Weyl quantization for the semidirect product of a compact Lie group and a vector space

BENJAMIN CAHEN

Abstract. Let G be the semidirect product $V \rtimes K$ where K is a semisimple compact connected Lie group acting linearly on a finite-dimensional real vector space V. Let \mathcal{O} be a coadjoint orbit of G associated by the Kirillov-Kostant method of orbits with a unitary irreducible representation π of G. We consider the case when the corresponding little group H is the centralizer of a torus of K. By dequantizing a suitable realization of π on a Hilbert space of functions on \mathbb{C}^n where $n = \dim(K/H)$, we construct a symplectomorphism between a dense open subset of \mathcal{O} and the symplectic product $\mathbb{C}^{2n} \times \mathcal{O}'$ where \mathcal{O}' is a coadjoint orbit of H. This allows us to obtain a Weyl correspondence on \mathcal{O} which is adapted to the representation π in the sense of [B. Cahen, Quantification d'une orbite massive d'un groupe de Poincaré généralisé, C.R. Acad. Sci. Paris t. 325, série I (1997), 803–806].

Keywords: Weyl quantization, Berezin quantization, semidirect product, coadjoint orbits, unitary representations

Classification: 81S10, 22E46, 22E99, 32M10

1. Introduction

Let G be a connected Lie group with Lie algebra \mathfrak{g} . Let π be a unitary irreducible representation of G on a Hilbert space H. Assume that the representation π is associated to a coadjoint orbit \mathcal{O} of G by the Kirillov-Kostant method of orbits [19], [20], [21]. In [5] and [6] we introduced the notion of adapted Weyl correspondence on \mathcal{O} in order to generalize the usual quantization rules directly [1], [15].

Definition 1.1. An *adapted Weyl correspondence* is an isomorphism W from a vector space \mathcal{A} of complex-valued (or real-valued) smooth functions on the orbit \mathcal{O} (called symbols) to a vector space \mathcal{B} of (not necessarily bounded) linear operators on H satisfying the following properties:

- (1) the elements of \mathcal{B} preserve a fixed dense domain D of H;
- (2) the constant function 1 belongs to \mathcal{A} , the identity operator I belongs to \mathcal{B} and W(1) = I;
- (3) $A \in \mathcal{B}$ and $B \in \mathcal{B}$ implies $AB \in \mathcal{B}$;
- (4) for each f in A the complex conjugate \$\vec{f}\$ of f belongs to \$\mathcal{A}\$ and the adjoint of \$W(f)\$ is an extension of \$W(\vec{f})\$ (in the real case: for each f in \$\mathcal{A}\$ the operator \$W(f)\$ is symmetric);

(5) the elements of D are C^{∞} -vectors for the representation π , the functions \tilde{X} $(X \in \mathfrak{g})$ defined on \mathcal{O} by $\tilde{X}(\xi) = \langle \xi, X \rangle$ are in \mathcal{A} and $W(i\tilde{X})v = d\pi(X)v$ for each $X \in \mathfrak{g}$ and each $v \in D$.

For example, if G is a connected simply-connected nilpotent Lie group then each coadjoint orbit \mathcal{O} of G is diffeomorphic to \mathbb{R}^{2n} where $n = 1/2 \dim \mathcal{O}$, the unitary irreducible representation of G associated with \mathcal{O} can be realized in the Hilbert space $L^2(\mathbb{R}^n)$ and the usual Weyl correspondence gives an adapted symbol calculus on \mathcal{O} [2], [28]. It is also known that the Berezin calculus on an integral coadjoint orbit \mathcal{O} of a semisimple compact connected Lie group G provides an adapted symbol calculus on \mathcal{O} [5] (see also [12] and, for a similar result for the discrete series representations of a semisimple noncompact Lie group, [11]). By combining the usual Weyl correspondence on the principal series coadjoint orbits of a connected semisimple noncompact Lie group [5], [10] and on the integral coadjoint orbits of the semidirect product $V \rtimes K$ where K is a connected semisimple noncompact Lie group acting linearly on a finite-dimensional real vector space V, under the condition that the little group is a maximal compact subgroup of K [9].

In fact, an adapted Weyl correspondence provides a prequantization map in the sense of [16, Definition 1]. In [9], we briefly described the relationship between adapted Weyl correspondences and the notion of quantization introduced by Mark Gotay (see [16]). Our original motivation for constructing adapted Weyl correspondences was to obtain covariant star-products on coadjoint orbits [5]. More recently, it has been established that adapted Weyl correspondences are useful to study contractions of Lie group representations in the setting of the Kirillov-Kostant method of orbits [14], [7], [8].

In the present paper, we continue the study of the adapted Weyl correspondences for semidirect products started in [9]. We consider here the case of the semidirect product $G = V \rtimes K$ where K is a semisimple compact connected Lie group acting linearly on a real vector space V. Let \mathcal{O} be an integral coadjoint orbit of G whose little group H is the centralizer of a torus of K and let π be a unitary irreducible representation of G associated with \mathcal{O} . The representation π is usually realized on a space of square integrable sections of a Hermitian G-homogeneous vector bundle over K/H or, equivalently, on a space of square integrable functions on K/H with values in the space of the corresponding little group representation. Here we use a parametrization of a dense open subset of the generalized flag manifold K/H in order to obtain a realization of π in a space of square integrable functions on \mathbb{C}^n where $n = \dim K/H$ (Section 3). We calculate the corresponding derived representation $d\pi$ (Section 4) and we dequantize $d\pi$ by using the usual Weyl correspondence on $\mathbb{C}^{2n} \simeq \mathbb{R}^{4n}$ and the Berezin calculus on the little group coadjoint orbit \mathcal{O}' associated with \mathcal{O} (Section 5). Then we obtain a symplectomorphism from the symplectic product $\mathbb{C}^{2n} \times \mathcal{O}'$ onto a dense open subset of \mathcal{O} (Section 6). This allows us to construct an adapted Weyl correspondence on the orbit \mathcal{O} (Section 6). In particular, these results can be applied to

the case when V is the Lie algebra of K and the action of K on V is the adjoint action (Section 7).

2. Preliminaries

The coadjoint orbits of a semidirect product were described by J.H. Rawnsley in [23] (see also [3] for a detailed analysis of the geometrical structure of these orbits).

Let K be a semisimple compact connected Lie group with Lie algebra \mathfrak{k} . Let σ be a representation of K on a finite-dimensional real vector space V. For k in K and v in V we write k.v instead of $\sigma(k)v$. We denote also by $(k, p) \to k.p$ the representation of K on V^{*} which is contragredient to σ and by $(A, v) \to A.v$ and $(A, p) \to A.p$ the corresponding derived representations of \mathfrak{k} on V and V^{*}, respectively. For v in V and p in V^{*} we define $v \land p \in \mathfrak{k}^*$ by $(v \land p)(A) = p(A.v) = -(A.p)(v)$ for $A \in \mathfrak{k}$. Note that $\mathrm{Ad}^*(k)(v \land p) = k.p \land k.v$ for $k \in K$, $v \in V$ and $p \in V^*$.

We consider the semidirect product $G = V \rtimes K$. The group law of G is

$$(v,k).(v',k') = (v+k.v',kk')$$

for v, v' in V and k, k' in K. The Lie algebra \mathfrak{g} of G is the space $V \times \mathfrak{k}$ with the Lie bracket

$$[(a, A), (a', A')] = (A.a' - A'.a, [A, A'])$$

for a, a' in V and A, A' in \mathfrak{k} . We identify the dual \mathfrak{g}^* of \mathfrak{g} to $V^* \times \mathfrak{k}^*$. The coadjoint action of G on \mathfrak{g}^* is then given by

$$(v,k).(p,f) = (k.p, \mathrm{Ad}^*(k)f + v \wedge k.p)$$

for $(v,k) \in G$ and $(p,f) \in \mathfrak{g}^*$. We identify K-equivariantly \mathfrak{k} to its dual \mathfrak{k}^* by using the Killing form of \mathfrak{k} defined by $\langle A, B \rangle = \operatorname{Tr}(\operatorname{ad} A \operatorname{ad} B)$ for A and B in \mathfrak{k} . Then \mathfrak{g}^* can be identified to $V^* \times \mathfrak{k}$.

Now we consider the orbit $\mathcal{O}(\xi_0)$ of the element $\xi_0 = (p_0, f_0)$ of $\mathfrak{g}^* \simeq V^* \times \mathfrak{k}$ under the coadjoint action of G on \mathfrak{g}^* . Henceforth we assume that the little group $H := \{k \in K : k.p_0 = p_0\}$ is the centralizer of a torus T_1 of K. Let \mathfrak{h} denote the Lie algebra of H. Let $Z(p_0)$ be the orbit of p_0 under the action of K on V^* . Then $Z(p_0)$ is diffeomorphic to the generalized flag manifold K/H.

Let us describe how to endow $Z(p_0) \simeq K/H$ with a complex structure. Let T be a maximal torus of K containing T_1 . Clearly $T \subset H$. Let \mathfrak{t} be the Lie algebra of T. Let Δ be the root system of K relative to T and let Δ_1 be the root system of H relative to T. We can simultaneously choose a Weyl chamber P of T relative to K and a Weyl chamber P_1 of T relative to H so that if Δ^+ and Δ_1^+ are, respectively, the positive roots of Δ and Δ_1 relative to P and P_1 then

- (1) $\Delta^+ \cap \Delta_1 = \Delta_1^+$ and
- (2) if $\alpha \in \Delta^+ \setminus \Delta_1^+$, $\beta \in \Delta_1$ and $\alpha + \beta \in \Delta$ then $\alpha + \beta \in \Delta^+ \setminus \Delta_1^+$.

Moreover, if Δ^s is the set of simple roots of Δ relative to P and if Δ_1^s is the set of simple roots of Δ_1 relative to P_1 , then $\Delta_1^s \subset \Delta^s$ (see [27, 6.2.8]).

Let \mathfrak{k}^c , \mathfrak{h}^c and \mathfrak{t}^c be the complexifications of \mathfrak{k} , \mathfrak{h} and \mathfrak{t} , respectively. Let K^c , H^c and T^c be the connected complex Lie groups whose Lie algebras are \mathfrak{k}^c , \mathfrak{h}^c and \mathfrak{t}^c , respectively. Let $\mathfrak{k}^c = \mathfrak{t}^c \oplus \sum_{\alpha \in \Delta} \mathfrak{k}_\alpha$ be the root space decomposition of \mathfrak{k}^c . We set $\mathfrak{n}^+ = \sum_{\alpha \in \Delta^+ \setminus \Delta_1^+} \mathfrak{k}_\alpha$ and $\mathfrak{n}^- = \sum_{\alpha \in \Delta^+ \setminus \Delta_1^+} \mathfrak{k}_{-\alpha}$. Then, by [27, 6.2.1], \mathfrak{n}^+ and \mathfrak{n}^- are nilpotent Lie algebras satisfying $[\mathfrak{h}^c, \mathfrak{n}^{\pm}] \subset \mathfrak{n}^{\pm}$. We also have

(2.1)
$$\mathfrak{k}^{c} = \mathfrak{h}^{c} \oplus \mathfrak{n}^{+} \oplus \mathfrak{n}^{-}, \qquad \mathfrak{h}^{c} = \mathfrak{t}^{c} \oplus \sum_{\alpha \in \Delta_{1}^{+}} \mathfrak{k}_{\alpha} \oplus \sum_{\alpha \in \Delta_{1}^{+}} \mathfrak{k}_{-\alpha}$$

We denote by N^+ and N^- the analytic subgroups of K^c with Lie algebras \mathfrak{n}^+ and \mathfrak{n}^- , respectively. A complex structure on K/H is then defined by the diffeomorphism $K/H \simeq K^c/H^c N^-$ [27, 6.2.11]. This complex structure depends on the choice of P and P_1 .

