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On π-metrizable spaces, their

continuous images and products

Derrick Stover

Abstract. A space X is said to be π-metrizable if it has a σ-discrete π-base. The behav-
ior of π-metrizable spaces under certain types of mappings is studied. In particular we
characterize strongly d-separable spaces as those which are the image of a π-metrizable
space under a perfect mapping. Each Tychonoff space can be represented as the im-
age of a π-metrizable space under an open continuous mapping. A question posed by
Arhangel’skii regarding if a π-metrizable topological group must be metrizable receives
a negative answer.
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1. Introduction

By N we mean the set of all natural numbers. Recall that for a space X ,
a collection of nonempty open sets Θ, is called a π-base if for every nonempty
open set O, there exists U ∈ Θ such that U ⊂ O. Recall that for a Tychonoff
space X , πw(X) is defined to be the least cardinal τ such that X has a π-base
Γ with |Γ| = τ . Recall that a collection of sets Γ π-refines a collection of sets Θ
if for each O ∈ Θ there exists U ∈ Γ such that U ⊂ O and ∅ /∈ Γ. It is clear
that π-metrizability is preserved by open subspaces, closures of open subspaces,
and dense subspaces. A space X is said to be weakly π-metrizable if it has a
σ-disjoint π-base. Weak π-metrizability is preserved by open subspaces, closures
of open subspaces, and dense subspaces in both directions. Some examples of π-
metrizable spaces are: βN, the Sorgenfrey Line and Kℵ1 where K is uncountable
discrete (as we shall later see). The space [0, 1]2τ where τ is the topology induced
by lexicographic ordering is one of many weakly π-metrizable, not π-metrizable
spaces. Recall that a space X is called d-separable if there exists {Kn : n ∈ N}
such that each Kn is a discrete (in itself) subset of X and

⋃
{Kn : n ∈ N} is

dense in X . For more on d-separable spaces see [2]. A space X is called strongly
d-separable if there exists {Kn : n ∈ N} such that each Kn is a closed discrete
subset of X and

⋃
{Kn : n ∈ N} is dense in X .

A σ-discrete π-base was first observed as a necessary condition for being the
absolute of a metrizable space (see [7]). First countable spaces with σ-disjoint
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π-bases (weakly π-metrizable) were studied by H.E. White in [8]. In this paper
he has also shown that a first countable space has a dense metrizable subspace if
and only if it is π-metrizable. Also Fearnley has constructed a Moore space with
a σ-discrete π-base which does not densely embed into any Moore space having
the Baire property [5]. This paper will be an attempt to examine the behavior of
π-metrizable spaces under products and mappings.
All spaces are assumed to be Tychonoff.

2. Continuous mappings

Lemma 2.1. Every locally finite collection of open sets in a space X has a

discrete π-refinement (of open sets) of the same cardinality if the collection is
infinite.

Proof: Let Ψ be a locally finite collection of nonempty open sets in X . For each
O ∈ Ψ choose xO ∈ O. Put F = {xO : O ∈ Ψ}. Well order F : that is for some
cardinal κ write F = {xα : α < κ} where the indexing is faithful. Clearly F is
closed and discrete, thus there exists an open set Uα such that cl(Uα)∩F = {xα}
and Wα ⊂

⋂
{V ∈ Ψ : xO ∈ V } for each α < κ. Put Γ = {Uα : α < κ}.

Then clearly Γ is a π-refinement of Ψ. Now Γ is also locally finite so the set
Vα = Uα\

⋃
{cl(Uβ) : β < α} is an open set containing xα. Thus {Vα : α < κ} is

disjoint and locally finite. Finally use regularity to choose an open set Hα such
that xα ∈ Hα and cl(Hα) ⊂ Vα. Then {Hα : α < κ} is a discrete π-refinement of
Ψ and it has of course the same cardinality. �

It is well known from metrizability criterion that the existence of a σ-locally
finite base is equivalent to existence of a σ-discrete base. Analogous to this is the
following result.

Theorem 2.2. A space X is π-metrizable if and only if it has a σ-locally finite
π-base.

Proof: This follows from Lemma 2.1 and the fact that a π-refinement of a π-base
is a π-base. �

A collection of sets Γ in a space X each with nonempty interior is called a
π∗-base if for each open set O there exists B ∈ Γ with B ⊂ O. It is typically
clear that the existence of a π∗-base with a finiteness type property implies the
existence of a π-base with the same property.

