B \in \Psi_m\}$. Then $\Gamma_{n,m}$ is discrete. For if $(a,b) \in X$ and $a \neq n$ then $X \setminus \{n\} \times O$ is an open set containing (a, b) and intersecting no

element of $\Gamma_{n,m}$. If a = n then there exists and open set $U \in O$ with $b \in U$ and U intersecting at most one element of Ψ_m . Then $(a, b) \in \{n\} \times U$ and $\{n\} \times U$ intersects at most one element of $\Gamma_{n,m}$. Thus $\Gamma_{n,m}$ is discrete.

Now let U be a basic open set in X. Then $U = (V \times W) \cap X$ where V is open in \mathbb{N}_* and W is open in Y. Then there exists $n \in \mathbb{N}$ such that $n \in V$, and $W \cap O$ is a nonempty open subset of Y so there exists $B \in \Psi_m$ for some m, such that $B \subset W \cap O$. Thus $\{n\} \times B \subset U$ and $\{n\} \times B \in \Gamma_{n,m}$. Thus $\bigcup \{\Psi_{n,m} : n, m \in \mathbb{N}\}$ is a π -base for X and thus X is π -metrizable.

Now consider $f: X \longrightarrow Y$ to be the projection mapping. Let U be a basic open set in X. Then $U = (V \times W) \cap X$ where V is open in \mathbb{N}_* and W is open in Y. Then f(U) = W and so f is an open mapping. That $f^{-1}(y)$ is compact for all $y \in Y$ follows as $f^{-1}(y)$ is homeomorphic to a subspace of \mathbb{N}_* containing the limit point p.

Problem 2.10. How might the class of spaces described in the previous two propositions be further characterized?

3. Products

We now turn our attention to the question of when products are (weakly) π -metrizable. First a standard observation.

Proposition 3.1. If X_n is π -metrizable for $n \in \mathbb{N}$, then $\prod \{X_n : n \in \mathbb{N}\}$ is π -metrizable.

PROOF: Let $\Psi_n = \bigcup \{\Psi_{n,m} : m \in \mathbb{N}\}$ be a π -base for X_n with $\Psi_{n,m}$ discrete. There are countably many ways to select a finite subset $a_1, \ldots, a_k \in \mathbb{N}$. Then there are countably many ways to select $n_1, \ldots, n_k \in \mathbb{N}$. Now let $P(a_1, \ldots, a_k, n_1, \ldots, n_k) = \{\prod \{O_n : n \in \mathbb{N}\} : O_{n_i} \in \Psi_{a_i,n_i} \text{ for } i = 1, \ldots, k \text{ and } O_n = X_n \text{ otherwise}\}$. Then there are countably many such $P(a_1, \ldots, a_k, n_1, \ldots, n_k)$ and U_i intersect at most one member of Ψ_{a_i,n_i} . Now define $U_i = X_i$ for all $i \neq 1, \ldots, k$. Then $x \in \prod \{U_n : n \in \mathbb{N}\}$ and this is an open set intersecting at most one element of $P(a_1, \ldots, a_k, n_1, \ldots, n_k)$. Therefore each $P(a_1, \ldots, a_k, n_1, \ldots, n_k)$ is discrete.

Let $\prod \{U_n : n \in \mathbb{N}\}\$ be a basic open set $(U_n$ open in X_n). Let k be such that $U_n = X_n$ for all n > k. Then we can find $O_{i,j(i)} \in \Psi_{i,j(i)}$ such that $O_{i,j(i)} \subset U_i$ for each $i \leq k$. Then $O_{1,j(1)} \times \cdots \times O_{k,j(k)} \times X_{k+1} \times X_{k+2} \times \cdots \subset \prod \{U_n : n \in \mathbb{N}\}\$ and this is in $P(1, \ldots, k, j(1), \ldots, j(k))$. Thus this is a π -base and so $\prod \{X_n : n \in \mathbb{N}\}\$ is π -metrizable.

The proof of the corresponding result for weakly π -metrizable spaces follows by a similar argument.

Proposition 3.2. If X_n is weakly π -metrizable for each $n \in \mathbb{N}$, then $\prod \{X_n : n \in \mathbb{N}\}$ is weakly π -metrizable.