The natural projection $K^c \to K^c/H^c N^-$ induces a projection $\tau : K^c \to Z(p_0)$. The natural action of K^c on $K^c/H^c N^-$ induces an action of K^c on $Z(p_0)$; we denote by kp the action of $k \in K^c$ on $p \in Z(p_0)$. Of course, if $k \in K$ then kp is the natural action k.p of $k \in K$ on $p \in V^*$.

Now we introduce a parametrization of a dense open subset of $Z(p_0) \simeq K/H$. Recall that (1) each k in a dense open subset of K^c has a unique Gauss decomposition $k = n^+ h n^-$ where $n^+ \in N^+$, $h \in H^c$ and $n^- \in N^-$ and (2) the map $\gamma: Z \to \tau(\exp Z)$ is a holomorphic diffeomorphism from \mathfrak{n}^+ onto a dense open subset of $Z(p_0)$ (see [17, Chapter VIII]). Then the action of K^c on $Z(p_0)$ induces an action (defined almost everywhere) of K^c on \mathfrak{n}^+ . We denote by $k \cdot Z$ the action of $k \in K^c$ on $Z \in \mathfrak{n}^+$. Using the diffeomorphism $K/H \simeq K^c/H^cN^-$ again, we see that for each $Z \in \mathfrak{n}^+$ there exists an element $k_Z \in K$ for which $\tau(k_Z) = \tau(\exp Z)$ or, equivalently, $k_Z \cdot 0 = Z$.

Following [22], we introduce the projections $\kappa : N^+ H^c N^- \to H^c$ and $\zeta : N^+ H^c N^- \to N^+$. Then, for $k \in K^c$ and $Z \in \mathfrak{n}^+$ we have $k \cdot Z = \log \zeta(k \exp Z)$. We set $(X+iY)^* = -X+iY$ for $X, Y \in \mathfrak{k}$ and we denote by $k \to k^*$ the involutive anti-automorphism of K^c which is obtained by exponentiating $X+iY \to (X+iY)^*$ to K^c . Also, let θ be the conjugation of \mathfrak{k}^c with respect to \mathfrak{k} and let $\tilde{\theta}$ be the automorphism of K^c for which $d\tilde{\theta} = \theta$. Then we have $\theta(X) = -X^*$ for $X \in \mathfrak{k}^c$ and $\tilde{\theta}(k) = (k^*)^{-1}$ for $k \in K^c$.

In the rest of the paper, we fix a Cartan-Weyl basis for \mathfrak{k}^c , $(E_\alpha)_{\alpha \in \Delta} \cup (H_\alpha)_{\alpha \in \Delta_s}$, as in [20, Chapter 5]. In particular, \mathfrak{k} is spanned by the elements $E_\alpha - E_{-\alpha}$, $i(E_\alpha + E_{-\alpha})$ for $\alpha \in \Delta^+$ and iH_α for $\alpha \in \Delta_s$ and we have the property $E^*_\alpha = E_{-\alpha}$ for $\alpha \in \Delta$. Now we describe the K-invariant measure on $Z(p_0)$. Let $d\mu_L(Z)$ be the Lebesgue measure on \mathfrak{n}^+ defined as follows. Let $(\alpha_k)_{1 \leq k \leq n}$ be an enumeration of $\Delta^+ \setminus \Delta_1^+$. Then $(E_{\alpha_k})_{1 \leq k \leq n}$ is a basis for \mathfrak{n}^+ and we denote by $z_1 = x_1 + iy_1, z_2 = x_2 + iy_2, \ldots, z_n = x_n + iy_n$ the coordinates of $Z \in \mathfrak{n}^+$ in this basis. Then we set $d\mu_L(Z) = dx_1 dy_1 dx_2 dy_2 \cdots dx_n dy_n$. Now a K-invariant measure on \mathfrak{n}^+ is given by $d\mu(Z) = \chi_{\Lambda}(\kappa(\exp Z^* \exp Z)) d\mu_L(Z)$ where $\chi_{\Lambda}(h) = \operatorname{Det}_{\mathfrak{n}^+} \operatorname{Ad}(h)$ is the character of H^c corresponding to the weight $\Lambda = \sum_{\alpha \in \Delta^+ \setminus \Delta_1^+} \alpha$, that is, $\Lambda = d\chi_{\Lambda}|_{\mathfrak{t}^c}$ (see for instance [22] or [12]). Hence, a K-invariant measure on $Z(p_0)$ is $d\tilde{\mu} = \gamma^*(d\mu)$.

The two next lemmas will be needed later. First, we reformulate [23, Lemma 1] as follows.

Lemma 2.1. The space $\mathcal{V} := \{v \land p_0 : v \in V\} \subset \mathfrak{k}$ is the orthogonal complement of \mathfrak{h} in \mathfrak{k} . We also have $\mathcal{V} = \{Y + \theta(Y) : Y \in \mathfrak{n}^-\}$.

PROOF: The first assertion of the lemma follows from the equality $(v \wedge p_0)(A) = p_0(A.v) = -(A.p_0)(v)$ for $A \in \mathfrak{k}$ and $v \in V$. To prove the second assertion, we note that \mathfrak{h} is spanned by the elements $E_{\alpha} - E_{-\alpha}$, $i(E_{\alpha} + E_{-\alpha})$ for $\alpha \in \Delta_1^+$ and iH_{α} for $\alpha \in \Delta_s$. On the other hand, the space $\{Y + \theta(Y) : Y \in \mathfrak{n}^-\}$ is spanned by the elements $E_{\alpha} + \theta(E_{\alpha}) = E_{\alpha} - E_{-\alpha}$ and $iE_{\alpha} + \theta(iE_{\alpha}) = i(E_{\alpha} + E_{-\alpha})$ for $\alpha \in \Delta^+ \setminus \Delta_1^+$. Recalling that $\langle E_{\alpha}, E_{\beta} \rangle = \delta_{\alpha,-\beta}$ and $\langle E_{\alpha}, H_{\beta} \rangle = 0$, the result then follows.

Observe that, for $v \in V$, one has $(v, e).(p_0, f_0) = (p_0, f_0 + v \wedge p_0)$ where e denotes the identity element of K. Then, by Lemma 2.1, we may assume without loss of generality that $\xi_0 = (p_0, \varphi_0)$ with $\varphi_0 \in \mathfrak{h}$. We shall denote by $\mathcal{O}(\varphi_0) \subset \mathfrak{h}$ the orbit of $\varphi_0 \in \mathfrak{h}$ under the adjoint action of H.

Lemma 2.2. (1) For $k \in N^+ H^c N^-$, we have

$$\kappa(\zeta(k)^*\zeta(k)) = (\kappa(k)^*)^{-1}\kappa(k^*k)\kappa(k)^{-1}$$

(2) For $Z \in \mathfrak{n}^+$, we have $\kappa(\exp Z^* \exp Z) = \kappa(k_Z^{-1} \exp Z)^* \kappa(k_Z^{-1} \exp Z)$.

PROOF: (1) Write k = zhy where $z \in N^+$, $h \in H^c$ and $y \in N^-$. Then $k^*k = y^*h^*z^*zhy$. Hence $\kappa(k^*k) = h^*\kappa(z^*z)h$. This gives the desired result.

(2) Applying (1) to $k = k_Z = \exp Zhy$ where $h \in H^c$ and $y \in N^-$, we get $\kappa(\exp Z^* \exp Z) = (h^*)^{-1}h^{-1}$. Now $k_Z^{-1} \exp Z = y^{-1}h^{-1} = h^{-1}(hy^{-1}h^{-1})$ gives $\kappa(k_Z^{-1} \exp Z) = h^{-1}$ and the result follows.

3. Representations

In the rest of the paper, we assume that the orbit $\mathcal{O}(\varphi_0)$ is associated with a unitary irreducible representation (ρ, E) of H as in [29, Section 4]. This correspondence can be described as follows. Let λ be the highest weight of (ρ, E) . Let $\varphi_0 \in \mathfrak{t}$ such that $\lambda(A) = i\langle\varphi_0, A\rangle$ for each $A \in \mathfrak{t}$. Then orbit of φ_0 under the adjoint action of H is said to be associated with the representation (ρ, E) .

Since $\mathcal{O}(\varphi_0)$ is integral, the orbit $\mathcal{O}(\xi_0)$ is also integral [23]. In fact, $\mathcal{O}(\xi_0)$ is associated with the unitarily induced representation

$$\tilde{\pi} = \operatorname{Ind}_{V \times H}^G \left(e^{ip_0} \otimes \rho \right)$$

By a result of G. Mackey, π is irreducible because ρ is irreducible [25]. We denote by π_0 the usual realization of $\tilde{\pi}$ defined on a Hermitian vector bundle as follows [21], [24]. We introduce the Hilbert *G*-bundle $L := G \times_{e^{ip_0} \otimes \rho} E$ over $Z(p_0) \simeq K/H$. Recall that an element of L is an equivalence class

$$[g,u] = \{(g.(v,h), e^{-i\langle p_0,v\rangle}\rho(h)^{-1}u) : v \in V, h \in H\}$$

where $g \in G$, $u \in E$ and that G acts on L by left translations: g[g', u] := [g.g', u]. The action of G on $Z(p_0) \simeq K/H$ being given by (v, k).p = k.p, the projection map $[(v, k), u] \rightarrow k.p_0$ is G-equivariant. The G-invariant Hermitian structure on L is given by

$$\langle [g, u], [g, u'] \rangle = \langle u, u' \rangle_E$$

where $g \in G$ and $u, u' \in E$. Let \mathcal{H}_0 be the space of sections s of L which are square-integrable with respect to the measure $d\mu(p)$, that is,

$$||s||^2_{\mathcal{H}_0} = \int_{Z(p_0)} \langle s(p), \, s(p) \rangle \, d\mu(p) < +\infty.$$