Proposition 2.3. Open perfect mappings preserve π-metrizability.

Proof: Let f : X −→ Y be perfect onto and open and X be π-metrizable.
Let

⋃
{Ψn : n ∈ N} be a π-base for X with each Ψn discrete. For each set

B ∈
⋃
{Ψn : n ∈ N} there exists a closed set CB ⊂ B with nonempty interior

(using regularity). Then {CB : B ∈
⋃
{Ψn : n ∈ N}} is a π∗-base and it is of

course σ-discrete. Since f is closed and open, {f(CB) : B ∈
⋃
{Ψn : n ∈ N}} is
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a π∗-base for Y consisting of closed sets. Let us show that this collection is σ-
locally finite.

⋃
{CB : B ∈ Ψn} is the union of a discrete collection of closed sets so

it is closed. Let y ∈ Y . The set f−1(y) is compact so (
⋃
{CB : B ∈ Ψn})∩f−1(y)

is compact. But Ψn is an open cover of this set. So we have a finite subcover. But
the cover is pairwise disjoint, so f−1(y) must intersect only finitely many elements
of Ψn and thus of {CB : B ∈ Ψn}. Let H = {CB : B ∈ Ψn and f−1(y)∩CB = ∅}
and let Z =

⋃
H . Since H is a discrete collection of closed sets, Z is closed and

f−1(y) ∩ Z = ∅. Thus Y \f(Z) is an open set containing y and intersecting only
finitely many elements of {f(CB) : B ∈ Ψn} (only those not in H). Therefore
{f(CB) : B ∈ Ψn} is locally finite and so Y has a σ-locally finite π∗-base and
thus is π-metrizable. �

Corollary 2.4. IfX×Y is π-metrizable and Y is compact thenX is π-metrizable.

Proof: The projection map π : X × Y −→ X is perfect and open so this follows
by Proposition 2.3. �

Proposition 2.5. Irreducible perfect mappings preserve π-metrizability in both
directions.

Proof: Let f : X −→ Y be perfect, onto and irreducible and X be π-metrizable.
Let

⋃
{Ψn : n ∈ N} be a π-base for X with each Ψn discrete. Take as a π-

base in Y , the family
⋃
{Γn : n ∈ N} where Γn = {Y \f(X\B) : B ∈ Ψn}.

First note that for each B ∈ Γn since B 6= ∅ then by the irreducibility of f
we have Y \f(X\B) 6= ∅ and that each Y \f(X\B) is open. So now let O be
open in Y , then there exists B ∈

⋃
{Γn : n ∈ N} such that B ⊂ f−1(O), thus

Y \f(X\B) ⊂ Y \f(X\f−1(O)) ⊂ O so it is a π-base.

Now to see that Γn is locally finite: Let y ∈ Y . For each x ∈ f−1(y), there exists
an open set Ox such that x ∈ Ox and Ox intersects at most one element of Ψn.
By compactness of f−1(y) there exist Ox1 , . . . , Oxk

such that f−1(y) ⊂
⋃
{Oxi

:

i = 1, . . . , k}. So then let U =
⋃
{Oxi

: i = 1, . . . , k}. Then f−1(y) ⊂ U and U
intersects only finitely many elements of Ψ. Now if Y \f(X\U)∩ Y \f(X\B) 6= ∅
then U ∩B 6= ∅. It follows that Y \f(X\U) intersects only finitely many elements
of Γn. Furthermore since f−1(y) ⊂ U , it follows that y ∈ Y \f(X\U). So Γn is
locally finite which implies that Y is π-metrizable.
That π-metrizability is preserved by irreducible perfect continuous inverse im-

ages follows by a standard argument. �

Theorem 2.6. A space Y is the image of a π-metrizable space X under a perfect
mapping if and only if Y is strongly d-separable.