D. Stover

It is not at all obvious (at this point) whether we can have $X \times Y$ being π -metrizable without both X and Y being so. We will see that in fact much more is true.

Lemma 3.3. If X_n has a discrete collection of κ open sets for all $n \in \mathbb{N}$ and $\pi w(Y), \pi w(X_n) \leq \kappa$ for all n, then $Y \times (\prod \{X_n : n \in \mathbb{N}\})$ is π -metrizable.

PROOF: Let $X_0 = Y$ and let $\mathbb{N}_* = \mathbb{N} \cup \{0\}$. Now let Ψ_n be a π -base for X_n for each $n \in \mathbb{N}_*$ with $|\Psi_n| = \kappa$. Now let Γ_n be a discrete collection open sets with $|\Gamma_n| = \kappa$ for all $n \in \mathbb{N}$. We essentially want to construct "almost all" of the products where n factors are nontrivial: the trick is to do it for $\mathbb{N}_* \setminus \{n\}$. So we observe that there are \aleph_0 ways to choose $A \subset \mathbb{N}_* \setminus \{n\}$ such that |A| = n. For each $k \in A$ there are κ ways to choose $B_k \in \Psi_k$. Thus there are κ ways to choose a set A and $\{B_k : k \in A\}$ where $B_k \in \Psi_k$. Now $|\Gamma_n| = \kappa$, so for each $A \subset \mathbb{N}_* \setminus \{n\}$ such that |A| = n and $\{B_k : k \in A\}$ where $B_k \in \Psi_k$, we can associate a unique $f(A, \{B_k | k \in A\}) \in \Gamma_n$. So f is a one to one function. Now let $O(A, \{B_k : k \in A\})$ $A\}) = \prod \{O_n : n \in \mathbb{N}_*\} \text{ where } O_k = B_k \text{ for all } k \in A, O_n = f(A, \{B_k : k \in A\})\}$ and $O_m = X_m$ for all $m \in \mathbb{N}_* \setminus (A \cup \{n\})$. Then $O(A, \{B_k : k \in A\})$ is open. So let $\Delta_n = \{O(A, \{B_k | k \in A\}) : A \subset \mathbb{N}_* \setminus \{n\} \text{ with } |A| = n \text{ and } B_k \in \Psi_k \text{ for each } \{n\} \in \Psi_k \text{ for each }$ $k \in A$. Then Δ_n is discrete. Let $g \in \prod \{X_n : n \in \mathbb{N}_*\}$. Since Γ_n is discrete, there exists $g(n) \in O$ open in X_n such that O intersects at most one elements of Γ_n . Then $\prod \{U_n : n \in \mathbb{N}_*\}$ where $U_m = X_m$ for $n \neq m$ and $U_n = O$, is an open set containing g. Furthermore $\prod \{U_n : n \in \mathbb{N}_*\}$ intersects $B \in \Delta_n$ only if O intersects $\pi_n(B) = f(A, \{B_k : k \in A\}) \in \Gamma_n$. Since O intersects at most one element of Γ_n and f is one to one, it follows that $\prod \{U_n : n \in \mathbb{N}_*\}$ intersects at most one element of Δ_n .

Now to see that $\bigcup \{\Delta_n : n \in \mathbb{N}\}\$ is a π -base choose a basic open set $\prod \{U_n : n \in \mathbb{N}_*\}\$, that is, U_n is open for all n and $U_n = X_n$ for all but finitely many n. Let $B = \{n \in \mathbb{N}_* : U_n \neq X_n\}$. Since |B| = n is finite, there exists $m \in \mathbb{N}$ such that n < m and $m \notin B$. Now let $A \subset \mathbb{N}_*$ be such that $|A| = m, m \notin A$ and $B \subset A$. Now for $k \in A$ choose $B_k \in \Psi_k$ such that $B_k \subset U_k$. Then $O(A, \{B_k | k \in A\}) = \prod \{O_n : n \in \mathbb{N}_*\} \subset \prod \{U_n : n \in \mathbb{N}_*\}\$ as $O_k = B_k$ for $k \in A$ so $O_k \subset U_k$ and $U_k = X_k$ for $k \notin A$ so $O_k \subset U_k$ automatically. Thus $\bigcup \{\Delta_n : n \in \mathbb{N}\}\$ is a σ -discrete π -base so $\prod \{X_n : n \in \mathbb{N}_*\} = Y \times (\prod \{X_n : n \in \mathbb{N}\})\$ is π -metrizable.