Then π_0 is the action of G on \mathcal{H}_0 defined by

$$(\pi_0(g) s)(p) = g s(g^{-1}.p).$$

Now, following [24], we introduce an alternative realization of $\tilde{\pi}$ on a space of functions. We associate with any $s \in \mathcal{H}_0$ the function $f_s : \mathfrak{n}^+ \to E$ defined by $s(\gamma(Z)) = [(0, k_Z), f_s(Z)]$. For s and s' in \mathcal{H}_0 , we have

$$\langle s(\gamma(Z)), s'(\gamma(Z)) \rangle = \langle f_s(Z), f_{s'}(Z) \rangle_E.$$

This implies that

$$\langle s, s' \rangle_{\mathcal{H}_0} = \int_{\mathfrak{n}^+} \langle f_s(Z), f_{s'}(Z) \rangle_E \,\delta(Z) \, d\mu_L(Z)$$

where $\delta(Z) = \chi_{\Lambda}(\kappa(\exp Z^* \exp Z))$ (see Section 2). This leads us to introduce the Hilbert space \mathcal{H}^0 of functions $f : \mathfrak{n}^+ \to E$ which are square-integrable with respect to the measure $\delta(Z) d\mu_L(Z)$. The norm on \mathcal{H}^0 is defined by

$$\|f\|_{\mathcal{H}^0}^2 = \int_{\mathfrak{n}^+} \langle f(Z), f(Z) \rangle_E \,\delta(Z) \, d\mu_L(Z).$$

Moreover, for $s \in \mathcal{H}_0$, $g = (v, k) \in G$ and $Z \in \mathfrak{n}^+$, we have

$$\begin{aligned} (\pi_0(g)\,s)(\gamma(Z)) &= g\,s(g^{-1}.\gamma(Z)) = g\,[(0,k_{k^{-1}.Z}),f_s(k^{-1}\cdot Z)] \\ &= [(v,k_{k_{k^{-1}.Z}}),f_s(k^{-1}\cdot Z)] = [(0,k_Z).(k_Z^{-1}.v,k_Z^{-1}k_{k_{k^{-1}.Z}}),f_s(k^{-1}\cdot Z)] \\ &= [(0,k_Z),e^{i\langle p_0,k_Z^{-1}.v\rangle}\rho(k_Z^{-1}k_{k_{k^{-1}.Z}})f_s(k^{-1}\cdot Z)]. \end{aligned}$$

Hence we conclude that the equality

(3.1)
$$\pi^{0}(v,k)f(Z) = e^{i\langle k_{Z}.p_{0},v\rangle} \rho(k_{Z}^{-1}kk_{k^{-1}.Z})f(k^{-1}\cdot Z)$$

defines a unitary representation π^0 on \mathcal{H}^0 which is unitarily equivalent to π_0 .

Now we deduce from π^0 another realization of $\tilde{\pi}$ which is more convenient for explicit computations and for the Weyl calculus. First, we extend ρ to a representation $\tilde{\rho}$ of $H^c N^-$ on E which is trivial on N^- and we note that

(3.2)
$$\rho(k_Z^{-1}kk_{k^{-1}\cdot Z}) = \tilde{\rho}(k_Z^{-1}\exp Z)\tilde{\rho}(\exp(-Z)k\exp(k^{-1}\cdot Z)) \\ \tilde{\rho}((\exp(k^{-1}\cdot Z))^{-1}k_{k^{-1}\cdot Z}).$$

On the other hand, by (2) of Lemma 2.2, we have

(3.3)

$$\begin{split} \langle \tilde{\rho}(k_Z^{-1} \exp Z)u, \ \tilde{\rho}(k_Z^{-1} \exp Z)u' \rangle_E \\ &= \langle \tilde{\rho}(\kappa(k_Z^{-1} \exp Z))u, \tilde{\rho}(\kappa(k_Z^{-1} \exp Z))u' \rangle_E \\ &= \langle \tilde{\rho}(\kappa(k_Z^{-1} \exp Z))^* \tilde{\rho}(\kappa(k_Z^{-1} \exp Z))u, u' \rangle_E \\ &= \langle \tilde{\rho}(\kappa(\exp Z^* \exp Z))u, u' \rangle_E. \end{split}$$

Let us denote by $R(v) = v^{1/2}$ the square root of a positive self-adjoint operator on E. In order to simplify the notation, we set $h(Z) := \kappa(\exp Z^* \exp Z)$ and $q(Z) = R(\tilde{\rho}(h(Z)))$. Then by (3.3) we have

(3.4)
$$\langle \tilde{\rho}(k_Z^{-1} \exp Z)u, \, \tilde{\rho}(k_Z^{-1} \exp Z)u' \rangle_E = \langle q(Z)u, \, q(Z)u' \rangle_E.$$

Let us introduce the Hilbert space \mathcal{H} of functions $\phi : \mathfrak{n}^+ \to E$ which are squareintegrable with respect to the measure $d\mu_L(Z)$. From equations (3.1), (3.2) and (3.4) we deduce immediately that π^0 is unitarily equivalent to the representation π of G on \mathcal{H} defined by

(3.5)
$$\pi(v,k)\phi(Z) = e^{i\langle \exp Z p_0,v\rangle} \,\delta(Z)^{1/2} \delta(k^{-1} \cdot Z)^{-1/2} q(Z) \\ \tilde{\rho}(\exp(-Z)k\exp(k^{-1} \cdot Z))q(k^{-1} \cdot Z)^{-1}\phi(k^{-1} \cdot Z)$$

the intertwining operator $f \in \mathcal{H}^0 \mapsto \phi \in \mathcal{H}$ being given by

$$\phi(Z) = \delta(Z)^{1/2} q(Z) \tilde{\rho}(k_Z^{-1} \exp Z)^{-1} f(Z)$$

4. Derived representation

In this section, we compute the differential $d\pi$ of the representation π of G. For $(w, A) \in \mathfrak{g}$, we can write

(4.1)
$$(d\pi(w, A) \phi)(Z) = i \langle \exp Zp_0, w \rangle \phi(Z) + \delta(Z)^{1/2} \frac{d}{dt} \delta(k(t)^{-1} \cdot Z)^{-1/2} \big|_{t=0} \phi(Z) + q(Z) \frac{d}{dt} q(k(t)^{-1} \cdot Z)^{-1} \big|_{t=0} \phi(Z) + q(Z) d\tilde{\rho} \left(\frac{d}{dt} \exp(-Z)k(t) \exp(k(t)^{-1} \cdot Z) \big|_{t=0} \right) q(Z)^{-1} \phi(Z) + \frac{d}{dt} \phi(k(t)^{-1} \cdot Z) \big|_{t=0}$$

where $k(t) := \exp(tA)$. Recall that we have set $h(Z) = \kappa(\exp Z^* \exp Z)$ and $q(Z) = R(\tilde{\rho}(h(Z)))$ where R denotes square root. The following lemma can be easily deduced from results of [12]. We denote by $p_{\mathfrak{h}^c}$, $p_{\mathfrak{n}^+}$ and $p_{\mathfrak{n}^-}$ the projections of \mathfrak{k}^c on \mathfrak{h}^c , \mathfrak{n}^+ and \mathfrak{n}^- associated with the direct decomposition $\mathfrak{k}^c = \mathfrak{h}^c \oplus \mathfrak{n}^+ \oplus \mathfrak{n}^-$.

Lemma 4.1. Let $A \in \mathfrak{k}$ and $k(t) = \exp(tA)$. Then we have

(4.2)
$$\frac{d}{dt}\tilde{\rho}\left(\exp(-Z)k(t)\exp(k(t)^{-1}\cdot Z)\right)\Big|_{t=0} = \frac{d}{dt}\tilde{\rho}\left(\kappa(k(t)^{-1}\exp Z)\right)^{-1}\Big|_{t=0} = d\tilde{\rho}\left(p_{\mathfrak{h}^c}(\operatorname{Ad}\exp(-Z)A)\right)$$

and

(4.3)
$$\frac{d}{dt} k(t)^{-1} \cdot Z\Big|_{t=0} = -\frac{\operatorname{ad} Z}{1 - e^{-\operatorname{ad} Z}} p_{\mathfrak{n}^+}(e^{-\operatorname{ad} Z} A).$$

PROOF: Immediate consequence of [12], Proposition 4.1 and Proposition 5.1. \Box Lemma 4.2. Let $A \in \mathfrak{k}$ and $k(t) = \exp(tA)$. Then we have

d

(4.4)
$$\frac{d}{dt}q(Z) q(k(t)^{-1} \cdot Z)^{-1}|_{t=0} = -\operatorname{Ad}\tilde{\rho}(h(Z))^{1/2} (\operatorname{id} + \operatorname{Ad}\tilde{\rho}(h(Z))^{-1/2})^{-1} (d\tilde{\rho}(p_{\mathfrak{h}^{c}}(\operatorname{Ad}\exp(-Z)A)) + \operatorname{Ad}\tilde{\rho}(h(Z))^{-1}d\tilde{\rho}(p_{\mathfrak{h}^{c}}(\operatorname{Ad}\exp(-Z)A)^{*}))$$

and similarly

(4.5)
$$\frac{\frac{d}{dt}\delta(Z)^{1/2}\delta(k(t)^{-1}\cdot Z)^{-1/2}\big|_{t=0}}{=-\frac{1}{2}\big(\Lambda(p_{\mathfrak{h}^c}(\operatorname{Ad}\exp(-Z)A))+\Lambda(p_{\mathfrak{h}^c}(\operatorname{Ad}\exp(-Z)A)^*)\big).}$$

PROOF: First, note that $\exp(k(t)^{-1} \cdot Z) = \zeta(k(t)^{-1} \exp Z)$. Then, applying Lemma 2.2, we have

$$h(k(t)^{-1} \cdot Z) = \kappa(k(t)^{-1} \exp Z)^{*-1} h(Z) \kappa(k(t)^{-1} \exp Z)^{-1}.$$

Hence

$$q(k(t)^{-1} \cdot Z)^{-1} = R\left(\tilde{\rho}\left(\kappa(k(t)^{-1}\exp Z)h(Z)^{-1}\kappa(k(t)^{-1}\exp Z)^*\right)\right)$$

and

$$\begin{aligned} &\frac{d}{dt}q(k(t)^{-1}\cdot Z)^{-1}\big|_{t=0} \\ &= dR(\tilde{\rho}(h(Z)^{-1}))d\tilde{\rho}(h(Z)^{-1})\left(\frac{d}{dt}\kappa(k(t)^{-1}\exp Z)h(Z)^{-1}\kappa(k(t)^{-1}\exp Z)^*\big|_{t=0}\right) \\ &= dR(\tilde{\rho}(h(Z)^{-1}))\left(d\tilde{\rho}(U)\tilde{\rho}(h(Z))^{-1}\right) \end{aligned}$$

where

$$U := \frac{d}{dt} \kappa(k(t)^{-1} \exp Z) h(Z)^{-1} \kappa(k(t)^{-1} \exp Z)^* h(Z) \big|_{t=0}.$$

Applying Lemma 4.1, we find

(4.6)
$$U = \frac{d}{dt} \kappa(k(t)^{-1} \exp Z) \big|_{t=0} + \operatorname{Ad}(h(Z)^{-1}) \frac{d}{dt} \kappa(k(t)^{-1} \exp Z)^* \big|_{t=0} \\ = -p_{\mathfrak{h}^c} (\operatorname{Ad} \exp(-Z) A) - \operatorname{Ad}(h(Z)^{-1}) p_{\mathfrak{h}^c} (\operatorname{Ad} \exp(-Z) A)^*.$$

On the other hand, using the equality

$$dR(u)v = (\mathrm{id} + \mathrm{Ad}\,u^{1/2})^{-1}(vu^{-1/2})$$

for any positive definite self-adjoint operator u on E, we get

$$\begin{split} q(Z) \, \frac{d}{dt} q(k(t)^{-1} \cdot Z)^{-1} \big|_{t=0} \\ &= \tilde{\rho}(h(Z))^{1/2} (\operatorname{id} + \operatorname{Ad} \tilde{\rho}(h(Z))^{-1/2})^{-1} \left(d\tilde{\rho}(U) \tilde{\rho}(h(Z))^{-1/2} \right) \\ &= \operatorname{Ad} \tilde{\rho}(h(Z))^{1/2} (\operatorname{id} + \operatorname{Ad} \tilde{\rho}(h(Z))^{-1/2})^{-1} (d\tilde{\rho}(U)). \end{split}$$

Taking equation (4.6) into account, we then obtain (4.4). Moreover, writing (4.6) for $\tilde{\rho} = \chi_{\Lambda}$, we also obtain (4.5).