Proof: Every π-metrizable space is strongly d-separable and strong d-separabi-
lity is preserved by closed mappings.
Now assume Y is strongly d-separable. Let {Dn : n ∈ N} be a collection of

closed discrete subspaces of Y with
⋃
{Dn : n ∈ N} dense in Y . Let En =

⋃
{Di :
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i = 1, . . . , n}. Then En is closed and discrete for each n and
⋃
{En : n ∈ N} is

dense in Y . Now consider the following subspace of N∗ × Y , where N∗ = N ∪ {p}
is the Alexandroff compactification of N: The space X = (

⋃
{{n} × En : n ∈

N}) ∪ ({p} × Y ).
We shall show that X is π-metrizable. Let Γn = {{(n, d)} : d ∈ En}. Then

Γn is discrete, for if (a, b) ∈ X with a 6= n then (X\{n}) × En is an open set
containing (a, b) and intersecting no element of Γn. Now if a = n then {(a, b)}
is open. Furthermore

⋃
{Γn : n ∈ N} is a π-base. Let O be a nonempty open

set in X . It will be sufficient to show O intersects
⋃
{{n} × En : n ∈ N}. If

O ∩ ({p} × Y ) = ∅ then this is trivial. So otherwise let us assume we have
O = U × Nm for an open set U ⊂ Y and Nm = N∗\{1, 2, . . . , m − 1}. Now since⋃
{En : n ∈ N} is dense in Y there exists d ∈ En for some n such that d ∈ U .
Now if n ≥ m then we have {(n, d)} ⊂ O where {(n, d)} ∈ Γn. If instead n < m
then En ⊂ Em and thus d ∈ Em and so {(m, d)} ⊂ O where {(m, d)} ∈ Γm.
Hence

⋃
{Γn : n ∈ N} is a π-base for X and so X is π-metrizable.

Now take f : X −→ Y to be the projection map. The projection of N∗×Y onto
Y is a closed mapping as N∗ is compact and X is a closed subspace of N∗×Y thus
f is a closed mapping. That f−1(y) is compact for all y ∈ Y follows as f−1(y)
is homeomorphic to a subspace of N∗ containing the limit point p. Thus f is a
perfect mapping. �

In fact we need only that the mapping be closed in order that the image be
strongly d-separable and thus we get another characterization.

Corollary 2.7. A space Y is the image of a π-metrizable space X under a closed
mapping if and only if Y is strongly d-separable.

Proposition 2.8. If X is π-metrizable and f : X −→ Y is an onto open con-
tinuous mapping such that each fiber is compact, then Y has a σ-point-finite
π-base.

Proof: Let
⋃
{Ψn : n ∈ N} be a π-base for X with Ψn discrete. Let Γn =

{f(B) : B ∈ Ψn}, for y ∈ Y , the f−1(y) is compact and thus intersects only
finitely many members of Ψn. Thus y ∈ f(B) for only finitely many B ∈ Ψn and
so Γn is point-finite. That

⋃
{Γn : n ∈ N} is a π-base follows trivially as f is an

open continuous mapping. �

Theorem 2.9. If Y has an open dense π-metrizable subspace then there exists
a π-metrizable space X and f : X −→ Y such that f is onto, open, continuous
and each fiber is compact.

Proof: Let O be the subspace. Let
⋃
{Ψn : n ∈ N} be a π-base for O with

Ψn discrete in O. Now consider subspace of N∗ × Y , where N∗ = N ∪ {p} is the
Alexandroff compactification of N: The space X = (N × O) ∪ ({p} × Y ). Now
let Γn,m = {{n} × B : B ∈ Ψm}. Then Γn,m is discrete. For if (a, b) ∈ X
and a 6= n then X\{n} × O is an open set containing (a, b) and intersecting no
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element of Γn,m. If a = n then there exists and open set U ∈ O with b ∈ U and
U intersecting at most one element of Ψm. Then (a, b) ∈ {n} × U and {n} × U
intersects at most one element of Γn,m. Thus Γn,m is discrete.
Now let U be a basic open set in X . Then U = (V ×W )∩X where V is open

in N∗ and W is open in Y . Then there exists n ∈ N such that n ∈ V , and W ∩O
is a nonempty open subset of Y so there exists B ∈ Ψm for some m, such that
B ⊂ W ∩O. Thus {n}×B ⊂ U and {n}×B ∈ Γn,m. Thus

⋃
{Ψn,m : n, m ∈ N}

is a π-base for X and thus X is π-metrizable.
Now consider f : X −→ Y to be the projection mapping. Let U be a basic

open set in X . Then U = (V × W ) ∩ X where V is open in N∗ and W is open
in Y . Then f(U) =W and so f is an open mapping. That f−1(y) is compact for
all y ∈ Y follows as f−1(y) is homeomorphic to a subspace of N∗ containing the
limit point p. �

Problem 2.10. How might the class of spaces described in the previous two

propositions be further characterized?