Theorem 3.4. For every space X there exists a space Y such that $X \times Y$ is π -metrizable.

PROOF: Let D be a discrete space with $|D| = \pi w(X)$. Now let $Y = D^{\aleph_0}$. Then $X \times Y$ is π -metrizable by Lemma 3.3.

Corollary 3.5. Every space is the open continuous image of a π -metrizable space.

PROOF: Let Y be a space, and X be such that $X \times Y$ is π -metrizable. Now take $\pi : X \times Y \longrightarrow Y$ to be the projection map.

One further consequence of this is a solution to a problem posed in [1].

Example 3.6. There exists a π -metrizable topological group that is not metrizable (and therefore not first countable).

PROOF: Let K be a discrete space with $|K| = \aleph_1$, then K is a topological group, as is K^{\aleph_1} . Furthermore K^{\aleph_1} is π -metrizable. However K^{\aleph_1} is not metrizable.

 \square

Theorem 3.7. Let $\{X_{\alpha} : \alpha \in I\}$ with $(\mathbb{N} \subset I)$ be a collection of not more than κ spaces, with $\pi w(X_{\alpha}) \leq \kappa$. If $\{\lambda_n\}$ is a sequence of cardinal numbers converging to κ (in the topology induced by the usual ordering) and X_n has a discrete collection of λ_n open sets for all $n \in \mathbb{N}$, then $\prod \{X_{\alpha} : \alpha \in I\}$ is π -metrizable.

PROOF: From elementary set theory, there exist a partition $\mathbb{N} = \bigcup \{N_n : n \in \mathbb{N}\}$, such that $N_i \cap N_j = \emptyset$ if $i \neq j$, and $|N_n| = \omega$ for all $n \in \mathbb{N}$. Then $\{\lambda_n : n \in N_i\}$ converges to κ . $\prod \{X_n : n \in N_i\}$ has a discrete collection of κ open sets. Write $N_i = \{i_n : n \in \mathbb{N}\}$. Without loss of generality assume $\lambda_{i_1} \geq \aleph_0$. Now let Γ_n be a discrete collection of open sets of X_{i_n} of cardinality λ_{i_n} . Choose $\{O_n : n \in \mathbb{N}\} \subset \Gamma_1$. Now for each $U \in \Gamma_n$ with n > 1 let $h(U) = \prod \{O_{i_n} : n \in \mathbb{N}\}$ where $O_{i_1} = O_n$ and $O_{i_n} = U$ and for $k \neq 1, n$ put $O_{i_k} = X_{i_k}$. Now let $\Delta_n = \{h(U) : U \in \Gamma_n\}$ and $\Delta = \bigcup \{\Delta_n : n \in \mathbb{N}\}$. Then Δ is discrete and $|\Delta| = \kappa$. So let $Y_n = \prod \{X_k : k \in N_n\}$. Let $Y = \prod \{X_\alpha : \alpha \in I \setminus \mathbb{N}\}$. It is known that $\pi w(Y) \leq \kappa$.

Then $\prod \{X_{\alpha} : \alpha \in I\} = \prod \{X_{\alpha} : \alpha \in I \setminus \mathbb{N}\} \times \prod \{X_k : k \in N_n, n \in \mathbb{N}\} = Y \times \prod \{Y_n : n \in \mathbb{N}\}$ is π -metrizable by Lemma 3.3.

Theorem 3.8. Let $\{X_{\alpha} : \alpha \in I\}$ be a collection of not more that κ spaces with $\pi w(X_{\alpha}) \leq \kappa$ for all $\alpha \in I$. Assume that whenever $\{\lambda_n\}$ is a sequence of cardinal numbers converging (in the topology induced by the usual ordering) to κ , there exist $\{X_n : n \in \mathbb{N}\}$ such that X_n has a collection of pairwise disjoint open sets of cardinality λ_n . Then $\prod \{X_{\alpha} : \alpha \in I\}$ is weakly π -metrizable.