Proposition 4.1. For $(w, A) \in \mathfrak{g}$ and $\phi \in C_0^{\infty}(\mathfrak{n}^+, E)$ we have

$$\begin{aligned} d\pi(w,A) \,\phi(Z) &= \frac{d}{dt} \left(\pi(tw, \exp(tA))\phi)(Z) \right|_{t=0} \\ &= i \langle \exp Zp_0, w \rangle \,\phi(Z) \\ &- \frac{1}{2} \left(\Lambda(p_{\mathfrak{h}^c}(\operatorname{Ad}\exp(-Z)A)) + \Lambda(p_{\mathfrak{h}^c}(\operatorname{Ad}\exp(-Z)A)^*) \right) \phi(Z) \\ &+ (\operatorname{id} + \operatorname{Ad} \tilde{\rho}(h(Z))^{-1/2})^{-1} \left(d\tilde{\rho} \left(p_{\mathfrak{h}^c}(\operatorname{Ad}\exp(-Z)A) \right) \right) \\ &- \operatorname{Ad} \tilde{\rho}(h(Z))^{-1/2} d\tilde{\rho} \left(p_{\mathfrak{h}^c}(\operatorname{Ad}\exp(-Z)A)^* \right) \right) \phi(Z) \\ &- \partial_Z \phi(Z, Z^*) \left(\frac{\operatorname{ad} Z}{1 - e^{-\operatorname{ad} Z}} p_{\mathfrak{n}^+}(e^{-\operatorname{ad} Z}A) \right) \\ &- \partial_{Z^*} \phi(Z, Z^*) \left(\frac{\operatorname{ad} Z}{1 - e^{-\operatorname{ad} Z}} p_{\mathfrak{n}^+}(e^{-\operatorname{ad} Z}A) \right)^*. \end{aligned}$$

PROOF: Using Lemma 4.1 and Lemma 4.2 and writing

$$\begin{aligned} q(Z)d\tilde{\rho} \left(\frac{d}{dt} \exp(-Z)k(t) \exp(k(t)^{-1} \cdot Z) \Big|_{t=0} \right) q(Z)^{-1} \\ &= \operatorname{Ad} \tilde{\rho}(h(Z))^{1/2} d\tilde{\rho} \big(p_{\mathfrak{h}^c}(\operatorname{Ad} \exp(-Z) A) \big) \\ &= \operatorname{Ad} \tilde{\rho}(h(Z))^{1/2} (\operatorname{id} + \operatorname{Ad} \tilde{\rho}(h(Z))^{-1/2})^{-1} (\operatorname{id} + \operatorname{Ad} \tilde{\rho}(h(Z))^{-1/2}) \\ &\quad d\tilde{\rho} \big(p_{\mathfrak{h}^c}(\operatorname{Ad} \exp(-Z) A) \big) \end{aligned}$$

we see that

$$\begin{split} q(Z)d\tilde{\rho} \left(\frac{d}{dt} \exp(-Z)k(t) \exp(k(t)^{-1} \cdot Z) \Big|_{t=0} \right) q(Z)^{-1} \\ &+ q(Z) \frac{d}{dt} q(k(t)^{-1} \cdot Z)^{-1} \Big|_{t=0} \\ &= (\mathrm{id} + \mathrm{Ad} \, \tilde{\rho}(h(Z))^{-1/2})^{-1} \Big(d\tilde{\rho} \big(p_{\mathfrak{h}^c}(\mathrm{Ad} \exp(-Z) \, A) \big) \\ &- \mathrm{Ad} \, \tilde{\rho}(h(Z))^{-1/2} d\tilde{\rho} \big(p_{\mathfrak{h}^c}(\mathrm{Ad} \exp(-Z) \, A)^* \big) \Big). \end{split}$$

The result then follows.

5. Dequantization

We first introduce the Berezin calculus on the orbit $\mathcal{O}(\varphi_0)$. The Berezin calculus associates with each operator B on the finite-dimensional complex vector space E a complex-valued function s(B) on the orbit $\mathcal{O}(\varphi_0)$ called the symbol of the operator B (see [4]). The following properties of the Berezin calculus can be found in [13], [5], [12].

334

Proposition 5.1. (1) The map $B \to s(B)$ is injective.

- (2) For each operator B on E, we have $s(B^*) = \overline{s(B)}$.
- (3) For $\varphi \in \mathcal{O}(\varphi_0)$, $h \in H$ and for an operator B on E, we have

$$s(B)(\mathrm{Ad}(h)\varphi) = s(\rho(h)^{-1}B\rho(h))(\varphi).$$

(4) For $A \in \mathfrak{h}$ and $\varphi \in \mathcal{O}(\varphi_0)$, we have $s(d\rho(A))(\varphi) = i\langle \varphi, A \rangle$.

Now we introduce the Berezin-Weyl calculus on $\mathbf{n}^+ \times \mathbf{n}^+ \times \mathcal{O}(\varphi_0)$. We first recall the definition of the Berezin-Weyl calculus on $\mathbb{R}^{2n} \times \mathbb{R}^{2n} \times \mathcal{O}(\varphi_0)$ (see [9]). We say that a smooth function $f: (T, S, \varphi) \to f(T, S, \varphi)$ is a symbol on $\mathbb{R}^{2n} \times \mathbb{R}^{2n} \times \mathcal{O}(\varphi_0)$ if for each $(T, S) \in \mathbb{R}^{2n} \times \mathbb{R}^{2n}$ the function $\varphi \to f(T, S, \varphi)$ is the symbol in the Berezin calculus on $\mathcal{O}(\varphi_0)$ of an operator on E denoted by $\hat{f}(T, S)$. A symbol f on $\mathbb{R}^{2n} \times \mathbb{R}^{2n} \times \mathcal{O}(\varphi_0)$ is called an S-symbol if the function \hat{f} belongs to the Schwartz space of rapidly decreasing smooth functions on $\mathbb{R}^{2n} \times \mathbb{R}^{2n}$ with values in End(E). Now we consider the Weyl calculus for End(E)-valued functions [18]. For any S-symbol f on $\mathbb{R}^{2n} \times \mathbb{R}^{2n} \times \mathcal{O}(\varphi_0)$ we define an operator $\mathcal{W}(f)$ on the Hilbert space $L^2(\mathbb{R}^{2n}, E)$ by

(5.1)
$$(\mathcal{W}(f)\phi)(T) = (2\pi)^{-2n} \int_{\mathbb{R}^{2n} \times \mathbb{R}^{2n}} e^{i\langle S, S' \rangle} \hat{f}(T + \frac{1}{2}S, S') \phi(T + S) \, dS \, dS'$$

for $\phi \in C_0^{\infty}(\mathbb{R}^{2n}, E)$.

The Weyl-Berezin calculus can be extended to much larger classes of symbols (see for instance [18]). Here we are only concerned with a class of polynomial symbols. We say that a symbol f on $\mathbb{R}^{2n} \times \mathbb{R}^{2n} \times \mathcal{O}(\varphi_0)$ is a P-symbol if the function $\hat{f}(T,S)$ is polynomial in S. Let f be the P-symbol defined by $f(T,S,\varphi) = u(T)S^{\alpha}$ where $u \in C^{\infty}(\mathbb{R}^{2n}, E)$ and $S^{\alpha} := s_1^{\alpha_1} s_2^{\alpha_2} \dots s_{2n}^{\alpha_{2n}}$ for each multi-index $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_{2n})$. Then we have (see [26]):

(5.2)
$$(\mathcal{W}(f)\phi)(T) = (i\partial_S)^{\alpha} \left(u(T+\frac{1}{2}S) \phi(T+S) \right) \Big|_{S=0}$$

In particular, if $f(T, S, \varphi) = u(T)$ then

(5.3)
$$(\mathcal{W}(f)\phi)(T) = u(T)\phi(T)$$

and if $f(T, S, \varphi) = u(T)s_k$ then

(5.4)
$$(\mathcal{W}(f)\phi)(T) = i\left(\frac{1}{2}(\partial_{t_k}u)(T)\phi(T) + u(T)(\partial_{t_k}\phi)(T)\right).$$

The correspondence $f \mapsto \mathcal{W}(f)$ is called the Berezin-Weyl calculus on $\mathbb{R}^{2n} \times \mathbb{O}(\varphi_0)$. In order to obtain the Berezin-Weyl calculus on $\mathfrak{n}^+ \times \mathfrak{n}^+ \times \mathcal{O}(\varphi_0)$, we just rewrite the Berezin-Weyl calculus on $\mathbb{R}^{2n} \times \mathbb{R}^{2n} \times \mathcal{O}(\varphi_0)$ in complex coordinates.