3. Products

We now turn our attention to the question of when products are (weakly)
π-metrizable. First a standard observation.

Proposition 3.1. If Xn is π-metrizable for n ∈ N, then
∏
{Xn : n ∈ N} is

π-metrizable.

Proof: Let Ψn =
⋃
{Ψn,m : m ∈ N} be a π-base for Xn with Ψn,m dis-

crete. There are countably many ways to select a finite subset a1, . . . , ak ∈
N. Then there are countably many ways to select n1, . . . , nk ∈ N. Now let
P (a1, . . . , ak, n1, . . . , nk) = {

∏
{On : n ∈ N} : Oni

∈ Ψai,ni
for i = 1, . . . , k and

On = Xn otherwise}. Then there are countably many such P (a1, . . . , ak, n1, . . . ,
nk). Let x ∈

∏
{Xn : n ∈ N} for each Ψai,ni

there exists Ui open in Xi such
that x(i) ∈ Ui and Ui intersect at most one member of Ψai,ni

. Now define
Ui = Xi for all i 6= 1, . . . , k. Then x ∈

∏
{Un : n ∈ N} and this is an open

set intersecting at most one element of P (a1, . . . , ak, n1, . . . , nk). Therefore each
P (a1, . . . , ak, n1, . . . , nk) is discrete.
Let

∏
{Un : n ∈ N} be a basic open set (Un open in Xn). Let k be such that

Un = Xn for all n > k. Then we can find Oi,j(i) ∈ Ψi,j(i) such that Oi,j(i) ⊂ Ui for

each i ≤ k. Then O1,j(1)×· · ·×Ok,j(k)×Xk+1×Xk+2×· · · ⊂
∏
{Un : n ∈ N} and

this is in P (1, . . . , k, j(1), . . . , j(k)). Thus this is a π-base and so
∏
{Xn : n ∈ N}

is π-metrizable. �

The proof of the corresponding result for weakly π-metrizable spaces follows
by a similar argument.

Proposition 3.2. If Xn is weakly π-metrizable for each n ∈ N, then
∏
{Xn :

n ∈ N} is weakly π-metrizable.



158 D. Stover

It is not at all obvious (at this point) whether we can have X × Y being π-
metrizable without both X and Y being so. We will see that in fact much more
is true.

Lemma 3.3. If Xn has a discrete collection of κ open sets for all n ∈ N and

πw(Y ), πw(Xn) ≤ κ for all n, then Y × (
∏
{Xn : n ∈ N}) is π-metrizable.

Proof: Let X0 = Y and let N∗ = N ∪ {0}. Now let Ψn be a π-base for Xn

for each n ∈ N∗ with |Ψn| = κ. Now let Γn be a discrete collection open sets
with |Γn| = κ for all n ∈ N. We essentially want to construct “almost all” of the
products where n factors are nontrivial: the trick is to do it for N∗\{n}. So we
observe that there are ℵ0 ways to choose A ⊂ N∗\{n} such that |A| = n. For
each k ∈ A there are κ ways to choose Bk ∈ Ψk. Thus there are κ ways to choose
a set A and {Bk : k ∈ A} where Bk ∈ Ψk. Now |Γn| = κ, so for each A ⊂ N∗\{n}
such that |A| = n and {Bk : k ∈ A} where Bk ∈ Ψk, we can associate a unique
f(A, {Bk|k ∈ A}) ∈ Γn. So f is a one to one function. Now let O(A, {Bk : k ∈
A}) =

∏
{On : n ∈ N∗} where Ok = Bk for all k ∈ A, On = f(A, {Bk : k ∈ A})

and Om = Xm for all m ∈ N∗\(A ∪ {n}). Then O(A, {Bk : k ∈ A}) is open. So
let ∆n = {O(A, {Bk|k ∈ A}) : A ⊂ N∗\{n} with |A| = n and Bk ∈ Ψk for each
k ∈ A}. Then ∆n is discrete. Let g ∈

∏
{Xn : n ∈ N∗}. Since Γn is discrete,

there exists g(n) ∈ O open in Xn such that O intersects at most one elements
of Γn. Then

∏
{Un : n ∈ N∗} where Um = Xm for n 6= m and Un = O, is an

open set containing g. Furthermore
∏
{Un : n ∈ N∗} intersects B ∈ ∆n only if

O intersects πn(B) = f(A, {Bk : k ∈ A}) ∈ Γn. Since O intersects at most one
element of Γn and f is one to one, it follows that