The proof is similar in spirit to that of Theorem 3.7.

Lemma 3.9. For every space X there exists a compact space Y such that $X \times Y$ is weakly- π -metrizable.

PROOF: Let A be a discrete space with $|A| = \pi w(X)$, let B be the Alexandroff compactification of A and declare $Y = B^{\aleph_0}$. Then $X \times Y$ is weakly- π -metrizable by Theorem 3.8.

Theorem 3.10. Every space is the image of a weakly π -metrizable space under an open perfect mapping.

We now present a result of a different kind: one which provides an upper bound on the number of factors in a weakly π -metrizable product. **Theorem 3.11.** Let κ and λ be cardinal numbers. If Y is the product of κ factors each with at least two points and density less than or equal to λ where $\lambda < \kappa$, then Y is not weakly π -metrizable.

PROOF: Let $p(\beta) = \prod \{O_{\alpha} : \alpha \in I\}$ where $O_{\alpha} = X_{\alpha}$ for all $\alpha \neq \beta$ and $O_{\beta} = X_{\beta} \setminus \{x\}$ for some $x \in X_{\beta}$. Let $\Gamma = \{p(\beta) : \beta \in I\}$. Put $\Delta = \bigcup \{\Psi_n | n \in \mathbb{N}\}$ to be a π -base with Ψ_n pairwise disjoint. For each element U of Γ there is an element B of Δ such that $B \subset U$. Furthermore for each $B \in \Delta$ there can exist only finitely many $U \in \Gamma$ such that $B \subset U$. Thus $|\Delta| = |\Gamma| = \kappa$. Therefore there exists n such that $|\Psi_n| > \lambda$. But Ψ_n is pairwise disjoint and it is known that $c(\prod \{X_{\alpha} : \alpha \in I\}) \leq \lambda$. So we have a contradiction. Thus $\prod \{X_{\alpha} : \alpha \in I\}$ is not weakly π -metrizable.

As an application of the product theorem offered earlier, the premise on the above theorem cannot be weakened to "If Y is the product of κ factors each with at least two points and density less than κ then Y is not weakly π -metrizable". To see this take A(n) to be a discrete space of size \aleph_n . Then take $Y = \prod \{A(n)^{\aleph_n} : n \in \mathbb{N}\}$. There are \aleph_{ω} factors each with density less than \aleph_{ω} but the product is π -metrizable as evident from Theorem 3.8 by using the sequence $\{\aleph_n\}$ which converges to \aleph_{ω} .

Theorem 3.12. If $\pi w(X)$ is a cardinal with countable cofinality or a successor, and X^{κ} is π -metrizable, then X^{\aleph_0} is π -metrizable.

PROOF: We shall begin with the simple case where $\pi w(X) = \tau$, with τ is a successor and X^{τ} is π -metrizable. Let $\bigcup \{\Psi_n : n \in \mathbb{N}\}$ be a π -base for X^{τ} . We have $\pi w(X^{\tau}) \geq \pi(X) = \tau$ so $|\bigcup \{\Psi_n : n \in \mathbb{N}\}| \geq \tau$ thus $|\Psi_n| \geq \tau$ for some n as τ is a successor. Thus X^{τ} has a discrete collection of nonempty open subsets: Γ such that $|\Gamma| = \tau$ and without loss of generality we may assume all elements of Γ are basic open sets: that is, the product of open sets. Now again since τ is a successor, there must exist n such that $|\{O \in \Gamma : \pi_{\alpha}(O) \neq X_{\alpha} \text{ for }$ n values of α $|=\tau$. Let Θ be this set. So Θ is discrete. Let $P:\Theta\longrightarrow I^m$ be defined by $P(U) = \{ \alpha : \pi_{\alpha}(U) \neq X_{\alpha} \}$. Now let $O \in \Theta$, for all $U \in \Theta$ we have $P(O) \cap P(U) \neq \emptyset$ else $O \cap U \neq \emptyset$. Thus there must exist $\alpha_1 \in P(O)$ such that $|\{U \in \Theta : \alpha_1 \in P(U)\}| = \tau$. Let Θ_1 be this set and α the corresponding coordinate. Now suppose in the set Θ_i if there is an $\alpha_{i+1} \neq \alpha_1, \ldots, \alpha_i$ such that $|\{U \in \Theta_i : \alpha_{i+1} \in P(U)\}| = \tau$, then let Θ_{i+1} be this set. Since each set has only n elements, this must terminate at some finite point. That is, there exists Θ_m such that for all $\alpha \neq \alpha_1, \ldots, \alpha_m$ we have $|\{U \in \Theta_m : \alpha \in P(U)\}| < \tau$. Now define $Q: \Theta_m \longrightarrow I^{n-m}$ by $Q(U) = P(U) \setminus \{\alpha_1, \ldots, \alpha_m\}$. So then for all $\alpha \in I$ we have $|\{U \in \Theta_m : \alpha \in Q(U)\}| < \tau$.