Let $j: \mathbb{R}^{2n} \to \mathfrak{n}^+$ be the map defined by

$$j(t_1, t_2, \dots, t_n, t'_1, t'_2, \dots, t'_n) = \sum_{k=1}^n (t_k + it'_k) E_{\alpha_k}$$

and let $\tilde{j}: \mathbb{R}^{2n} \times \mathbb{R}^{2n} \times \mathcal{O}(\varphi_0) \to \mathfrak{n}^+ \times \mathfrak{n}^+ \times \mathcal{O}(\varphi_0)$ be the map given by

$$\tilde{j}(T, S, \varphi) = (j(T), j(S), \varphi)$$

We say that a function $f : \mathfrak{n}^+ \times \mathfrak{n}^+ \times \mathcal{O}(\varphi_0) \to \mathbb{C}$ is a symbol (resp. an *S*-symbol, a *P*-symbol) on $\mathfrak{n}^+ \times \mathfrak{n}^+ \times \mathcal{O}(\varphi_0)$ if $f \circ \tilde{j}$ is a symbol (resp. an *S*-symbol, a *P*-symbol) on $\mathbb{R}^{2n} \times \mathbb{R}^{2n} \times \mathcal{O}(\varphi_0)$ and we define the Berezin-Weyl calculus on $\mathfrak{n}^+ \times \mathfrak{n}^+ \times \mathcal{O}(\varphi_0)$ by

$$W(f)\phi \circ j = \mathcal{W}(f \circ \tilde{j})\phi$$

for each $\phi \in C_0^{\infty}(\mathfrak{n}^+, E)$. Let $Y = \sum_{k=1}^n y_k E_{\alpha_k}$ be the decomposition of $Y \in \mathfrak{n}^+$ in the basis (E_{α_k}) . An easy computation shows that if $f(Z, Y, \varphi) = u(Z)$ then

(5.5) $(W(f)\phi)(Z) = u(Z)\phi(Z),$

if $f(Z, Y, \varphi) = u(Z)y_k$ then

(5.6)
$$(W(f)\phi)(Z) = i(\partial_{\overline{z}_k}u)(Z)\phi(Z) + 2iu(Z)(\partial_{\overline{z}_k}\phi)(Z)$$

and if $f(Z, Y, \varphi) = u(Z)\overline{y}_k$ then

(5.7)
$$(W(f)\phi)(Z) = i(\partial_{z_k}u)(Z)\phi(Z) + 2iu(Z)(\partial_{z_k}\phi)(Z).$$

In order to dequantize the derived representation $d\pi$, that is, to calculate the Berezin-Weyl symbol of the operators $d\pi(X)$ ($X \in \mathfrak{g}$), we need the following lemma.

Lemma 5.1. For $A \in \mathfrak{k}^c$ let $u_A : \mathfrak{n}^+ \to \mathfrak{n}^+$ be the holomorphic map defined by

$$u_A(Z) = \frac{\operatorname{ad} Z}{1 - e^{-\operatorname{ad} Z}} p_{\mathfrak{n}^+}(e^{-\operatorname{ad} Z} A).$$

Then

$$\operatorname{Tr}_{\mathfrak{n}^+} du_A(Z) = \Lambda(p_{\mathfrak{h}^c}(e^{-\operatorname{ad} Z}A)).$$

PROOF: Since \mathfrak{n}^+ is a nilpotent Lie algebra, we can write $u_A(Z) = s(\operatorname{ad} Z)p_{\mathfrak{n}^+}(e^{-\operatorname{ad} Z}A)$ where $s(z) = \sum_{k=0}^N a_k z^k$ is a polynomial. For $Y \in \mathfrak{n}^+$ and $Z \in \mathfrak{n}^+$, we have

$$du_A(Z)(Y) = \frac{d}{dt} s(\operatorname{ad}(Z+tY)) \Big|_{t=0} p_{\mathfrak{n}^+}(e^{-\operatorname{ad} Z}A) + s(\operatorname{ad} Z) p_{\mathfrak{n}^+} \left(\frac{d}{dt} \operatorname{Ad}(\exp(-Z-tY))A\Big|_{t=0}\right).$$

Now

$$\frac{d}{dt}s(\operatorname{ad}(Z+tY))\Big|_{t=0} = \sum_{k=0}^{N} a_k \frac{d}{dt} (\operatorname{ad} Z+t \operatorname{ad} Y)^k \Big|_{t=0}$$
$$= \sum_{k=0}^{N} a_k \left(\sum_{r=0}^{k-1} (\operatorname{ad} Z)^r \operatorname{ad} Y(\operatorname{ad} Z)^{k-r-1}\right)$$

Then, since for each r = 0, 1, ..., k - 1 the endomorphism of \mathfrak{n}^+ defined by

$$Y \to (\operatorname{ad} Z)^r \operatorname{ad} Y(\operatorname{ad} Z)^{k-r-1} p_{\mathfrak{n}^+}(e^{-\operatorname{ad} Z} A)$$
$$= -(\operatorname{ad} Z)^r \operatorname{ad} \left((\operatorname{ad} Z)^{k-r-1} p_{\mathfrak{n}^+}(e^{-\operatorname{ad} Z} A) \right) (Y)$$

is nilpotent, the endomorphism of \mathfrak{n}^+ given by

$$Y \to \frac{d}{dt} s(\operatorname{ad}(Z+tY)) \Big|_{t=0} p_{\mathfrak{n}^+}(e^{-\operatorname{ad} Z} A)$$

has trace zero. On the other hand we have

$$\begin{aligned} \frac{d}{dt} \operatorname{Ad}(\exp(-Z - tY)) A \Big|_{t=0} \\ &= \frac{d}{dt} \operatorname{Ad}(\exp(-Z) \exp(Z + tY))^{-1} \operatorname{Ad} \exp(-Z) A \Big|_{t=0} \\ &= -\operatorname{ad}\left(\frac{1 - e^{-\operatorname{ad} Z}}{\operatorname{ad} Z} Y\right) \operatorname{Ad} \exp(-Z) A \\ &= \operatorname{ad}\left(\operatorname{Ad} \exp(-Z) A\right) \left(\frac{1 - e^{-\operatorname{ad} Z}}{\operatorname{ad} Z}\right) Y. \end{aligned}$$

The trace of the endomorphism of \mathfrak{n}^+ defined by

$$Y \to s(\operatorname{ad} Z)p_{\mathfrak{n}^+}\left(\frac{d}{dt}\operatorname{Ad}(\exp(-Z - tY))A\Big|_{t=0}\right)$$

is then

$$\begin{aligned} \operatorname{Tr}_{\mathfrak{n}^{+}} & \left(s(\operatorname{ad} Z) p_{\mathfrak{n}^{+}} \circ \operatorname{ad}(\operatorname{Ad} \exp(-Z) A) \frac{1 - e^{-\operatorname{ad} Z}}{\operatorname{ad} Z} \right) \\ & = \operatorname{Tr}_{\mathfrak{n}^{+}} \left(\frac{1 - e^{-\operatorname{ad} Z}}{\operatorname{ad} Z} s(\operatorname{ad} Z) \, p_{\mathfrak{n}^{+}} \circ \operatorname{ad}(\operatorname{Ad} \exp(-Z) A) \right) \\ & = \operatorname{Tr}_{\mathfrak{n}^{+}} \left(p_{\mathfrak{n}^{+}} \circ \operatorname{ad}(\operatorname{Ad} \exp(-Z) A) \right). \end{aligned}$$

Consequently, the lemma will be proved if we show that, for each A in \mathfrak{k}^c , we have

$$\operatorname{Tr}_{\mathfrak{n}^+}(p_{\mathfrak{n}^+} \circ \operatorname{ad} A) = \Lambda(p_{\mathfrak{h}^c}(A)).$$

If $A \in \mathfrak{n}^+$ then $p_{\mathfrak{n}^+} \circ \operatorname{ad} A = \operatorname{ad} A$ is a nilpotent endomorphism of \mathfrak{n}^+ . Thus $\operatorname{Tr}_{\mathfrak{n}^+}(p_{\mathfrak{n}^+} \circ \operatorname{ad} A) = 0$. If $A \in \mathfrak{n}^-$ then for each $k = 1, 2, \ldots, n$ we have $\operatorname{ad} A(E_{\alpha_k}) \in$

 $\mathfrak{h}^c + \sum_{\alpha < \alpha_k} \mathfrak{k}_{\alpha_k}$ and we also find that $\operatorname{Tr}_{\mathfrak{n}^+}(p_{\mathfrak{n}^+} \circ \operatorname{ad} A) = 0$. Finally, if $A \in \mathfrak{h}^c$ then

$$\mathrm{Tr}_{\mathfrak{n}^+}(p_{\mathfrak{n}^+}\circ\mathrm{ad}\,A)=\mathrm{Tr}_{\mathfrak{n}^+}(\mathrm{ad}\,A)=\sum_{k=1}^n\alpha_k(A)=\Lambda(A).$$

This ends the proof of the lemma.

We consider the Cartan decomposition $K^c = K \exp(i\mathfrak{k})$ [17, Chapter VI]. For $k \in K^c$ we can write k = up where $u \in K$ and $p \in \exp(i\mathfrak{k})$. Since $u^*u = e$ and $p^* = p$ we have $k^*k = p^*u^*up = p^2$ and we can introduce the notation $p =: (k^*k)^{1/2}$.

Proposition 5.2. For $X = (w, A) \in \mathfrak{g}$, the Berezin-Weyl symbol of the operator $-id\pi(X)$ is the P-symbol f_X on $\mathfrak{n}^+ \times \mathfrak{n}^+ \times \mathcal{O}(\varphi_0)$ given by

$$f_X(Z, Y, \varphi) = \langle \exp Z p_0, w \rangle$$

+ $\langle \varphi, (\mathrm{id} + \mathrm{Ad}(h(Z))^{-1/2})^{-1} (p_{\mathfrak{h}^c}(\mathrm{Ad}\exp(-Z)A)$
- $\mathrm{Ad}(h(Z))^{-1/2} p_{\mathfrak{h}^c}(\mathrm{Ad}\exp(-Z)A)^*) \rangle$
+ $\mathrm{Re}\langle u_A(Z), Y^* \rangle$

where

$$u_A(Z) = \frac{\operatorname{ad} Z}{1 - e^{-\operatorname{ad} Z}} p_{\mathfrak{n}^+}(e^{-\operatorname{ad} Z} A).$$

PROOF: Write $u_A(Z) = \sum_{k=1}^n u_k(Z) E_{\alpha_k}$. Then, by using (5.5), (5.6) and (5.7), we see that the operator

$$\phi \mapsto i(\partial_Z \phi)(Z, Z^*)(u_A(Z)) = i \sum_{k=1}^n u_k(Z) \partial_{z_k} \phi$$

has symbol

$$\frac{1}{2}\sum_{k=1}^{n}u_{k}(Z)\overline{y}_{k}-\frac{1}{2}i\sum_{k=1}^{n}\partial_{z_{k}}u_{k}=\frac{1}{2}\langle u_{A}(Z),Y^{*}\rangle-\frac{1}{2}i\Lambda(p_{\mathfrak{h}^{c}}(e^{-\operatorname{ad}Z}A)).$$

Similarly, the operator

$$\phi \mapsto i(\partial_{Z^*}\phi)(Z,Z^*)(u_A(Z)^*) = i\sum_{k=1}^n \overline{u_k(Z)}\partial_{\overline{z}_k}\phi$$

has symbol

$$\frac{1}{2}\sum_{k=1}^{n}\overline{u_{k}(Z)}y_{k} - \frac{1}{2}i\sum_{k=1}^{n}\partial_{\overline{z}_{k}}\overline{u}_{k} = \frac{1}{2}\overline{\langle u_{A}(Z), Y^{*}\rangle} - \frac{1}{2}i\overline{\Lambda(p_{\mathfrak{h}^{c}}(e^{-\operatorname{ad}Z}A))}.$$

The result follows from Proposition 4.1 and Proposition 5.1(3).