∏
{Un : n ∈ N∗} intersects at

most one element of ∆n.
Now to see that

⋃
{∆n : n ∈ N} is a π-base choose a basic open set

∏
{Un :

n ∈ N∗}, that is, Un is open for all n and Un = Xn for all but finitely many n.
Let B = {n ∈ N∗ : Un 6= Xn}. Since |B| = n is finite, there exists m ∈ N

such that n < m and m /∈ B. Now let A ⊂ N∗ be such that |A| = m, m /∈ A
and B ⊂ A. Now for k ∈ A choose Bk ∈ Ψk such that Bk ⊂ Uk. Then
O(A, {Bk|k ∈ A}) =

∏
{On : n ∈ N∗} ⊂

∏
{Un : n ∈ N∗} as Ok = Bk for

k ∈ A so Ok ⊂ Uk and Uk = Xk for k /∈ A so Ok ⊂ Uk automatically. Thus⋃
{∆n : n ∈ N} is a σ-discrete π-base so

∏
{Xn : n ∈ N∗} = Y ×(

∏
{Xn : n ∈ N})

is π-metrizable. �

Theorem 3.4. For every space X there exists a space Y such that X × Y is
π-metrizable.

Proof: Let D be a discrete space with |D| = πw(X). Now let Y = Dℵ0 . Then
X × Y is π-metrizable by Lemma 3.3. �

Corollary 3.5. Every space is the open continuous image of a π-metrizable space.

Proof: Let Y be a space, and X be such that X × Y is π-metrizable. Now take
π : X × Y −→ Y to be the projection map. �



On π-metrizable spaces, their continuous images and products 159

One further consequence of this is a solution to a problem posed in [1].

Example 3.6. There exists a π-metrizable topological group that is not metriz-
able (and therefore not first countable).

Proof: Let K be a discrete space with |K| = ℵ1, then K is a topological group,

as is Kℵ1 . Furthermore Kℵ1 is π-metrizable. However Kℵ1 is not metrizable.
�

Theorem 3.7. Let {Xα : α ∈ I} with (N ⊂ I) be a collection of not more than κ
spaces, with πw(Xα) ≤ κ. If {λn} is a sequence of cardinal numbers converging to
κ (in the topology induced by the usual ordering) and Xn has a discrete collection

of λn open sets for all n ∈ N, then
∏
{Xα : α ∈ I} is π-metrizable.

Proof: From elementary set theory, there exist a partition N =
⋃
{Nn : n ∈ N},

such that Ni ∩ Nj = ∅ if i 6= j, and |Nn| = ω for all n ∈ N. Then {λn : n ∈
Ni} converges to κ.

∏
{Xn : n ∈ Ni} has a discrete collection of κ open sets.

Write Ni = {in : n ∈ N}. Without loss of generality assume λi1 ≥ ℵ0. Now
let Γn be a discrete collection of open sets of Xin of cardinality λin . Choose
{On : n ∈ N} ⊂ Γ1. Now for each U ∈ Γn with n > 1 let h(U) =

∏
{Oin : n ∈ N}

where Oi1 = On and Oin = U and for k 6= 1, n put Oik = Xik . Now let
∆n = {h(U) : U ∈ Γn} and ∆ =

⋃
{∆n : n ∈ N}. Then ∆ is discrete and |∆| = κ.

So let Yn =
∏
{Xk : k ∈ Nn}. Let Y =

∏
{Xα : α ∈ I\N}. It is known that

πw(Y ) ≤ κ.
Then

∏
{Xα : α ∈ I} =

∏
{Xα : α ∈ I\N} ×

∏
{Xk : k ∈ Nn, n ∈ N} =

Y ×
∏
{Yn : n ∈ N} is π-metrizable by Lemma 3.3. �

Theorem 3.8. Let {Xα : α ∈ I} be a collection of not more that κ spaces with
πw(Xα) ≤ κ for all α ∈ I. Assume that whenever {λn} is a sequence of cardinal
numbers converging (in the topology induced by the usual ordering) to κ, there
exist {Xn : n ∈ N} such that Xn has a collection of pairwise disjoint open sets of

cardinality λn. Then
∏
{Xα : α ∈ I} is weakly π-metrizable.

The proof is similar in spirit to that of Theorem 3.7.

Lemma 3.9. For every space X there exists a compact space Y such that X×Y
is weakly-π-metrizable.