Now well order Θ_m . Construct the set Ω as follows: let $O_1 \in \Omega$ and for O_α , if there exists $\beta < \alpha$ such that $Q(O_\beta) \cap Q(O_\alpha) \neq \emptyset$ then $O_\alpha \notin \Omega$ otherwise $O_\alpha \in \Omega$. Then by construction Ω is pairwise disjoint. We will see that $|\Omega| = \tau$. Let us define $s: \Omega \longrightarrow \operatorname{Pow}(\Theta_m)$ by $s(O) = \{U \in \Theta_m : Q(U) \cap Q(O) \neq \emptyset\}$. If $|s(O)| = \tau$ then there exists $\zeta \in Q(O)$ such that $|\{U \in \Theta_m : \zeta \in Q(U)\}| = \tau$ a contradiction. So $|s(O)| \leq \tau - 1$ for all $O \in \Omega$. Now $\Theta_m = \bigcup \{s(O) : O \in \Omega\}$. Thus $\tau = |\Theta_m| \leq \sum \{|s(O)| : O \in \Omega\} \leq |\Omega|(\tau - 1)$. Hence $|\Omega| = \tau$.

Now assume (for contradiction) that X^n does not have a discrete collection of open sets of cardinality τ for all $n \in \mathbb{N}$. Then by Lemma 2.1, X^n does not have a locally finite collection of open sets of cardinality τ for all $n \in \mathbb{N}$. So there exists a point in $(x_{\alpha_1}, \ldots, x_{\alpha_m}) \in X_{\alpha_1} \times \cdots \times X_{\alpha_m}$ such that every open set containing $(x_{\alpha_1}, \ldots, x_{\alpha_m})$ intersects infinitely many members of $\{\pi_{\alpha_1,\ldots,\alpha_m}(O) : O \in \Omega\}$ where $\pi_{\alpha_1,\ldots,\alpha_m}$ is the projection onto the coordinates α_1,\ldots,α_m and the collection is not taken faithfully so that it has cardinality τ . Now define the point f as follows: $f(\alpha_i) = x_{\alpha_i}$ for $i = 1,\ldots,m$, if $x_\alpha \in Q(O)$ (for some $O \in \Omega$) then $f(\alpha)$ is chosen so that $f(\alpha) \in O$, otherwise choose $f(\alpha)$ arbitrarily.