338

6. Adapted Weyl correspondence

In this section we show how the dequantization procedure used in Section 5 allows us to obtain an explicit symplectomorphism from $\mathfrak{n}^+ \times \mathfrak{n}^+ \times \mathcal{O}(\varphi_0)$ onto a dense open subset of $\mathcal{O}(\xi_0)$. Using this symplectomorphism we then construct an adapted Weyl correspondence on $\mathcal{O}(\xi_0)$. We retain the notation from the previous sections. Moreover, for $A \in \mathfrak{k}^c$, we set $\operatorname{Re}(A) = \frac{1}{2}(A + \theta(A))$.

Recall that f_X denotes the Berezin-Weyl symbol of the operator $-id\pi(X)$ for $X \in \mathfrak{g}$. Since the map $X \to f_X(Z, Y, \varphi)$ is linear there exists a map Ψ from $\mathfrak{n}^+ \times \mathfrak{n}^+ \times \mathcal{O}(\varphi_0)$ to $\mathfrak{g}^* \simeq V^* \oplus \mathfrak{k}$ such that

(6.1)
$$f_X(Z, Y, \varphi) = \langle \Psi(Z, Y, \varphi), X \rangle$$

for each $X \in \mathfrak{g}$ and each $(Z, Y, \varphi) \in \mathfrak{n}^+ \times \mathfrak{n}^+ \times \mathcal{O}(\varphi_0)$. From Proposition 5.2 we deduce a precise expression for Ψ .

Proposition 6.1. For $(Z, Y, \varphi) \in \mathfrak{n}^+ \times \mathfrak{n}^+ \times \mathcal{O}(\varphi_0)$, we have

$$\begin{split} \Psi(Z,Y,\varphi) &= \bigg(\exp Zp_0, \operatorname{Re}\operatorname{Ad}(\exp Z) \bigg[p_{\mathfrak{n}^-} \bigg(\frac{\operatorname{ad} Z}{1 - e^{\operatorname{ad} Z}} \, \theta(Y) \bigg) \\ &+ 2(\operatorname{id} + \operatorname{Ad}(h(Z))^{1/2})^{-1} \varphi \bigg] \bigg). \end{split}$$

PROOF: For $(w, A) \in \mathfrak{g}$, we transform the expression for $f_X(Z, Y, \varphi)$ given in Proposition 5.2 as follows. First we have

$$\begin{aligned} \langle \varphi, (\mathrm{id} + \mathrm{Ad}(h(Z))^{-1/2})^{-1} p_{\mathfrak{h}^c}(\mathrm{Ad}\exp(-Z)A) \rangle \\ &= \langle (\mathrm{id} + \mathrm{Ad}(h(Z))^{1/2})^{-1} \varphi, \, p_{\mathfrak{h}^c}(\mathrm{Ad}\exp(-Z)A) \rangle \\ &= \langle (\mathrm{id} + \mathrm{Ad}(h(Z))^{1/2})^{-1} \varphi, \, \mathrm{Ad}\exp(-Z)A \rangle \\ &= \langle \mathrm{Ad}(\exp Z)(\mathrm{id} + \mathrm{Ad}(h(Z))^{1/2})^{-1} \varphi, \, A \rangle. \end{aligned}$$

On the other hand, by using the properties $(\operatorname{Ad}(k^{-1})B)^* = \operatorname{Ad}(k^*)B^*$ for $k \in \mathfrak{k}^c$ and $B \in \mathfrak{k}^c$ and $\langle B_1^*, B_2^* \rangle = \overline{\langle B_1, B_2 \rangle}$ for B_1 and B_2 in \mathfrak{k}^c , we have

$$\begin{split} \langle \varphi, (\mathrm{id} + \mathrm{Ad}(h(Z))^{-1/2})^{-1} \mathrm{Ad}(h(Z))^{-1/2} p_{\mathfrak{h}^{c}} (\mathrm{Ad} \exp(-Z) A)^{*} \rangle \\ &= \langle (\mathrm{id} + \mathrm{Ad}(h(Z))^{-1/2})^{-1} \varphi, \, p_{\mathfrak{h}^{c}} (\mathrm{Ad} \exp(-Z) A)^{*} \rangle \\ &= -\overline{\langle (\mathrm{id} + \mathrm{Ad}(h(Z))^{1/2})^{-1} \varphi, \, p_{\mathfrak{h}^{c}} (\mathrm{Ad} \exp(-Z) A) \rangle} \\ &= -\overline{\langle (\mathrm{id} + \mathrm{Ad}(h(Z))^{1/2})^{-1} \varphi, \, \mathrm{Ad} \exp(-Z) A \rangle} \\ &= -\overline{\langle (\mathrm{Ad}(\exp Z) \, (\mathrm{id} + \mathrm{Ad}(h(Z))^{1/2})^{-1} \varphi, \, A \rangle}. \end{split}$$

Then

$$\left\langle \varphi, (\mathrm{id} + \mathrm{Ad}(h(Z))^{-1/2})^{-1} \left(p_{\mathfrak{h}^c} (\mathrm{Ad} \exp(-Z) A) \right. \\ \left. - \mathrm{Ad}(h(Z))^{-1/2} p_{\mathfrak{h}^c} (\mathrm{Ad} \exp(-Z) A)^* \right) \right\rangle$$
$$= \left\langle 2 \operatorname{Re} \left(\operatorname{Ad}(\exp Z) (\mathrm{id} + \mathrm{Ad}(h(Z))^{1/2})^{-1} \varphi \right), A \right\rangle.$$

Moreover we have

$$\langle u_A(Z), Y^* \rangle = \left\langle \frac{\operatorname{ad} Z}{1 - e^{-\operatorname{ad} Z}} p_{\mathfrak{n}^+}(e^{-\operatorname{ad} Z}A), Y^* \right\rangle$$

$$= \left\langle p_{\mathfrak{n}^+}(e^{-\operatorname{ad} Z}A), -\frac{\operatorname{ad} Z}{1 - e^{\operatorname{ad} Z}}Y^* \right\rangle$$

$$= \left\langle e^{-\operatorname{ad} Z}A, p_{\mathfrak{n}^-}\left(\frac{\operatorname{ad} Z}{1 - e^{\operatorname{ad} Z}}\theta(Y)\right) \right\rangle$$

$$= \left\langle A, e^{\operatorname{ad} Z}p_{\mathfrak{n}^-}\left(\frac{\operatorname{ad} Z}{1 - e^{\operatorname{ad} Z}}\theta(Y)\right) \right\rangle.$$

The result therefore follows.

Let ω_0 and ω_1 be the Kirillov 2-forms on $\mathcal{O}(\xi_0)$ and $\mathcal{O}(\varphi_0)$, respectively. Denote by $\{\cdot, \cdot\}_0$ and $\{\cdot, \cdot\}_1$ the Poisson brackets associated with ω_0 and ω_1 . We endow $\mathfrak{n}^+ \times \mathfrak{n}^+$ with the symplectic form

$$\omega_2 := \frac{1}{2} \sum_{k=1}^n (dz_k \wedge d\overline{y}_k + d\overline{z}_k \wedge dy_k).$$

The corresponding Poisson bracket on $C^{\infty}(\mathfrak{n}^+ \times \mathfrak{n}^+)$ is

$$\{f, g\}_2 := 2\sum_{k=1}^n \left(\partial f_{z_k} \partial_{\overline{y}_k} g - \partial_{\overline{y}_k} f \partial_{z_k} g + \partial f_{\overline{z}_k} \partial_{y_k} g - \partial_{y_k} f \partial_{\overline{z}_k} g\right).$$

We endow the product $\mathbf{n}^+ \times \mathbf{n}^+ \times \mathcal{O}(\varphi_0)$ with the symplectic form $\omega := \omega_2 \otimes \omega_1$ and we denote by $\{\cdot, \cdot\}$ the corresponding Poisson bracket. Let $u, v \in C^{\infty}(\mathbf{n}^+ \times \mathbf{n}^+)$ and $a, b \in C^{\infty}(\mathcal{O}(\varphi_0))$. Then, for $f(Z, Y, \varphi) = u(Z, Y)a(\varphi)$ and $g(Z, Y, \varphi) = v(Z, Y)b(\varphi)$ we have

$$\{f, g\} = u(Z, Y)v(Z, Y)\{a, b\}_1 + a(\varphi)b(\varphi)\{u, v\}_2$$

Lemma 6.1. Suppose that f and g are two P-symbols on $\mathfrak{n}^+ \times \mathfrak{n}^+ \times \mathcal{O}(\varphi_0)$ of the form

$$u(Z) + \langle v(Z), \varphi \rangle + \sum_{k=1}^{n} \left(w_k(Z) y_k + w'_k(Z) \overline{y}_k \right)$$

340

where $u \in C^{\infty}(\mathfrak{n}^+)$, $v \in C^{\infty}(\mathfrak{n}^+, \mathfrak{k}^c)$ and $w_k, w'_k \in C^{\infty}(\mathfrak{n}^+)$ for k = 1, 2, ..., n. Then we have

$$[W(f), W(g)] = -i W(\{f, g\}).$$

PROOF: By using (5.5), (5.6) and (5.7), one can prove the result by a direct computation. One can also deduce it from Lemma 6.2 of [9] by using the fact that \tilde{j} is a symplectomorphism from $\mathbb{R}^{2n} \times \mathbb{R}^{2n} \times \mathcal{O}(\varphi_0)$ endowed with its natural symplectic structure onto $\mathfrak{n}^+ \times \mathfrak{n}^+ \times \mathcal{O}(\varphi_0)$.

Let $\tilde{\mathcal{O}}(\xi_0)$ be the dense open subset of $\mathcal{O}(\xi_0)$ defined by

$$\hat{\mathcal{O}}(\xi_0) = \{ (v,k) . (p_0,\varphi_0) : v \in V, k \in K \cap N^+ H^c N^- \}.$$

Proposition 6.2. The map Ψ is a symplectomorphism from $(\mathfrak{n}^+ \times \mathfrak{n}^+ \times \mathcal{O}(\varphi_0), \omega)$ onto $(\tilde{\mathcal{O}}(\xi_0), \omega_0)$.