Proof: Let A be a discrete space with |A| = πw(X), let B be the Alexandroff

compactification of A and declare Y = Bℵ0 . Then X × Y is weakly-π-metrizable
by Theorem 3.8. �

Theorem 3.10. Every space is the image of a weakly π-metrizable space under
an open perfect mapping.

We now present a result of a different kind: one which provides an upper bound
on the number of factors in a weakly π-metrizable product.
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Theorem 3.11. Let κ and λ be cardinal numbers. If Y is the product of κ
factors each with at least two points and density less than or equal to λ where
λ < κ, then Y is not weakly π-metrizable.

Proof: Let p(β) =
∏
{Oα : α ∈ I} where Oα = Xα for all α 6= β and Oβ =

Xβ\{x} for some x ∈ Xβ . Let Γ = {p(β) : β ∈ I}. Put ∆ =
⋃
{Ψn|n ∈ N}

to be a π-base with Ψn pairwise disjoint. For each element U of Γ there is an
element B of ∆ such that B ⊂ U . Furthermore for each B ∈ ∆ there can exist
only finitely many U ∈ Γ such that B ⊂ U . Thus |∆| = |Γ| = κ. Therefore there
exists n such that |Ψn| > λ. But Ψn is pairwise disjoint and it is known that
c(

∏
{Xα : α ∈ I}) ≤ λ. So we have a contradiction. Thus

∏
{Xα : α ∈ I} is not

weakly π-metrizable. �

As an application of the product theorem offered earlier, the premise on the
above theorem cannot be weakened to “If Y is the product of κ factors each with
at least two points and density less than κ then Y is not weakly π-metrizable”. To
see this take A(n) to be a discrete space of size ℵn. Then take Y =

∏
{A(n)ℵn :

n ∈ N}. There are ℵω factors each with density less than ℵω but the product
is π-metrizable as evident from Theorem 3.8 by using the sequence {ℵn} which
converges to ℵω.

Theorem 3.12. If πw(X) is a cardinal with countable cofinality or a successor,

and Xκ is π-metrizable, then Xℵ0 is π-metrizable.

Proof: We shall begin with the simple case where πw(X) = τ , with τ is a
successor and Xτ is π-metrizable. Let

⋃
{Ψn : n ∈ N} be a π-base for Xτ .

We have πw(Xτ ) ≥ π(X) = τ so |
⋃
{Ψn : n ∈ N}| ≥ τ thus |Ψn| ≥ τ for

some n as τ is a successor. Thus Xτ has a discrete collection of nonempty open
subsets: Γ such that |Γ| = τ and without loss of generality we may assume all
elements of Γ are basic open sets: that is, the product of open sets. Now again
since τ is a successor, there must exist n such that |{O ∈ Γ : πα(O) 6= Xα for
n values of α}| = τ . Let Θ be this set. So Θ is discrete. Let P : Θ −→ Im

be defined by P (U) = {α : πα(U) 6= Xα}. Now let O ∈ Θ, for all U ∈ Θ we
have P (O) ∩ P (U) 6= ∅ else O ∩ U 6= ∅. Thus there must exist α1 ∈ P (O) such
that |{U ∈ Θ : α1 ∈ P (U)}| = τ . Let Θ1 be this set and α the corresponding
coordinate. Now suppose in the set Θi if there is an αi+1 6= α1, . . . , αi such that
|{U ∈ Θi : αi+1 ∈ P (U)}| = τ , then let Θi+1 be this set. Since each set has
only n elements, this must terminate at some finite point. That is, there exists
Θm such that for all α 6= α1, . . . , αm we have |{U ∈ Θm : α ∈ P (U)}| < τ . Now
define Q : Θm −→ In−m by Q(U) = P (U)\{α1, . . . , αm}. So then for all α ∈ I
we have |{U ∈ Θm : α ∈ Q(U)}| < τ .

Now well order Θm. Construct the set Ω as follows: let O1 ∈ Ω and for Oα,
if there exists β < α such that Q(Oβ) ∩ Q(Oα) 6= ∅ then Oα /∈ Ω otherwise
Oα ∈ Ω. Then by construction Ω is pairwise disjoint. We will see that |Ω| = τ .
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Let us define s : Ω −→ Pow(Θm) by s(O) = {U ∈ Θm : Q(U) ∩ Q(O) 6= ∅}. If
|s(O)| = τ then there exists ζ ∈ Q(O) such that |{U ∈ Θm : ζ ∈ Q(U)}| = τ a
contradiction. So |s(O)| ≤ τ − 1 for all O ∈ Ω. Now Θm =

⋃
{s(O) : O ∈ Ω}.