Let $\prod \{O_{\alpha} : \alpha \in I\}$ be an open set containing z. So O_{α} is open and $O_{\alpha} = X$ for all but finitely many values of α . Now $O_{\alpha_1} \times \cdots \times O_{\alpha_m}$ is an open set containing $(x_{\alpha_1}, \ldots, x_{\alpha_m})$ so it intersects infinitely many elements of $\{\pi_{\alpha_1,\ldots,\alpha_m}(O) : O \in \Omega\}$. Let Δ be this infinite set. If $\{\beta_1,\ldots,\beta_k\} = \{\alpha \in I : O_{\alpha} \neq X\}$. Since $\{Q(O) : O \in \Delta\}$ is an infinite collection of pairwise disjoint sets, there exists $V, U \in \Delta$ such that $\beta_i \notin Q(V) \cup Q(U)$ for all $i = 1,\ldots,k$. All that is left is to show that $\prod \{O_{\alpha} : \alpha \in I\}$ intersects V and U. $\pi_{\alpha}(V) = X$ for each $\alpha \notin P(V)$. So we know that $O_{\alpha} \cap \pi_{\alpha}(V) \neq \emptyset$ for each $\alpha \notin P(V)$. Now $P(V) = \{\alpha_1,\ldots,\alpha_m\} \cup Q(V)$. The set $O_{\alpha_1} \times \cdots \times O_{\alpha_m}$ intersects $\pi_{\alpha_1,\ldots,\alpha_m}(V)$ by virtue of $V \in \Delta$, and since $O_{\alpha} = X$ for each $\alpha \in Q(V)$ it follows that $O_{\alpha} \cap \pi_{\alpha}(V) \neq \emptyset$ for each $\alpha \in Q(V)$. Thus $\pi_{\alpha}(V) \cap O_{\alpha} \neq \emptyset$ for all $\alpha \in I$. Since V is the product of open sets, this implies that $V \cap \prod \{O_{\alpha} : \alpha \in I\} \neq \emptyset$. Similarly, $U \cap \prod \{O_{\alpha} : \alpha \in I\} \neq \emptyset$ thus Ω is not discrete. Thus Γ is not discrete: a contradiction.

Therefore X^n does have a discrete collection of open sets of cardinality τ for some $n \in \mathbb{N}$. Since $\pi w(X^n) = \tau$, we get $(X^n)^{\aleph_0} = X^{\aleph_0}$ is π -metrizable.

In the case of $\pi w(X) = \tau$ not a successor but with countable cofinality. There exists an increasing sequence $\lambda_n \longrightarrow \tau$ such that each λ_n is a successor. Then we may repeat the above argument to see that since X^{τ} must have a discrete collection of λ_n open sets, there exists $m_n \in \mathbb{N}$ such that X^{m_n} has a discrete collection of λ_n open sets. Thus $\prod \{X^{m_n} : n \in \mathbb{N}\} = X^{\aleph_0}$ is π -metrizable.

Finally for the most general case where X^{κ} is π -metrizable. By Theorem 3.11 we get $\kappa \leq d(X) \leq \pi w(X)$. Thus $\pi w(X^{\kappa}) = \pi w(X)$. So $(X^{\kappa})^{\pi w(X)} = X^{\pi w(X)}$ is π -metrizable, thus X^{\aleph_0} is π -metrizable from above.

Many of these results can be summarized in the following corollary.

Corollary 3.13. If $\pi w(X)$ is a cardinal with countable cofinality or a successor and X^{κ} is π -metrizable (for some κ), then X^{τ} is π -metrizable for all $\aleph_0 \leq \tau \leq \pi w(X)$. **Problem 3.14.** Is it true that for any non- π -metrizable spaces X and Y, we have that $X \times Y$ is also non- π -metrizable?

Problem 3.15. Does there exist a non- π -metrizable space X such that X^n is π -metrizable for some $n \in \mathbb{N}$?

Problem 3.16. If X^{κ} is π -metrizable is X^{\aleph_0} π -metrizable as well?

References

- Arhangel'skii A.V., Topological invariants in algebraic environment, Recent Progress in General Topology, II, North-Holland, Amsterdam, 2002, pp. 1–57.
- [2] Arhangel'skii A.V., d-separable spaces, Seminar on General Topology, Moscow, 1981, pp. 3–8.
- [3] Davis S., Topology, McGraw-Hill, New York, 2004.
- [4] Engelking R., General Topology, Heldermann, Berlin, 1989.
- [5] Fearnley D., A Moore space with a σ -discrete π -base which cannot be densely embedded in any Moore space with the Baire property, Proc. Amer. Math. Soc. **127** (1999), 3095–3100.
- [6] Isbell J., Uniform Spaces, American Mathematical Society, Providence, Rhode Island, 1964.
- [7] Ponomarev V., On the absolute of a topological space, Dokl. Akad. Nauk SSSR 149 (1963), 26–29.
- [8] White H.E., First countable spaces that have countable pseudo-bases, Canad. Math. Bull. 21 (1978), 103–112.

Department of Mathematics, Athens, Ohio 45701, USA

E-mail: stover@math.ohiou.edu

(Received April 18, 2008, revised September 13, 2008)