PROOF: (1) First, we show that for any $\xi \in \tilde{\mathcal{O}}(\xi_0)$ there exists a unique element (Z, Y, φ) in $\mathfrak{n}^+ \times \mathfrak{n}^+ \times \mathcal{O}(\varphi_0)$ such that $\Psi(Y, Z, \varphi) = \xi$. Let $\xi \in \tilde{\mathcal{O}}(\xi_0)$. Write $\xi = (v, k).(p_0, \varphi_0)$ where $v \in V$ and $k \in K \cap N^+ H^c N^-$. If $\Psi(Y, Z, \varphi) = \xi$ then

(6.2)
$$(0,k)^{-1} \cdot \Psi(Z,Y,\varphi) = (p_0,\varphi_0 + (k^{-1} \cdot v) \wedge p_0).$$

This gives $k^{-1} \exp Z p_0 = p_0$ or, equivalently, $k^{-1} \exp Z \in H^c N^-$ and we can write $k^{-1} \exp Z = yh$ where $y \in N^-$ and $h \in H^c$. Thus, equation (6.2) implies

(6.3)
$$2\operatorname{Re}\operatorname{Ad}(yh)(\operatorname{id} + \operatorname{Ad}(h(Z))^{1/2})^{-1}\varphi + \operatorname{Re}\operatorname{Ad}(yh)p_{\mathfrak{n}^{-}}\left(\frac{\operatorname{ad}Z}{1 - e^{\operatorname{ad}Z}}\theta(Y)\right) = \varphi_{0} + (k^{-1}.v) \wedge p_{0}.$$

Hence, noting that the element $Y_{Z,\varphi}$ defined by

$$Y_{Z,\varphi} := \mathrm{Ad}(y) \, \mathrm{Ad}(h) (\mathrm{id} + \mathrm{Ad}(h(Z))^{1/2})^{-1} \varphi - \mathrm{Ad}(h) (\mathrm{id} + \mathrm{Ad}(h(Z))^{1/2})^{-1} \varphi$$

belongs to \mathfrak{n}^- and applying Lemma 2.1, we see that equation (6.3) is equivalent to

$$\begin{cases} (E1) & \operatorname{Re}\left(Y_{Z,\varphi} + \operatorname{Ad}(yh)p_{\mathfrak{n}^{-}}\left(\frac{\operatorname{ad} Z}{1 - e^{\operatorname{ad} Z}}\theta(Y)\right)\right) = (k^{-1}.v) \wedge p_{0} \\ (E2) & 2\operatorname{Re}\left(\operatorname{Ad}(h)(\operatorname{id} + \operatorname{Ad}(h(Z))^{1/2})^{-1}\varphi\right) = \varphi_{0}. \end{cases}$$

But we have

$$\begin{aligned} &2\operatorname{Re}\left(\operatorname{Ad}(h)(\operatorname{id} + \operatorname{Ad}(h(Z))^{1/2})^{-1}\varphi\right) \\ &= \operatorname{Ad}(h)(\operatorname{id} + \operatorname{Ad}(h(Z))^{1/2})^{-1}\varphi + \operatorname{Ad}(\theta(h))(\operatorname{id} + \operatorname{Ad}(\theta(h(Z)))^{1/2})^{-1}\theta(\varphi) \\ &= \operatorname{Ad}(h)(\operatorname{id} + \operatorname{Ad}(h(Z))^{1/2})^{-1}\varphi + \operatorname{Ad}(h^*)^{-1}(\operatorname{id} + \operatorname{Ad}(h(Z))^{-1/2})^{-1}\varphi \\ &= \operatorname{Ad}(h)(\operatorname{id} + \operatorname{Ad}(h^*h)^{-1}\operatorname{Ad}(h(Z))^{1/2})(\operatorname{id} + \operatorname{Ad}(h(Z))^{1/2})^{-1}\varphi \end{aligned}$$

and, since $h^*h = h(Z)$, we can write

$$2\operatorname{Re}\left(\operatorname{Ad}(h)(\operatorname{id} + \operatorname{Ad}(h(Z))^{1/2})^{-1}\varphi\right)$$

= Ad(h)(id + Ad(h(Z))^{-1/2})(id + Ad(h(Z))^{1/2})^{-1}\varphi
= Ad(h) Ad(h(Z))^{-1/2}\varphi.

Finally, writing h = up, $u \in K$, $p = (h^*h)^{1/2} \in \exp(i\mathfrak{k})$ for the Cartan decomposition of h, we obtain

$$2\operatorname{Re}\left(\operatorname{Ad}(h)(\operatorname{id} + \operatorname{Ad}(h(Z))^{1/2})^{-1}\varphi\right) = \operatorname{Ad}(u)\varphi$$

where $u \in H^c \cap K = H$. Consequently, equation (E2) gives $\varphi = \operatorname{Ad}(u^{-1})\varphi_0$. Since $Z = \log \zeta(k)$, we have shown that Z and φ are unique. In order to verify that Y is also unique, we have just to use equation (E1) and the following facts: (1) the map $Y \to \operatorname{Re}(Y)$ from \mathfrak{n}^+ to the ortho-complement of \mathfrak{h} in \mathfrak{k} is injective and (2) the map

$$Y \to p_{\mathfrak{n}^-}\left(\frac{\operatorname{ad} Z}{1 - e^{\operatorname{ad} Z}}\theta(Y)\right)$$

is a bijection from n^+ onto n^- , the inverse bijection being

$$U \to \theta \left(p_{\mathfrak{n}^-} \left(\frac{1 - e^{\operatorname{ad} Z}}{\operatorname{ad} Z} U \right) \right).$$

It is also clear that the element (Y, Z, φ) obtained below satisfies the equation $\Psi(Y, Z, \varphi) = \xi$. Moreover, by similar considerations, we show that Ψ takes values in $\tilde{\mathcal{O}}(\xi_0)$ and we can conclude that Ψ is a bijection from $\mathfrak{n}^+ \times \mathfrak{n}^+ \times \mathcal{O}(\varphi_0)$ onto $\tilde{\mathcal{O}}(\xi_0)$.

(2) For $X \in \mathfrak{g}$, we denote by \tilde{X} the function on $\tilde{\mathcal{O}}(\xi_0)$ defined by $\tilde{X}(\xi) = \langle \xi, X \rangle$. Observe that $f_X = \tilde{X} \circ \Psi$.

Let X and Y in \mathfrak{g} . Then by Proposition 5.2 and Lemma 6.1 we have

$$[W(f_X), W(f_Y)] = -iW(\{f_X, f_Y\}).$$

But we also have

$$[W(f_X), W(f_Y)] = [-id\pi(X), -id\pi(Y)] = -d\pi([X, Y]) = -iW(f_{[X,Y]}).$$

Hence $f_{[X,Y]} = \{f_X, f_Y\}$. Since $[X, Y] = \{\tilde{X}, \tilde{Y}\}_0$, we obtain

$$\left\{\tilde{X},\tilde{Y}\right\}_0\,\circ\,\Psi=\left\{\tilde{X}\circ\Psi,\,\tilde{Y}\circ\Psi\right\}.$$

This implies that $\Psi^*(\omega_0) = \omega$. Since the 2-form ω is non-degenerate, we also have that the map Ψ is regular. Finally, Ψ is a symplectomorphism.

Remark 6.1. The map Ψ might define a symplectomorphism from $\mathfrak{n}^+ \times \mathfrak{n}^+ \times \mathcal{O}(\varphi_0)$ onto $\tilde{\mathcal{O}}(\xi_0)$ even when the orbit $\mathcal{O}(\varphi_0)$ is not assumed to be integral.

Now, we are in position to construct an adapted Weyl transform on $\mathcal{O}(\xi_0)$ by transferring to $\mathcal{O}(\xi_0)$ the Berezin-Weyl calculus on $\mathfrak{n}^+ \times \mathfrak{n}^+ \times \mathcal{O}(\varphi_0)$. We say that a smooth function f on $\mathcal{O}(\xi_0)$ is a symbol (resp. a *P*-symbol, an *S*-symbol) on $\mathcal{O}(\xi_0)$ if $f \circ \Psi$ is a symbol (resp. a *P*-symbol, an *S*-symbol) for the Berezin-Weyl calculus on $\mathfrak{n}^+ \times \mathfrak{n}^+ \times \mathcal{O}(\varphi_0)$.

Proposition 6.3. Let \mathcal{A} be the space of *P*-symbols on $\mathcal{O}(\xi_0)$ and let \mathcal{B} be the space of differential operators on \mathfrak{n}^+ with coefficients in $C^{\infty}(\mathfrak{n}^+, E)$. Then the map $\tilde{W} : \mathcal{A} \to \mathcal{B}$ defined by the $\tilde{W}(f) = W(f \circ \Psi)$ is an adapted Weyl correspondence in the sense of Definition 1.1.

PROOF: The properties (1), (2) and (3) of Definition 1.1 are clearly satisfied with $D = C_0^{\infty}(\mathfrak{n}^+, E)$. The property (4) follows from the corresponding properties for the Berezin calculus (see Proposition 5.1) and for the usual Weyl calculus [18]. Finally, the property (5) is an immediate consequence of Proposition 5.2 and Proposition 6.1.

7. Final remarks and examples

7.1. If ρ is a character of H then $\mathcal{O}(\varphi_0)$ reduces to the point φ_0 and Ψ is given by

(7.1)
$$\Psi(Z, Y, \varphi) = \left(\exp Zp_0, \operatorname{Re}\operatorname{Ad}(\exp Z)\left[\varphi_0 + p_{\mathfrak{n}^-}\left(\frac{\operatorname{ad}Z}{1 - e^{\operatorname{ad}Z}}\,\theta(Y)\right)\right]\right).$$

7.2. If $Z(p_0) \simeq G/H$ is a symmetric space then \mathfrak{n}^+ and \mathfrak{n}^- are abelian and $[\mathfrak{n}^+, \mathfrak{n}^-] \subset \mathfrak{h}^c$ (see [17, Lemma VII 2.16]). Thus, for each Y and Z in \mathfrak{n}^+ , we have

$$p_{\mathfrak{n}^-}\left(\frac{\operatorname{ad} Z}{1-e^{\operatorname{ad} Z}}\,\theta(Y)\right) = \theta(Y).$$

Hence the expression for Ψ is

(7.2)
$$\Psi(Z,Y,\varphi) = \left(\exp Zp_0, \operatorname{Re}\operatorname{Ad}(\exp Z)\left[2(\operatorname{id} + \operatorname{Ad}(h(Z))^{1/2})^{-1}\varphi + \theta(Y)\right]\right).$$

7.3. In this subsection, we consider the case when V is equal to the Lie algebra \mathfrak{k} of K and σ is the adjoint action of K on \mathfrak{k} . We identify $V^* = \mathfrak{k}^*$ to $V = \mathfrak{k}$ by means of the Killing form. Then we have $v \wedge p = [v, p]$ for each $v \in V = \mathfrak{k}$ and each $p \in V^* \simeq \mathfrak{k}$. The coadjoint action of G on \mathfrak{g}^* is thus given by

$$(v,k).(p,f) = (\mathrm{Ad}(k)p, \mathrm{Ad}(k)f + [v, \mathrm{Ad}(k)p]).$$

Moreover, if $\xi_0 = (p_0, \varphi_0)$ is an element of \mathfrak{g}^* such that $p_0 \neq 0$ and $\mathcal{O}(\varphi_0)$ is integral then the stabilizer H of p_0 in K is the centralizer of the torus of K generated by exp p_0 and one can apply to $\mathcal{O}(\xi_0)$ the results of the previous sections.