Thus τ = |Θm| ≤
∑

{|s(O)| : O ∈ Ω} ≤ |Ω|(τ − 1). Hence |Ω| = τ .

Now assume (for contradiction) that Xn does not have a discrete collection of
open sets of cardinality τ for all n ∈ N. Then by Lemma 2.1, Xn does not have
a locally finite collection of open sets of cardinality τ for all n ∈ N. So there
exists a point in (xα1 , . . . , xαm

) ∈ Xα1 × · · · × Xαm
such that every open set

containing (xα1 , . . . , xαm
) intersects infinitely many members of {πα1,...,αm

(O) :
O ∈ Ω} where πα1,...,αm

is the projection onto the coordinates α1, . . . , αm and
the collection is not taken faithfully so that it has cardinality τ . Now define the
point f as follows: f(αi) = xαi

for i = 1, . . . , m, if xα ∈ Q(O) (for some O ∈ Ω)
then f(α) is chosen so that f(α) ∈ O, otherwise choose f(α) arbitrarily.

Let
∏
{Oα : α ∈ I} be an open set containing z. So Oα is open and Oα = X for

all but finitely many values of α. Now Oα1 × · · · ×Oαm
is an open set containing

(xα1 , . . . , xαm
) so it intersects infinitely many elements of {πα1,...,αm

(O) : O ∈ Ω}.
Let ∆ be this infinite set. If {β1, . . . , βk} = {α ∈ I : Oα 6= X}. Since {Q(O) :
O ∈ ∆} is an infinite collection of pairwise disjoint sets, there exists V, U ∈ ∆
such that βi /∈ Q(V ) ∪ Q(U) for all i = 1, . . . , k. All that is left is to show that∏
{Oα : α ∈ I} intersects V and U . πα(V ) = X for each α /∈ P (V ). So we know
that Oα ∩ πα(V ) 6= ∅ for each α /∈ P (V ). Now P (V ) = {α1, . . . , αm} ∪ Q(V ).
The set Oα1 × · · · × Oαm

intersects πα1,...,αm
(V ) by virtue of V ∈ ∆, and since

Oα = X for each α ∈ Q(V ) it follows that Oα ∩ πα(V ) 6= ∅ for each α ∈ Q(V ).
Thus πα(V ) ∩ Oα 6= ∅ for all α ∈ I. Since V is the product of open sets, this
implies that V ∩

∏
{Oα : α ∈ I} 6= ∅. Similarly, U ∩

∏
{Oα : α ∈ I} 6= ∅ thus Ω is

not discrete. Thus Γ is not discrete: a contradiction.

Therefore Xn does have a discrete collection of open sets of cardinality τ for
some n ∈ N. Since πw(Xn) = τ , we get (Xn)ℵ0 = Xℵ0 is π-metrizable.

In the case of πw(X) = τ not a successor but with countable cofinality. There
exists an increasing sequence λn −→ τ such that each λn is a successor. Then
we may repeat the above argument to see that since Xτ must have a discrete
collection of λn open sets, there exists mn ∈ N such that Xmn has a discrete
collection of λn open sets. Thus

∏
{Xmn : n ∈ N} = Xℵ0 is π-metrizable.

Finally for the most general case where Xκ is π-metrizable. By Theorem 3.11

we get κ ≤ d(X) ≤ πw(X). Thus πw(Xκ) = πw(X). So (Xκ)πw(X) = Xπw(X)

is π-metrizable, thus Xℵ0 is π-metrizable from above. �

Many of these results can be summarized in the following corollary.

Corollary 3.13. If πw(X) is a cardinal with countable cofinality or a successor
and Xκ is π-metrizable (for some κ), then Xτ is π-metrizable for all ℵ0 ≤ τ ≤
πw(X).
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Problem 3.14. Is it true that for any non-π-metrizable spaces X and Y , we
have that X × Y is also non-π-metrizable?

Problem 3.15. Does there exist a non-π-metrizable space X such that Xn is

π-metrizable for some n ∈ N?

Problem 3.16. If Xκ is π-metrizable is Xℵ0 π-metrizable as well?
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