7.4. We illustrate here the situation described in the previous subsection by the following example. We take K = SU(m+n) and p_0 to be the element of \mathfrak{k} defined by

$$p_0 = i \begin{pmatrix} -nI_m & 0\\ 0 & mI_n \end{pmatrix}.$$

The torus T_1 generated by $\exp p_0$ consists of the matrices

$$\begin{pmatrix} e^{ia}I_m & 0\\ 0 & e^{ib}I_n \end{pmatrix} \qquad a, b \in \mathbb{R}, \qquad (e^{ia})^m (e^{ib})^n = 1.$$

The torus T_1 is contained in the maximal torus $T \subset K$ consisting of the matrices

Diag
$$(e^{ia_1}, e^{ia_2}, \dots, e^{ia_{m+n}}), \quad a_1, a_2, \dots, a_{m+n} \in \mathbb{R}, \quad \prod_{k=1}^{m+n} e^{ia_k} = 1.$$

Moreover, the subgroup $H = \{k \in K : k.p_0 = p_0\}$ is the centralizer of T_1 in K and consists of the matrices

$$\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}, \qquad A \in U(m), \ D \in U(n), \qquad \text{Det } A. \text{ Det } D = 1,$$

that is, we have $H = S(U(m) \times U(n))$. The complexification T^c of T has Lie algebra

$$\mathfrak{t}^{c} = \left\{ X = \operatorname{Diag}(x_{1}, x_{2}, \dots, x_{m+n}) : x_{k} \in \mathbb{C}, \sum_{k=1}^{m+n} x_{k} = 0 \right\}.$$

The set of roots of \mathfrak{t}^c on \mathfrak{g}^c is $\lambda_i - \lambda_j$ for $1 \leq i \neq j \leq m + n$ where $\lambda_i(X) = x_i$ for $X \in \mathfrak{t}^c$ as above. The set of roots of \mathfrak{t}^c on \mathfrak{h}^c is $\lambda_i - \lambda_j$ for $1 \leq i \neq j \leq m$ and $m+1 \leq i \neq j \leq m+n$. We take the set of positive roots Δ^+ to be $\lambda_i - \lambda_j$ for $1 \leq i < j \leq m+n$ and the set of positive roots Δ_1^+ to be $\lambda_i - \lambda_j$ for $1 \leq i < j \leq m$ and $m+1 \leq i < j \leq m+n$. Then we have

$$N^{+} = \left\{ \begin{pmatrix} I_m & Z \\ 0 & I_n \end{pmatrix} : Z \in M_{mn}(\mathbb{C}) \right\}, N^{-} = \left\{ \begin{pmatrix} I_m & 0 \\ Y & I_n \end{pmatrix} : Y \in M_{nm}(\mathbb{C}) \right\}.$$

We identify \mathfrak{n}^+ to $M_{mn}(\mathbb{C})$ by means of the map

$$Z \mapsto \tilde{Z} = \begin{pmatrix} 0 & Z \\ 0 & 0 \end{pmatrix}.$$

We also have

$$H^{c} = \left\{ \begin{pmatrix} A & 0\\ 0 & D \end{pmatrix} A \in M_{m}(\mathbb{C}), D \in M_{n}(\mathbb{C}), \text{ Det } A. \text{ Det } D = 1 \right\}.$$

We easily see that the $N^+H^cN^-$ -decomposition of a matrix $k \in K^c$ is given by

$$k = \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} I_m & BD^{-1} \\ 0 & I_n \end{pmatrix} \begin{pmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} I_m & 0 \\ D^{-1}C & I_n \end{pmatrix}$$

Observe that a matrix $k \in K^c$ have such a decomposition if and only if $\text{Det } D \neq 0$. In particular we have $K \subset N^+ H^c N^-$. Moreover, we deduce from the preceding decomposition that the action of K^c on \mathfrak{n}^+ is given by

$$k \cdot Z = (AZ + B)(CZ + D)^{-1}, \qquad k = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.$$

Note that, for $k \in K^c$, we have $k^* = \overline{k}^t$ (conjugate transpose of k) and $\tilde{\theta}(k) = (\overline{k}^t)^{-1}$. For $X \in \mathfrak{k}^c$, we have $X^* = \overline{X}^t$ and $\theta(X) = -\overline{X}^t$.

We are here in the situation of the subsection 7.2 and Ψ is then given by equation (7.2) with

$$h(\tilde{Z}) = \begin{pmatrix} (I_m + ZZ^*)^{-1} & 0\\ 0 & I_n + Z^*Z \end{pmatrix}$$

and

$$\exp \tilde{Z} p_0 = i \begin{pmatrix} (I_m + ZZ^*)^{-1} (mZZ^* - nI_m) & (m+n)Z(I_n + Z^*Z)^{-1} \\ (m+n)(I_n + Z^*Z)^{-1}Z^* & (mI_n - nZ^*Z)(I_n + Z^*Z)^{-1} \end{pmatrix}.$$

In particular, in the case when m = n = 1, we can take

$$\varphi_0 = \begin{pmatrix} -ia & 0 \\ 0 & ia \end{pmatrix}$$

where $a \in \mathbb{N} \setminus (0)$. We get

$$\exp \tilde{Z}p_0 = \frac{1}{\sqrt{1+|z|^2}} i \begin{pmatrix} |z|^2 - 1 & 2z \\ 2\overline{z} & 1-|z|^2 \end{pmatrix}$$

and

$$\Psi(\tilde{Z},\tilde{Y}) = \left(\exp\tilde{Z}p_0, \frac{1}{2} \begin{pmatrix} -2ai+y\overline{z}-\overline{y}z & 2aiz+y+\overline{y}z^2\\ 2ai\overline{z}-y-y\overline{z}^2 & 2ai-y\overline{z}+\overline{y}z \end{pmatrix}\right).$$

References

- Ali S.T., Englis M., Quantization methods: a guide for physicists and analysts, Rev. Math. Phys. 17 (2005), no. 4, 391–490.
- [2] Arnal D., Cortet J.-C., Nilpotent Fourier Transform and Applications, Lett. Math. Phys. 9 (1985), 25–34.
- [3] Baguis P., Semidirect products and the Pukansky condition, J. Geom. Phys. 25 (1998), 245-270.

- [4] Berezin F.A., Quantization, Math. USSR Izv. 8, 5 (1974), 1109–1165.
- [5] Cahen B., Deformation program for principal series representations, Lett. Math. Phys. 36 (1996), 65–75.
- [6] Cahen B., Quantification d'une orbite massive d'un groupe de Poincaré généralisé, C.R. Acad. Sci. Paris Sér. I Math. 325 (1997), 803–806.
- [7] Cahen B., Quantification d'orbites coadjointes et théorie des contractions, J. Lie Theory 11 (2001), 257–272.
- [8] Cahen B., Contractions of SU(1, n) and SU(n+1) via Berezin quantization, J. Anal. Math. 97 (2005), 83–102.
- Cahen B., Weyl quantization for semidirect products, Differential Geom. Appl. 25 (2007), 177–190.
- [10] Cahen B., Weyl quantization for principal series, Beiträge Algebra Geom. 48 (2007), no. 1, 175–190.
- [11] Cahen B., Berezin quantization for discrete series, preprint Univ. Metz (2008), to appear in Beiträge Algebra Geom.
- [12] Cahen B., Berezin quantization on generalized flag manifolds, preprint Univ. Metz (2008), to appear in Math. Scand.
- [13] Cahen M., Gutt S., Rawnsley J., Quantization on Kähler manifolds I, Geometric interpretation of Berezin quantization, J. Geom. Phys. 7 (1990), 45–62.
- [14] Cotton P., Dooley A.H., Contraction of an adapted functional calculus, J. Lie Theory 7 (1997), 147–164.
- [15] Folland B., Harmonic Analysis in Phase Space, Princeton Univ. Press, Princeton, 1989.
- [16] Gotay M., Obstructions to quantization, in Mechanics: From Theory to Computation (Essays in Honor of Juan-Carlos Simo), J. Nonlinear Science Editors, Springer, NewYork, 2000, pp. 271–316.
- [17] Helgason S., Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, Vol. 34, American Mathematical Society, Providence, Rhode Island, 2001.
- [18] Hörmander L., The Analysis of Linear Partial Differential Operators III. Pseudodifferential Operators, Grundlehren der Mathematischen Wissenschaften, 274, Springer, Berlin-Heidelberg-NewYork, 1985.
- [19] Kirillov A.A., Elements of the Theory of Representations, Grundlehren der Mathematischen Wissenschaften, 220, Springer, Berlin-Heidelberg-New York, 1976.
- [20] Kirillov A.A., Lectures on the Orbit Method, Graduate Studies in Mathematics, Vol. 64, American Mathematical Society, Providence, Rhode Island, 2004.
- [21] Kostant B., Quantization and unitary representations, in Modern Analysis and Applications, Lecture Notes in Mathematics 170, Springer, Berlin-Heidelberg-New York, 1970, pp. 87–207.
- [22] Neeb K.-H., Holomorphy and Convexity in Lie Theory, de Gruyter Expositions in Mathematics, Vol. 28, Walter de Gruyter, Berlin, New York, 2000.
- [23] Rawnsley J.H., Representations of a semi direct product by quantization, Math. Proc. Cambridge Philos. Soc. 78 (1975), 345–350.
- [24] Simms D.J., Lie Groups and Quantum Mechanics, Lecture Notes in Mathematics, 52, Springer, Berlin-Heidelberg-New York, 1968.
- [25] Taylor M.E., Noncommutative Harmonis Analysis, Mathematical Surveys and Monographs, Vol. 22, American Mathematical Society, Providence, Rhode Island, 1986.
- [26] Voros A., An algebra of pseudo differential operators and the asymptotics of quantum mechanics, J. Funct. Anal. 29 (1978), 104–132.
- [27] Wallach N.R., Harmonic Analysis on Homogeneous Spaces, Pure and Applied Mathematics, Vol. 19, Marcel Dekker, New York, 1973.

- [28] Wildberger N.J., Convexity and unitary representations of a nilpotent Lie group, Invent. Math. 89 (1989), 281–292.
- [29] Wildberger N.J., On the Fourier transform of a compact semisimple Lie group, J. Austral. Math. Soc. A 56 (1994), 64–116.

UNIVERSITÉ DE METZ, UFR-MIM, DÉPARTEMENT DE MATHÉMATIQUES, LMMAS, ISGMP-BÂT. A, ILE DU SAULCY 57045, METZ CEDEX 01, FRANCE *Email:* cahen@univ-metz.fr

(Received January 2, 2009)